Accelerating BPMax for RNA-RNA Interactions: Using Polyhedral Compilation

HiCOMB Workshop 2021

Chiranjeb Mondal (Chiranjeb.mondal@colostate.edu)
Sanjay Rajopadhye (Sanjay.rajopadhye@colostate.edu)
Computer Science Department, Colorado State University

Problem Statement

- Motivation: RNA RNA interactions (RRI) play important role in various biological process such as gene transcription
- Known to play a critical role in diseases such as Cancer and Alzheimer's
- Necessitating efficient computational tools
- Problem: We choose one of the simpler RRI - BPMax for optimization on CPU
- BPMax - High complexity $\left(\Theta\left(N^{3} M^{3}\right)\right.$ in time and $\Theta\left(N^{2} M^{2}\right)$ in space $)$ makes it both essential and a challenge to parallelize
- Long-term goal: Build efficient libraries for similar RRI algorithms.
- Typical Approach: RRI programs are developed and optimized by hand
- Prone to human error, and costly to develop and maintain
- Our approach: Use a polyhedral compilation tool - $\boldsymbol{A L P H A Z}$, that takes user-specified mapping directives and automatically generate optimized code in C

Contribution

- Speedup:

- 100x over the original program
- 170 x for the most compute intensive part $\left[\Theta\left(\mathrm{N}^{3} \mathrm{M}^{3}\right)\right]$
- $1.5 \mathrm{x}-2 \mathrm{x}$ improvement over a similar kernel optimized previously

- Performance on Xeon E5 1250v4:

- 76 GFLOPS single-precision (for entire program)
- 117 GFLOPS (for most compute-intensive part)
- One-third of the machine peak
- Scales up with more compute power

- Lines of Code Metric

- Original un-optimized hand-written version - 140
- Final optimized version - 1400

Single-precision performance
■ Optimized bpmax (Xeon E5 1250v4)
■ Optimized bpmax (Xeon E5 5668G)

Implementation	LOC	a	b
BPMax base	140	140	NA
Double max-plus(coarse/fine)	150	None	3
BPMax coarse/fine/ hybrid	1200	None	30
BPMax hybrid with tiled	1400	<5	7

a - Hand written code
b - Macro replacement/Macro comment out

BPMax Overview

BPMax Overview

- BPMax computes a dynamic programming table to capture interactions between two RNAs
- It uses weighted base-pair counting for base-pair maximization
- Input
- Two sequences of length M and N
- Output
- A four-dimensional triangular table
- A triangular collection of triangles

BPMax Cases

$$
\mathrm{S}_{i, j}= \begin{cases}0 & j-i<4 \\
\max \left(\mathrm{~S}_{i+1, j-1}+\operatorname{score}(i, j),{\underset{\max }{k=i}}_{j-1}^{\max } \mathrm{S}_{i, k}+\mathrm{S}_{k+1, j}\right) & \begin{array}{l}
\text { otherwise } .
\end{array}\end{cases}
$$

$$
\begin{gathered}
\mathrm{F}_{i_{1}, j_{1}, i_{2}, j_{2}}= \begin{cases}-\infty & j_{1}<i_{1} \text { and } j_{2}<i_{2} \\
\mathrm{~S}_{i_{1}, j_{1}}^{(1)} & i_{1} \leq j_{1} \text { and } j_{2}<i_{2} \\
\mathrm{~S}_{i_{2}, j_{2}}^{(2)} & j_{1}<i_{1} \text { and } i_{2} \leq j_{2} \\
\operatorname{iscore}\left(i_{1}, i_{2}\right) & i_{1}=j_{1} \text { and } i_{2}=j_{2} \\
\max \left[\mathrm{~F}_{i_{1}+1, j_{1}-1, i_{2}, j_{2}}+\operatorname{score}\left(i_{1}, j_{1}\right),\right. & \\
\mathrm{F}_{i_{1}, j_{1}, i_{2}+1, j_{2}-1}+\operatorname{score}\left(i_{2}, j_{2}\right), & \text { otherwise }, \\
\left.H_{\left.i_{1}, j_{1}, i_{2}, j_{2}\right]}\right] \\
\operatorname{ming}_{j_{2}}^{j_{2}}\left(\mathrm{~F}_{i_{1}, k_{1}, i_{2}, k_{2}}+\mathrm{F}_{k_{1}+1, j_{1}, k_{2}+1, j_{2}}\right) .\end{cases}
\end{gathered}
$$

