Genomic Analysis at Scale: Mapping Irregular Computations to Advanced Architectures

Kathy Yelick Robert S. Pepper Distinguished Professor of EECS Associate Dean for Research Division of Computing, Data Science, and Society UC Berkeley Senior Advisor on Computing Lawrence Berkeley National Laboratory

Genomic Analysis at Scale

Understanding the microbiome

Understanding the microbiome

Who, what, why, how?

New Era of Microbiome Data Science

nmdc

National Microbiome Data Collaborative

NMDC launched in 2019 by DOE to collect, analyze, and serve microbial data.

Courtesy of Emiley A. Eloe-Fadrosh, JGI, LBNL

Metagenome Complexity

Microbiome analysis: metagenome

Big Science Questions

What happens to microbes after a wildfire? (1.5TB)

What at the seasonal fluctuations in a wetland mangrove? (1.6 TB)

What are the microbial dynamics of soil carbon cycling? (3.3 TB)

How do microbes affect disease and growth of switchgrass for biofuels (4TB)

Combine genomics with isotope tracing methods for improved functional understanding (8TB)

Complex metagenomes require terascale data

Coverage analysis done by Kelly Cobaugh using Nonpareil 3 (Rodriguez-R, et al. mSystems 2018)

Big Data, Big Iron \rightarrow Better Science

Multiassembly: assembling many samples separately

Coassembly: assembling many samples together

.....

Clustering Huge Protein Datasets

- Protein families via clustering
- Functional diversity
 - Oceans vs human microbiome
- New genes and proteins, e.g.
 - Novel CRISPR/Cas genes
 - Gene clusters encoding antibiotics

Image: G. Pavlopoulos and N. Kyrpides

Moore's Law

It's hard to think exponentially

But it's also hard to stop

Dennard Scaling is Dead; Moore's Law Will Follow

Exascale Architecture Plans (2008)

Exascale Architecture Plans (2021)

Exascale HPE AMD+AMD

Pre-exascale HPE AMD+NVIDIA Exascale HPE Intel+Intel

Argonne 4

intel

ENERGY

Accelerators

Image: http://stideplayer.com/slide/7541288/

Top 500 #1 Fugaku ARM w/ 512b

Image from Dezso Sima presentation

Specialization: End Game for Moore's Law

Is deep learning the only application?

Cautionary tale from HPL

Specialization, Yes

BERKELEY LAE

Accelerators, No!

Data Movement is Expensive

Image: http://slideplayer.com/slide/7541288/

Communication Dominates: Dennard was too good

Time = # flops * γ + # message * α + # bytes comm * β +

> # diff memory locs * α 2 + # memory words * β 2

Data from Hennessy / Patterson, Graph from Demmel

Put Accelerators in Charge of Communication

Architecture and software are not yet structured for accelerated-initiated communication (Summit with NVLink between Power9 CPUs and NVIDIA GPUs)

BERKELEY LAB

- 23 -

Hardware Trends

Tradeoffs in integration (faster communication) vs scale (amount of fast memory) and flexibility

Algorithms and Software

25

ExaBiome project overview

Exascale algorithms & systems for previously intractable problems

	Metagenome Assembly	Protein Clustering and Annotation	Comparative Metagenome Analysis
Science Need	Find species, genes and relative abundance in microbial communities	Improve understanding of tree of life for microbes; aid in identifying gene function	Track microbiome over time or space, changes in environment, climate, etc.
Computing Technique	hash tables, alignment, k-mer counts, graph walks	direct tables, alignment, k-mer counts, sparse matrices, ML (clustering, GNNs)	hash tables, alignment, k-mer counts, ML (dimensionality reduction)

http://exabiome.org

Motifs of Genomic Data Analysis

These computational patterns dominate ExaBiome Project experience

Application problems

- Assemble genomes
- Compute distances
- Cluster (contigs, proteins,...)
- Annotate

Distributed memory platforms open up new approaches and science questions

Yelick, et al. "The Parallelism Motifs of Genomic Data Analysis", Philosophical Transactions A, 2020

Analytics vs. Simulation Kernels:

7 Giants of Data	7 Dwarfs of Simulation			
Basic statistics	Monte Carlo methods			
Generalized N-Body	Particle methods			
Graph-theory	Unstructured meshes			
Linear algebra	Dense Linear Algebra			
Hashing	Sparse Linear Algebra			
Sorting	Spectral methods			
Alignment	Structured Meshes			

NRC Report + our paper

Phil Colella

Yelick, et al. "The Parallelism Motifs of Genomic Data Analysis", Philosophical Transactions A, 2020

Hashing

Common Technique: Analyze K-mers

Make hash table of k-mers

1-sided comm or irregular all-to-all + memory

Keys are fixed-length strings:

Values depend on application:

- Count and remove errors (singletons)
- Find strings with matching k-mer
- Connected components
- Use histogram as approximation

Distributed Hashing / Histogramming

BERKELEY LAB

implicit barrier

K-mer counting: All the Wires All the Time

- Used to be bulk-synchronous MPI
- UPC++ communication is asynchronous and 1-sided
- UPC++ version is faster, avoids barriers, saves memory (one runtime)
- And it's simpler!

