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Motivation

……

Dataset of Reads
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……

Goal: 
Compute 
counts of 
all k-mers

(i.e. k=3)

Applications:

1. metagenomic reads
classification

2. error correction

3. repeat detection

4. genome comparison

5. ...

Challenges:

1. size of datasets

2. O(4k) distinct k-mers



Motivation

Many e�cient approaches for exact or approximate counting are

available:

Jellyfish (Marçais et al., 2011), DSK (Rizk et al, 2013), KMC (Kokot et al, 2017),

Squeakr (Pandey et al, 2017), KmerStream (Melsted et al, 2014), BFCounter (Melsted

and Pritchard, 2011) khmer (Zhang et al, 2014), Kmerlight (Sivadasan et al, 2016),

ntCard (Mohamadi et al, 2017), KmerGenie (Chikhi et al, 2013), KAnalyze (Audano

and Vannberg, 2017), Turtle (Roy et al., 2014),...

Based on e�cient and succint data structures for storing distinct

k-mers, parallelism, ...

Common to all: analyse all data, obtain counts of all k-mers

Is this really needed?



Abundance-based Distances between

Metagenomic Datasets
BC distance between k-mers S1 of D1 and k-mers S2 of D2:

BC(D1,D2,S1,S2) = 1� 2
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Do we really need to get the counts of all k-mers?
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Abundance-based Distances between

Metagenomic Datasets

What about computing BC distance between k-mers of D1

and k-mers of D2 considering only k-mers with frequency � ✓?



Our contributions

Two algorithms to approximate frequent k-mers:

I SAKEIMA (πÆ) : Sampling Algorithm for
K-mErs approxIMAtion [Pellegrina, Pizzi, V., RECOMB 2019,

JCB 2020]

I SPRISS: SamPling Reads algorIthm to eStimate
frequent k-merS [Santoro⇤,Pellegrina⇤, V., RECOMB 2021]

! process only a random sample of the dataset
! provide rigorous approximations

(statistical learning theory)
! easily adaptable to any existing k-mer counting
algorithm
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1. Problem definition
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3. SAKEIMA (πÆ)

4. SPRISS



Preliminaries

⌃ = {A, C, G, T} , � = |⌃| = 4

D = {ACTACTACGT,

CCGTAGTGT,

AGAAATGCC,

TCAATCAGC,

ATGTGATGC,

. . . }

For k = 5: PD,k = {ACTAC,

CTACT,

TACTA,

ACTAC,

... }

tD,k = |PD,k| = # k-mers in D

Goal: oD(K) = # occurences of K in PD,k

fD(K) = oD(K)/tD,k



Preliminaries

Definition: Set FK(D, k, ✓) of frequent k-mers in D w.r.t ✓:

FK(D, k, ✓) = {(K, fD(K)) : fD(K) � ✓}

Approximation of FK(D, k, ✓)
Definition: For " < ✓, an "-approximation of FK(D, k, ✓) is
a collection C = {(K, fK) : fK 2 (0, 1]} s.t.:
I Contains all K with fD(K) � ✓
I Contains no K with fD(K)  ✓ � "
I |fD(K)� fK |  "/2, 8K 2 C.

fD(K)

Fast computation? Random sampling ! Approximation
with probability � 1� �
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Näıve sampling approach

Random sample P of PD,k and compute
FK(P , k, ✓ � "/2)

PD,k = {AATAC,

ATACC,

TACCG,

ACCGA,

AATAC,

... }

!

P = {AATAC,

ATACC,

ACCGA,

... }

How many samples do we need?



Näıve sampling approach

Theorem: FK(P , k, ✓ � "/2) is an
"-approximation of FK(D, k, ✓) with probability
� 1� � if

m �
2
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# of k-mers to process > 1
"2
! Not practical

since " < ✓.



Näıve sampling approach

Theorem: FK(P , k, ✓ � "/2) is an
"-approximation of FK(D, k, ✓) with probability
� 1� � if

m �
2

"2

✓
ln(2�k) + ln

✓
1

�

◆◆

Improved bound:

m �
2

"2

✓
1 + ln

✓
1

�

◆◆

# of k-mers to process > 1
"2
! Not practical

since " < ✓.
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SAKEIMA (πÆ)

Random sample P`: m samples (=bags) each one
containing ` k-mers.
PD,k = {AATAC,

ATACC,

TACCG,

ACCGA,

AATAC,

GGCCA,

... }

!