Note that H is equivalent to

BPMax Recurrence

BPMax Dependency Overview

$$
\mathrm{S}_{i, j}= \begin{cases}0 & j-i<4 \\ \max \left(\mathrm{~S}_{i+1, j-1}+\operatorname{score}(i, j),{\underset{\max }{k=i}}_{j-1} \mathrm{~S}_{i, k}+\mathrm{S}_{k+1, j}\right) & \text { otherwise }\end{cases}
$$

$$
\mathrm{F}_{i_{1}, j_{1}, i_{2}, j_{2}}= \begin{cases}-\infty & j_{1}<i_{1} \text { and } j_{2}<i_{2} \\ \mathrm{~S}_{i_{1}, j_{1}}^{(1)} & i_{1} \leq j_{1} \text { and } j_{2}<i_{2} \\ \mathrm{~S}_{i_{2}, j_{2}}^{(2)} & j_{1}<i_{1} \text { and } i_{2} \leq j_{2} \\ \operatorname{iscore}\left(i_{1}, i_{2}\right) & i_{1}=j_{1} \text { and } i_{2}=j_{2} \\ \max \frac{\left[\mathrm{~F}_{i_{1}+1, j_{1}-1, i_{2}, j_{2}}+\operatorname{score}\left(i_{1}, j_{1}\right),\right.}{\mathrm{F}_{i_{1}, j_{1}, i_{2}+1, j_{2}-1}+\operatorname{score}\left(i_{2}, j_{2}\right),} & \\ \left.H_{\left.i_{1}, j_{1}, i_{2}, j_{2}\right]}\right] & \text { otherwise }\end{cases}
$$

$$
H_{i_{1}, j_{1}, i_{2}, j_{2}}=\min _{k_{1}=i_{1}-1}^{j_{1}} \operatorname{mix}_{k_{2}=i_{2}-1}^{j_{2}}\left(\mathrm{~F}_{i_{1}, k_{1}, i_{2}, k_{2}}+\mathrm{F}_{k_{1}+1, j_{1}, k_{2}+1, j_{2}}\right)
$$

Note that H is equivalent to

Methodology Highlights

Polyhedral Model \& ALPHAZ - Overview

- Polyhedral Model: Mathematical framework for automatic optimization and parallelization of affine programs
- ALPHA: Equational polyhedral programming language
- Affine dependence
- Polyhedral domains
- Reductions with associative commutative operators
- ALPHAZ: Tool that allows the user to explore code generation of ALPHA programs using various-
- Schedules
- Memory-maps
- Parallelization approaches
- Tiling

Code Generation Methodology

- Typical Polyhedral code generator
- No user intervention beside input programs(c sources)
- Not always optimal
- ALPHAZ
- User specifies polyhedral transformations to the tool
- Allows larger exploration space

ALPHAZ Transformations Overview

- Normalize:
- Normalizes the program
- Provides better readability

- NormalizeReduction:

- Transform specified reduction into Normal form
- Reduce expression is a direct child of the equation
- Key target mapping transformations for schedule code generation
- setSpaceTimeMap: Specifies the schedule and processor allocation
- setMemoryMap: Affine mapping to memory location
- setParallel: Loop parallelization, Parallel dimensions
Algorithm 1 Matrix Multiplication in Alphabets
1: affine $\mathrm{MM}\{N, K, M \mid(M, N, K)>0\}$
2: input
float $\mathrm{A}\{i, j \mid 0 \leq i<M \& \& 0 \leq j<K\}$
float $\mathrm{B}\{i, j \mid 0 \leq i<K \& \& 0 \leq j<N\}$;
5: output
6: \quad float $\mathrm{C}\{i, j \mid 0 \leq i<M \& \& 0 \leq j<N\}$;
7: local
8: //local variables
9: output
$\mathrm{C}[i, j]=\operatorname{reduce}(+, \quad[k], \quad \mathrm{A}[i, k] * \mathrm{~B}[k, j]) ;$
1: // Step - 1 : Parse Alphabet
2: prog=ReadAlphabets("MM.ab");
3: system $=$ "MM",
4: outDir="./src";
5:
6: // Step-2: Perform polyhedral transformation
7: Normalize(prog);
8: setSpaceTimeMap(prog, system, "C",
$(i, j \mapsto i,-1, j) ")$
11: setParallel(prog, system, "", " 0 ");
13: // Step - 3 : Generate code
14: generateWriteC(prog, system, outDir);
15: generateScheduleC(prog, system, outDir);
1 \#define S1(i,j,i2) C(i,i2) = 0.0
1 \#define S1(i,j,i2) C(i,i2) = 0.0
\#\#define S0(i0,i1, i2) C(i0,i2) = (C(i0, i2)) +((A(i0, i1))
\#\#define S0(i0,i1, i2) C(i0,i2) = (C(i0, i2)) +((A(i0, i1))
*(B(i1,i2)))
*(B(i1,i2)))
int c1,c2,c3;
int c1,c2,c3;
\#pragma omp parallel for private (c2,c3)
\#pragma omp parallel for private (c2,c3)
for (c1=0;c1<= M-1;c1+=1){
for (c1=0;c1<= M-1;c1+=1){
r(c3=0;c3<=N-1;c3+=1){
r(c3=0;c3<=N-1;c3+=1){
S1((c1),(-1),(c3));
S1((c1),(-1),(c3));
for(c2=0;c2<= K-1;c2+=1){
for(c2=0;c2<= K-1;c2+=1){
for(c3=0;c3 <= N-1;c3+=1){
for(c3=0;c3 <= N-1;c3+=1){
S0((c1),(c2),(c3));
S0((c1),(c2),(c3));
}
}
\}

