
Accelerating SARS-CoV-2 low frequency variant
calling on ultra deep sequencing datasets

Bryce Kille
Department of Computer Science
Rice University, Houston, Texas

blk6@rice.edu

Yunxi Liu
Department of Computer Science
Rice University, Houston, Texas

yl181@rice.edu

Nicolae Sapoval
Department of Computer Science
Rice University, Houston, Texas

ns58@rice.edu

Michael Nute
Department of Computer Science
Rice University, Houston, Texas

mn56@rice.edu

Lawrence Rauchwerger
Department of Computer Science

University of Illinois, Urbana, Illinois

rwerger@illinois.edu

Nancy Amato
Department of Computer Science

University of Illinois, Urbana, Illinois

namato@illinois.edu

Todd J. Treangen
Department of Computer Science
Rice University, Houston, Texas

treangen@rice.edu

Abstract—With recent advances in sequencing technology it
has become affordable and practical to sequence genomes to
very high depth-of-coverage, allowing researchers to discover low-
frequency variants in the genome. However, due to the errors in
sequencing it is an active area of research to develop algorithms
that can separate noise from the true variants. LoFreq is a state
of the art algorithm for low-frequency variant detection but has
a relatively long runtime compared to other tools. In addition to
this, the interface for running in parallel could be simplified,
allowing for multithreading as well as distributing jobs to a
cluster. In this work we describe some specific contributions to
LoFreq that remedy these issues.

I. INTRODUCTION

Cataloging viral mutations within a sample (intra-host

variation) and across samples (inter-host variation) provides

critical insights to understanding the dynamics of viral evolution

during the COVID-19 pandemic [1]. Single nucleotide variants

(SNVs) can result in drastically different protein function and

recognition; it is therefore desirable to be able to accurately and

efficiently identify SNVs. For example, the SARS-CoV-2 virus

was recently shown to have significant underlying diversity [2],

[3]; additionally the mutations can change the fitness of

the virus [4] increasing it’s transmission or pathogenicity

potential [5].

Recent high throughput sequencing techniques enable re-

searchers to generate read sets with deep coverage [6], allowing

researchers to discover low frequency variants in the population.

However, sequencing errors can masquerade as a low-frequency

variant, and vice-versa, so distinguishing between the two is

necessary [7]. A recent benchmarking study [8] found that on

Funded by the C3.ai Digital Transformation Institute COVID-19 award.
MN was also funded by a fellowship from the National Library of Medicine
Training Program in Biomedical Informatics and Data Science (T15LM007093,
PI: Kavraki).

simulated HiSeq data, LoFreq [9] outperformed most variant

calling tools, but suffered from long execution times. LoFreq

operates by considering, at each position in the genome, the

probability that all mismatches to the reference genome are

caused by sequencing error, although the specific probability

calculation involved is computationally expensive and thus it

does not scale well for deep sequencing datasets.

In this work, we describe an improvement to the runtime of

LoFreq by using an approximation to shortcut costly dynamic-

programming operations when exact values of the probability

distribution are not needed. We also add experimental support

for OpenMP [10] to enable more efficient parallel operation.

II. METHODS

Our approach to improve LoFreq is twofold. First, we imple-

ment an approximation heuristic which allows LoFreq to bypass

computationally intensive exact probability calculations when

not necessary. Second, we reorganize LoFreq to use OpenMP

in lieu of a job-submission script for parallel operation.

A. Approximation

As high-throughput sequencers read a DNA strand every

position is assigned a quality score corresponding to the

probability that the assigned nucleotide is incorrect. Thus, for

a given pileup column (i.e. a position in the reference genome

and the set of nucleotides at the corresponding position in

each read that has been mapped to that location), the total

number of sequencing errors is the sum of independent but

not identically distributed Bernoulli trials, also known as the

Poisson binomial distribution.

More specifically, consider a single column with read depth d:

let each read i have a probability pi of having a sequencing error

in this column (implied by the quality score), then the total error

204

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-3577-2/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPSW52791.2021.00038

count is distributed as a Poisson Binomial with probabilities

{pi}di=1. Although simple to parameterize, this distribution

is computationally non-trivial, particularly for values of the

cumulative distribution function (CDF) [11], [12]. Computing

the probability of having at least K sequencing errors by

chance requires the following recurrence relation:

Pn(X=k) = Pn−1(X=k)(1−pn) + Pn−1(X=k−1)pn
where Pn(X=k) is the probability of observing k errors in

the first n bases at the given position. Now, if K reads in this

column contain bases that differ from the reference genome,

we can use the Poisson binomial CDF to calculate a p-value for

the null hypothesis that the variants are due only to sequencing

error: p = Σk≥KPd(X=k). LoFreq operates in exactly this

way, calling a variant in a given column if the p-value falls

below a specified critical value (Figure 1b).