BERKELEY LA

Caching for temporal locality (reuse): if few large items, so lookups will repeat

Layout for spatial locality: if we have an "oracle" that approximate final genome

Traversal is up to 2.8x faster! Up to 76% reduction of offnode communication !

Georganas PhD and SC18 paper

K-mer Counting: Finding Data Parallelism

- K-mer counter on Summit. (Note scales -- red k-mer exchange time is roughly equal.)
- Reduce CPU/GPU communication by parsing as well as processing on GPU

BERKELEY LA

Over 100x speedup!!

K-mer Counting: Reducing Communication

Reduce communication with "Supermers"

- Multiple contiguous k-mer
- map to the same process ID with minimizer-based hashing
- Saves volume (bandwidth) and number of messages (latency)

Speedup on 64 Summit nodes

H. sapien 54x

• 6 GPUs / node

C. elegans 40X

• baseline: 42 cores / node

Alignment

Smith-Waterman: Dynamic Programming

	_	G	А	Т	С	А	G	С	Т
_	0	0	0	0	0	0	0	0	0
G	0	1	0	0	0	0	0	0	0
А	0	0	2	0	0	1	0	0	0
т	0	0	0	3	1	0	0	0	1
А	0	0	1	1	2	2	0	0	0
G	0	0	0	0	2	1	3	1	0
С	0	0	0	0	1	1	2	4	2
С	0	0	0	0	1	0	2	3	3

GATCACCT GAT_ACCC <u>Scoring</u> insert/delete = -2 match = 1 mismatch = -1.

Options to search matrix

- Full search (Smith-Waterman)
- Banded (only search near diagonal)
- X-Drop stop search when the score drops by more than X

Variations for local / global alignment, per character penalties, seeding, etc.

ADEPT: Batch Alignment on GPUs

Adept is designed for relatively short, low-error sequences, both DNA (left) and proteins (right) SSW and SeqAn are vectorized implementations of Smith-Waterman Algorithm on CPU.

ADEPT: Impact on ExaBiome Applications

Soil assembly SW time: 2.8 node hours on Cori, 0.1 node hours on Summit (hidden behind CPU work)

Generalized N-Body

diBELLA: Towards a Long Read Assembler

Long reads (PacBio, etc.)

- Longer alignments
- More compute-intensive
- More GPU friendly

No need for De Bruijn graph

- Pairwise alignments
- Filtered k-mers

Bulk-Synchronous vs 1-sided Asynchronous

Asynchronous communication hides latency and uses less memory in general

Set Alignment is a Sparse All-to-All

Run expensive alignment on all pairs with a common k-mer

Avoid Communication, Maximize Parallelism

Compute on all pairs of particles or strings, or...

Obvious solution

16 particles on 8 processors Pass all particles around (p steps)

Decreases

- #messages by factor c²
- #volume sent by factor c

Better solution

c = 4 copies of particles 8 particles on each

Less Communication..

1D vs 2D Algorithm on DNA "overlap"

G. Guidi, O. Selvitopit, M. Ellis, L. Oliker, Y, A. Buluc (IPDP '21 to appear)

Graphs and Sparse Matrices (unsupervised learning)

Protein Clustering with Sparse Matrices

Input: Adjacency matrix A (sparse)

Image source: http://micans.org/mcl/

- Similarity Matrix: "Many-to-many" protein alignment
- Expansion: Square matrix, pruning small entries, dense columns
- Inflation: element-wise powers

PASTIS + HipMCL

Sparse Matrix Algorithms

Graphs and Sparse and Dense Matrices (supervised learning)

Bottleneck in GNN Training

- A^TH¹⁻¹ sparse-dense matmul (SpMM)
- (A^TH^{l-1}) W^l dense-dense matmul (DGEMM)
- SpMM is the bottleneck, not DGEMM!

Communication-Avoiding Matrix Multiply

- 2D algorithm: never chop k dim
- 3D: Assume + is associative; chop k, which is → replication of C matrix

Matrix Multiplication code has a 3D iteration space Each point in the space is a constant computation (*/+)

for i for j for k C[i,j] ... A[i,k] ... B[k,j] ...

Avoiding Communication in GNNs

Tripathy, Yelick, Buluc, Reducing Communication in Graph Neural Network Training, SC'20

Machine Learning Mapping to Linear Algebra

Increasing arithmetic intensity

Aydin Buluc, Sang Oh, John Gilbert, Kathy Yelick

Take-Aways

- Applications
 - More data, more computing can reveal new insights
 - Genomics problems dominated by ~7 motifs
- Architectures
 - Specialization and data parallelism will be increasingly important
 - Communication will (still) dominate
 - Need better integration, lower overheads mechanism
- Algorithms
 - Irregular, fine-grained problems
 - Can map to distributed memory and data parallelism
 - Avoid communication:
 - Hide latency or aggregating messages (can trade off)
 - Reduce bandwidth (volume), and
 - Use all the wires all the time