Optimization Highlights

Double Max-Plus Base Schedule

Double Max-Plus Base Schedule

$$
F_{i_{1}, j_{1}, i_{2}, j_{2}}=\min _{k_{1}=i_{1}-1}^{\max _{k_{2}=i_{2}}^{j_{2}-1} \max _{k_{1}, k_{1}, i_{2}, k_{2}}+F_{k_{1}+1, j_{1}, k_{2}+1, j_{2}}}
$$

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Base Schedule

$$
F_{i_{1}, j_{1}, i_{2}, j_{2}}=\max _{k_{1}=i_{1}}^{j_{1}-1} \max _{k_{2}=i_{2}}^{j_{2}-1} F_{i_{1}, k_{1}, i_{2}, k_{2}}+F_{k_{1}+1, j_{1}, k_{2}+1, j_{2}}
$$

Fill up triangles diagonally

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Base Schedule

Fill up triangles diagonally

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow \mathrm{j}_{1}-\mathrm{i}_{1}, \mathrm{j}_{2}-\mathrm{i}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right]$

Double Max-Plus Computation - Base Schedule

Fill up triangles diagonally

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Computation - Base Schedule

Each inner triangle is also filled diagonally

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow \mathrm{j}_{1}-\mathrm{i}_{1}, \mathrm{j}_{2}-\mathrm{i}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow \mathrm{j}_{1}-\mathrm{i}_{1}, \mathrm{j}_{2}-\mathrm{i}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow \mathrm{j}_{1}-\mathrm{i}_{1}, \mathrm{j}_{2}-\mathrm{i}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Computation - Base Schedule

Base Program Schedule $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$

Double Max-Plus Computation - Base Schedule

- Base Double Max-plus Schedule:

- $\left[\mathrm{i}_{1}, \mathrm{j}_{1}, \mathrm{i}_{2}, \mathrm{j}_{2} \rightarrow \mathrm{j}_{1}-\mathrm{i}_{1}, \mathrm{j}_{2}-\mathrm{i}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right]$
- Allows maximum parallelization
- Lot of data movements between different levels of caches
- Loop carried dependency. No vectorization since k_{1} and k_{2} loops are inside

Double Max-Plus Computation

Double Max-plus Decomposition

- Base schedule: $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, j_{2}-i_{2}, i_{1}, i_{2}, k_{1}, k_{2}\right]$
- Pulling k_{1} loop outside of the inner three dimension decomposes the double max-plus operation to multiple matrix instance of max-plus operation

- A series of matrices $\left(\mathrm{i}_{1}, \mathrm{k}_{1}\right)$ to $\left(\mathrm{k}_{1}+1, \mathrm{j}_{1}\right)$
- Better schedule

- Better schedule: $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, i_{1}, k_{1}, i_{2}, j_{2}, k_{2}\right]$
- Schedule with auto-vectorization: $\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow j_{1}-i_{1}, i_{1}, k_{1}, i_{2}, k_{2}, j_{2}\right]$
- Allows tiling of the inner three dimensions $\left(\mathrm{i}_{2}, \mathrm{k}_{2}, \mathrm{j}_{2}\right)$
- Now, we can parallelize the i_{1} or i_{2} dimension

Scheduling

Double Max-Plus $\left(\mathbf{R}_{\mathbf{0}}\right)$, $\mathbf{R}_{\mathbf{3}}$, and $\mathbf{R}_{\mathbf{4}}$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

Starting with a R_{0} schedule which exploits auto-
vectorization

[^0]
Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

Single Memory element is used with many elements of triangles towards south
$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