Unfortunately, this method of calculating the Poisson bino-

mial takes O(d2) time; more recent algorithms may improve on

this but remain complex [11], [12]. But for the vast majority

of columns the p-value is far away from the decision threshold

because either so few or so many variants are present, so

bypassing the CDF calculation for these cases is a potential

speedup.

We do this by using an O(d) approximation to the Poisson

binomial as a first pass filter: if the approximate p-value,

p̂, is sufficiently far from the critical value the exact CDF

computation is skipped and no variant is called, otherwise

the standard calculation is used (Figure 1b). We have used

the Poisson approximation where the mean is given by

λ =
∑d

i=1 pi [13], specifically using the GNU scientific library

implementation [14]. For our experiments, the significance

threshold was left at the LoFreq default ε = 0.05 and the

first pass filter required that p̂ ≥ ε+ 0.01 in order to skip the

expensive exact calculation.

B. Parallelization

The LoFreq algorithm operates by iterating through each

pileup column checking for SNVs. The current parallel imple-

mentation uses an external script to parse the input files and

and partition the columns equally and subsequently spawning

an independent LoFreq process for partition. In an experimental

branch of LoFreq, we implemented the same strategy using

OpenMP rather than separate processes. This OpenMP version

relies on a parallel for loop across chunks of columns, using

an independent .bam file reader for each thread.

III. RESULTS

A. Performance Impact of the Poisson Approximation

Experiments were ran using BAM files ranging from 1MB to

25GB generated from the FastQ data available in [15]. Both

versions of LoFreq, the original and our improved version

without the OpenMP functionality, were ran on an Intel Xeon

Gold 6138 CPU with 64 threads for the benchmarks. Table I

shows the speedup observed with our approximation shortcut.

The number of variants called by each version of LoFreq were

identical for all five of the test data sets.

TABLE I: Execution times of the original and improved

versions of LoFreq. In all cases the number of variants called

was identical between versions. Note that while the true depth

of the 25Gb file is likely around 5 million reads, LoFreq by

default limits columns to 1 million.

Input size Avg. depth
Run Time

Speed- upOrig. New

58M 1,000x 52 (s) 51 (s) 1.0x
237M 30,000x 58 (m) 26 (m) 2.6x
935M 100,000x 14 (h) 4 (h) 3.3x

2G 300,000x 55 (h) 12 (h) 4.6x
25G 1,000,000x 415 (h) 111 (h) 3.7x

B. Profiling the OpenMP Implementation

We utilized the HPC-toolkit [17] for visualizing the perfor-

mance of the experimental OpenMP version of the improved

LoFreq on a Knights Landing 2nd Generation Intel Xeon

Phi processor with 128 threads. We observed in Figure 2, as

expected, that time spent coordinating threads is minimal and

the process is trivially parallel over the columns in the input.

We also notice that the time spent iterating over the .bam file

is substantial. While our goal with OpenMP was to reduce load

imbalance via dynamic scheduling, we see that encountering

partitions with high concentrations of variants near the end

still results in a significant imbalance.

C. SARS-CoV-2 single nucleotide variant analysis

Finally, we performed an comparative analysis of SNVs

identified across our COVID-19 datasets. We found from 134

(min) to 885 (max) SNVs in each dataset (Figure 3). The two

highest depth-of-coverage datasets, 300,000X and 1,000,000X,

shared the most variants for any pair. The 100,000X dataset

had the most unique SNVs at 735 total. Only two SNVs were

found to be shared across all five datasets.

IV. DISCUSSION

In order to guarantee that the optimizations come at no cost

to accuracy, we compared the output of the previous version

of LoFreq to our improved version. Our improved version can

only cause false negatives with respect to the original’s variant

calls, as we are using the approximation only to skip columns.

Therefore, we only need to compare the count of variant calls

in a sample across LoFreq versions. For all benchmarking

datasets we observed the same number of variant calls in both

versions of LoFreq.