With ` = 2 :

P` =

⇢
{AATAC, GGCCA},

{ATACC, ACCGA},

. . .

�

f̂P`(K) := fract. of bags of P` with at least one K

f̂P`(K)/` = biased estimator of fD(K):

E
h
f̂P`(K)/`

i
= 1� (1� `fD(K))1/` ⇡ fD(K)



SAKEIMA (πÆ)

Proposition: Let ` � 1 and P` be a sample of m bags of size
` of PD,k with

m �
2

(`")2

✓
blog2(2`)c+ ln

✓
1

�

◆◆
.

Then, with probability at least 1� �, the k-mers with
frequency in the sample � ✓ � "/2 contain:
I All K with fD(K) � ✓0 ⇡ ✓
I No K with fD(K)  ✓ � "

Note: number of k-mers to process: O (m`) = O

⇣
log(`)
`"2

⌘

! by properly setting ` we obtain practical sample sizes!

Proof: based on VC-dimension of bags of k-mers.



Can we do better?

SAKEIMA (πÆ) is great, but still requires to
stream over all the reads in the dataset

What about sampling reads instead of k-mers?

Challenge: sampling reads introduces correlations
among sampled k-mers
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SPRISS

SamPling Reads algorIthm to eStimate frequent
k-merS

Näıve sampling approach: requires more reads
than in the dataset!

Idea: sample bags of reads, each bag with ` reads



Proposition: The output of SPRISS is almost an "-approximation

of FK(D, k, ✓) with probability � 1� �.

Proof: based on the pseudo-dimension of bags of reads.



SPRISS
E�cient Implementation:

I # of reads where a k-mer appear in a bag is well

approximated by a Poisson approximation ! no need to

explicitly create the bags;

I most k-mers appear at most once in a read ! frequency

f̂S`(K) is well approximated with a Binomial approximation

that only requires the number of occurrences of K in

sample S

Final approach:

1. obtain sample S of m reads

2. use an exact k-mer counter to obtain frequency fS(K) of
k-mers in S

3. use approximations to derive f̂S`(K) from fS(K)

4. report in output k-mers with f̂S`(K) � ✓ � "/2 (estimated

frequency: previous slide)



Experimental Results: Accuracy and

Resources
6 largest datasets from HMP (https://hmpdacc.org/HMASM/)

Comparison

I exact counter: KMC (Kokot et. al, 2017)

I SAKEIMA (πÆ) : implemented on top of Jellyfish2 (Marçais

et al., 2011)

I SPRISS: implemented on top of KMC

Parameters: k = 31, � = 0.1, " = ✓ � 2/tD,k, ` = b0.9/(✓`D,k)c

Results = averages of 5 runs



Experimental Results: Accuracy



Experimental Results: Resources



Experimental Results: Comparison of Metagenomic
Datasets

37 datasets from (Rusch et al., 2007), annotated with origin of the samples

Clustering: usually performed with presence-based distances (e.g.,

Jaccard distance) since abundance-based distances (e.g., BC distance)

are more expensive

Use SPRISS to approximate the frequent k-mers?



Experimental Results: Comparison of Metagenomic
Datasets

BC distance is more informative (inside-vs-outside cluster signal increases

by 50%)!

SPRISS requires < 40% of the time of exact BC computation



Experimental Results: Finding Discriminative k-mers
Given two datasets D1,D2

Goal: find k-mers appearing more frequently in D1 than in D2,

and viceversa

Given minimum frequency ✓: the set DK(D1,D2, k, ✓, ⇢) of D1-of

discriminative k-mers comprises k-mers K for which

1. K 2 FK(D1, k, ✓);

2. fD1(K) � 2fD2(K)

Data from Liu et al., 2017 (✓ = 2⇥ 10�7
)

Exact computation (KMC): 104 sec

Approximation with SPRISS

I using 5% of data: < 3% false negatives in 1130 sec.

I using 10% of data: < 2% false negatives in 1970 sec.



Conclusions

Two algorithms to approximate frequent k-mers
and applications

I SAKEIMA (πÆ) : Sampling Algorithm for
K-mErs approxIMAtion [Pellegrina, Pizzi, V., RECOMB 2019,

JCB 2020]

I SPRISS: SamPling Reads algorIthm to eStimate
frequent k-merS [Santoro⇤,Pellegrina⇤, V., RECOMB 2021]

Code:

I https://github.com/VandinLab/SAKEIMA

I https://github.com/VandinLab/SPRISS
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