Single memory element of left triangle is used with many elements of triangles towards south
$\mathbf{R}_{0}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

Elements of triangle towards the south is also used multiple times
$\mathbf{R}_{0}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-i_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

Elements of triangles from left and south can also be used to compute the corresponding R_{3} and R_{4}
$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+1, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1} \mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling Double Max-Plus $\left(\mathrm{R}_{0}\right), \mathrm{R}_{3}$, and R_{4}

$\mathbf{R}_{\mathbf{0}}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+1, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \quad \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{N}+1, \quad \mathbf{i}_{2}, \quad \mathbf{j}_{2}\right]$

Scheduling $\mathbf{R}_{\mathbf{1}}$, $\mathbf{R}_{\mathbf{2}}$, and F-Table

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

Each element of FTable is dependent on corresponding values from R_{0}, $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$
$\mathrm{R}_{0}, \mathrm{R}_{3}, \mathrm{R}_{4}$ computation for the current triangle is already done

FTable	$\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X\right.$,	Y,	Z,	$-i_{2}$,	\mathbf{j}_{2},	$0]$
\mathbf{R}_{1}	$\left[i_{1}, \mathbf{j}_{1} \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X\right.$,	Y,	Z,	\mathbf{i}_{2},	\mathbf{k}_{2},	$\left.\mathbf{j}_{2}\right]$
\mathbf{R}_{2}	$\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X\right.$,	Y,	Z,	$-\mathbf{i}_{2}$,	\mathbf{k}_{2},	$\left.\mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, \mathbf{j}_{1}, i_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

$\mathrm{R}_{1}, \mathrm{R}_{2}$,
computations are dependent on F-Table

FTable $\quad\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow X, \quad Y, Z, \quad-i_{2}, j_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, \mathbf{j}_{1}, i_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow X, \quad Y, Z, \quad-i_{2}, j_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, Y, Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \quad \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, Y, \quad Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathrm{R}_{1}, \mathrm{R}_{2}$, also takes
advantage of the auto vectorization.

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, \mathbf{j}_{1}, i_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, \mathbf{j}_{1}, i_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, \mathbf{j}_{1}, i_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z, \quad-\mathbf{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

FTable $\quad\left[i_{1}, j_{1}, i_{2}, j_{2} \rightarrow X, \quad Y, Z, \quad-i_{2}, j_{2}, \quad 0\right]$
$\mathbf{R}_{1} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, Y, Z, \quad-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
$\mathbf{R}_{2} \quad\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Scheduling $\mathrm{R}_{1}, \mathrm{R}_{2}$, and F-Table

Objective is to find such optimized schedules which increase resource utilization without changing program semantics

FTable	$\left[\mathrm{i}_{1}, \mathrm{j}_{1}, \mathrm{i}_{2}, \mathrm{j}_{2} \rightarrow X, Y, Z, \quad-\mathrm{i}_{2}, \mathbf{j}_{2}, \quad 0\right]$
R_{1}	$\left[\mathrm{i}_{1}, \mathrm{j}_{1}, \mathrm{i}_{2}, \mathrm{j}_{2} \rightarrow X, \quad Y, \quad Z,-\mathrm{i}_{2}, \mathbf{k}_{2}, \mathrm{j}_{2}\right]$
R_{2}	$\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow X, \quad Y, \quad Z,-\mathbf{i}_{2}, \mathbf{k}_{2}, \mathbf{j}_{2}\right]$

Parallelization Approach

- Coarse-grain
- Multiple F-Table $\left[\mathrm{i}_{1}, \mathrm{j}_{1}\right]$ elements are computed simultaneously
- Poor memory reuse
- Lot of cache misses for double max-plus computations
- Fine-grain
- Multiple cores/threads computing one inner triangle - FTable $\left[\mathrm{i}_{1}, \mathrm{j}_{1}\right]$

- Only $\mathrm{R}_{0}, \mathrm{R}_{3}$, and R_{4} computations are parallelized
- Low processor utilization
- Hybrid Schedule
- We use the fine-grain parallelism for $\mathrm{R}_{0}, \mathrm{R}_{3}, \mathrm{R}_{4}$ and the coarse-grain parallelism for F -Table, $\mathrm{R}_{1}, \mathrm{R}_{2}$

Memory Optimization

- Memory-overhead of ALPHAZ generated code is $\mathrm{M}^{2} \times \mathrm{N}^{2}$
- However, we only need one-fourth of that memory. Not too problematic
- But reduction variables also take up memory space by default, which is wasteful
- Each inner triangle requires 5 2-D array for each reduction variables to be active in memory for each thread
- R_{0}, R_{3} and R_{4} are always computed before final F-table update
- Can share the memory with F-Table
- Single row of an inner triangle is required for R_{1} and R_{2} to keep up with the F-Table update