Our results show that the approximation shortcut yields

improved run-time over the original at no cost to accuracy in

our samples. Since there is potential for our method to introduce

false negatives into the results, we used an intentionally

conservative threshold of 0.01 above the critical value. No

experimentation or fine-tuning was done to optimize this

parameter or examine the feasibility of the same approach

for very low values of p̂, so that is a possible avenue for

additional performance improvement. One approach could be

to have the threshold vary according to read depth because

the accuracy of the Poisson approximation increases at higher

205

(a) (b)

Fig. 1: The continuous Poisson approximation (red line) to the Poisson binomial (bars) distribution. (a): The test statistic

for the Poisson approximation is the right tail integral (shaded) and for the Poisson binomial it is the right tail sum (red bars).

(b): The workflow of the improved LoFreq algorithm. The original LoFreq workflow is denoted by the dotted box. Here PrPB

denotes probability under the Poisson-Binomial distribution. We first compute the tail integral over the Poisson distribution to

get an approximate p-value we denote as p̂. If p̂ > ε+ 0.01, then we have high confidence that p > ε and therefore we do not

call a variant.

depth. As seen in the results, the approximation results in a

1-4x speedup in CPU time, particularly when run on large files

with a low variant count. We also note that the approximation

is more accurate when the error probabilities pi are higher,

so a specific version of the algorithm could be optimized for

high-error, long read sequencing data.

We observe that for input data with low read-depth this

heuristic is actually ill-suited, and can even be both less accurate

and slower. For one, as noted above the error in the Poisson

approximation vanishes asymptotically as d increases. Also, the

existing version of LoFreq includes some conditions for early

stopping that work especially well on shallow columns. To

remedy this, our implementation only uses the approximation

heuristic for columns with a read depth of at least 100. When

read depth is below 100, the dynamic programming array used

for the Poisson-Binomial fits inside the cache, which itself

provides speedup comparable to the approximation. Importantly

though, low-coverage sequencing input is inherently ill-suited

to discovering variants present at low-frequency; for samples

having depth below 100 throughout, a faster, less-sensitive

SNV detector may be more appropriate.

The original LoFreq has not been optimized for cache

performance, particularly on larger files. Since the computation

of the Poisson binomial uses O(d) memory, we quickly begin

to spill over our shared cache when running in parallel files

with depth d > 1e5. Our improved version of LoFreq has much

better cache performance, with a cache miss rate below 15%

compared to over 70% originally. Bypassing exact probability

computations accounts for much of this as they repeatedly

iterate over an array that does not fit in the cache. This also

contributes to scalability in the new version since now, on

average, only a small subset of running threads will need O(d)
memory at a given time.

We were successfully able to replicate the behavior of the

parallelization script in OpenMP. While this improvement does

not reduce aggregate CPU time in it’s current form on the

experiments we have run, it does offer other advantages. The

OpenMP implementation addresses a minor bug mentioned

in a variant caller review article [8] where the original

implementation results in the output running through two stages

of filtering when run in parallel: once for each individual

process and then again on the combination of the variants

from all of the processes. Unless set by the user, filter values

are dynamically set during a LoFreq run, which causes the

aforementioned filtering bug to produce inconsistent results.

Our approach of using OpenMP to move all of the variant

calling to the same process seems to remedy this problem.

Additionally, the parallelization script from the original

LoFreq approach could still be used to partition the input

for submission to a cluster, making it possible to parallelize

across both shared and distributed memory environments. The

OpenMP implementation also has the potential to avoid load

imbalances that were possible previously by using smaller

partitions towards the end of the run.

206

Fig. 2: HPC-toolkit trace results. X-axis is execution timeline and the Y-axis corresponds to the threads. The window at the

bottom is the distribution of work across tasks. Pink is probability computation, teal is BAM file iteration, light blue at left is

file decompression, dark green at right is the thread barrier. The image shows one thread causing a load imbalance due to a

high-cost column.

Fig. 3: Upset plot [16] highlighting the shared low fre-
quency variants across all five datasets. Rows of upset plot

indicate the depth-of-coverage per dataset, the columns indicate

the intersection of shared single nucleotide variants across

datasets. The bar plots located at the bottom left side represent

the total number of SNVs identified per dataset.

V. CONCLUSION

These modifications to two small parts of the LoFreq source

code have improved an existing, widely used variant calling

software and would not have been possible without a flexible

and well-documented code base, which along with their spirit

of collaboration is a credit to the developers. The effect of it is

the continuous improvement of a single software, a welcome

change from the more common pattern where bioinformatics

tools proliferate every time a minor modification is made to

an algorithm.

Our heuristic improvements to LoFreq have been merged to

the main repository, available at https://github.com/CSB5/lofreq.