Results

Performance Goal

- We use Xeon E5-1650v4 to present our optimization result
- Theoretical max-plus machine peak is about 346 GFLOPS

CPU type	Frequency	Number of Cores	Level-1 (KB)	Level-2 (KB)	Level-3 (shared) (MB)	Theoretical Max Plus Peak (GFLOPs)
CPU - XeonE5-1650v4	$6 \times 3.6 \mathrm{Ghz}$	6	6×32	6×256	15 MB	346

- Arithmetic intensity of BPMax $1 / 6$
- 2-arithmetic operations for 3-single-precision memory operations
- Based on the roofline model, this translates to 329 GFLOPS for programs with similar arithmetic intensity
- Streaming Bandwidth
- BPMax data access pattern $-\mathrm{Y}=\max (\mathrm{a}+\mathrm{X}, \mathrm{Y})$
- Micro-benchmark estimation for the attainable L1 streaming bandwidth
- 120 GFLOPS for 6 threads

Xeon E5-1650v4 Roofline

Micro benchmark for $Y=\max (a+X, Y)$

Double Max-plus Improvements

- Coarse-grain parallelization performs very poorly
- Generates a lot of data movement between different levels of cache and makes the program slower
- Fine-grain parallelization performs better
- There is a minor difference between computing the
 before moving to the next
- Tiling approach improves locality, maintains automatic vectorization
- Attains 117 GFLOPS with the tiling transformation. 97% of our microbenchmark target
- Tile dimensions of $(32 \times 4 \times \mathrm{N})$ and $(64 \times 16 \times \mathrm{N})$ are used for presenting the performance and speedup comparison
- $(32 \times 4 \times N)$ is restricted for sequence length up to 2048

BPMax Improvements

- Coarse-grain version performs worst
- Severe impact on double max-plus computation
- Fine-grain version performs better
- Hybrid parallelization approach highlighted in green performs better than the coarse and fine-grain version
- Tiled version of the hybrid schedule highlighted in dark blue performs best
- It achieves $100 \times$ speedup for longer sequence lengths with 6 threads
- The improvement for the tiled version mainly comes from the optimization of $\mathrm{R}_{0}, \mathrm{R}_{3}, \mathrm{R}_{4}$
- The tiled version of the program reaches around 76 GFLOPS for moderate-size sequences
- It is almost 60% lower than the best double max- plus version of the same sequence
- Our analysis shows that R_{3} and R_{4} are almost free since those get computed along with the R_{0}
- The other two $\Theta\left(M^{2} N^{3}\right)$ computations $-R_{1}$ and R_{2} severely affect the overall performance.

Effect of Hyper-Threading and Tile Size

- Hyper Threading Effect
- Minimal (3-5\%) improvement with hyper-threading over six threads

- Effect of Tiling $\left(\mathrm{i}_{2} \times \mathrm{k}_{2} \times \mathrm{j}_{2}\right)$ Parameters
- Cubic tiles perform poorly
- We observe the best result when j_{2} is not tiled
- Due to the streaming effect

Effect of hyper-threading on tiled double max-plus performance

Tile dimension
Effect of tiling parameters ($\mathrm{i}_{2} \times \mathrm{k}_{2} \times \mathrm{j}_{2}$) on double max-plus performance(sequence length -16×2500)

Conclusions \& Future Directions

- We demonstrate the optimization process of a complete RRI program using polyhedral transformations
- Achieve significant performance improvements
- Tiling improves the performance of the most dominant part of the computation
- Inner reductions are still inefficient, which limit the overall performance improvement.
- These computations are difficult to tile
- Double max-plus operation remains bandwidth-bound even after tiling transformation
- Indicates that an additional level of tiling at the register level is required to make the program compute bound and improve performance
- Distribute the computation over a cluster using MPI

Thank You

[^0]: $\mathbf{R}_{0}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \quad \mathbf{i}_{2}, \quad \mathbf{k}_{2}, \mathbf{j}_{2}\right]$
 $\mathbf{R}_{3}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{i}_{2}\right]$
 $\mathbf{R}_{4}\left[\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{i}_{2}, \mathbf{j}_{2} \rightarrow \mathbf{j}_{1}-\mathbf{i}_{1}, \mathbf{i}_{1}, \mathbf{k}_{1}, \mathbf{N}+\mathbf{1}, \mathbf{i}_{2}, \mathbf{j}_{2}\right]$