The experimental OpenMP version is available at https://gitlab.

com/treangenlab/lofreq/-/tree/openmp/

VI. ACKNOWLEDGMENTS

We’d like to thank the authors of LoFreq, Andreas Wilm

and Niranjan Nagarajan, for their help and advice as well as

merging our improvements into the LoFreq repository. We’d

also like to thank John Mellor-Crummey for assistance with

HPC-Toolkit and access to additional computing resources.

REFERENCES

[1] Lucy van Dorp, Mislav Acman, Damien Richard, Liam P Shaw,
Charlotte E Ford, Louise Ormond, Christopher J Owen, Juanita Pang,
Cedric CS Tan, Florencia AT Boshier, et al. Emergence of genomic
diversity and recurrent mutations in sars-cov-2. Infection, Genetics and
Evolution, 83:104351, 2020.

207

[2] Nicolae Sapoval, Medhat Mahmoud, Michael Jochum, Yunxi Liu, RA Leo
Elworth, Qi Wang, Dreycey Albin, Huw Ogilvie, Michael D Lee, Sonia
Villapol, et al. Hidden genomic diversity of sars-cov-2: implications for
qrt-pcr diagnostics and transmission. Genome Research, pages gr–268961,
2021.

[3] Timokratis Karamitros, Gethsimani Papadopoulou, Maria Bousali, Anas-
tasios Mexias, Sotirios Tsiodras, and Andreas Mentis. Sars-cov-2 exhibits
intra-host genomic plasticity and low-frequency polymorphic quasispecies.
Journal of Clinical Virology, 131:104585, 2020.

[4] Jessica A Plante, Yang Liu, Jianying Liu, Hongjie Xia, Bryan A Johnson,
Kumari G Lokugamage, Xianwen Zhang, Antonio E Muruato, Jing Zou,
Camila R Fontes-Garfias, et al. Spike mutation D614G alters SARS-
CoV-2 fitness. Nature, pages 1–6, 2020.

[5] Nicholas G. Davies, Christopher I. Jarvis, W. John Edmunds, Nicholas P.
Jewell, Karla Diaz-Ordaz, and Ruth H. Keogh. Increased hazard of death
in community-tested cases of SARS-CoV-2 variant of concern 202012/01.
medRxiv, 2021.

[6] Jason A Reuter, Damek V Spacek, and Michael P Snyder. High-
throughput sequencing technologies. Molecular cell, 58(4):586–597,
2015.

[7] Ting Ting Wang, Sagi Abelson, Jinfeng Zou, Tiantian Li, Zhen Zhao,
John E Dick, Liran I Shlush, Trevor J Pugh, and Scott V Bratman.
High efficiency error suppression for accurate detection of low-frequency
variants. Nucleic acids research, 47(15):e87–e87, 2019.

[8] Sarah Sandmann, Aniek O De Graaf, Mohsen Karimi, Bert A Van
Der Reijden, Eva Hellström-Lindberg, Joop H Jansen, and Martin
Dugas. Evaluating variant calling tools for non-matched next-generation
sequencing data. Scientific Reports, 7:43169, 2017.

[9] Andreas Wilm, Pauline Poh Kim Aw, Denis Bertrand, Grace Hui Ting Yeo,
Swee Hoe Ong, Chang Hua Wong, Chiea Chuen Khor, Rosemary Petric,
Martin Lloyd Hibberd, and Niranjan Nagarajan. LoFreq: a sequence-
quality aware, ultra-sensitive variant caller for uncovering cell-population
heterogeneity from high-throughput sequencing datasets. Nucleic Acids
Research, 40(22):11189–11201, 2012.

[10] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard
api for shared-memory programming. IEEE computational science and
engineering, 5(1):46–55, 1998.

[11] William Biscarri, Sihai Dave Zhao, and Robert J. Brunner. A simple and
fast method for computing the poisson binomial distribution function.
Computational Statistics and Data Analysis, 122:92–100, 2018.

[12] Yili Hong. On computing the distribution function for the poisson
binomial distribution. Computational Statistics and Data Analysis, 59:41–
51, 2013.

[13] Joseph L Hodges and Lucien Le Cam. The Poisson approximation to
the Poisson binomial distribution. The Annals of Mathematical Statistics,
31(3):737–740, 1960.

[14] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman,
Patrick Alken, Michael Booth, Fabrice Rossi, and Rhys Ulerich. GNU
scientific library. Citeseer, 2002.

[15] D. Butler, C. Mozsary, C Meydan, et al. Shotgun transcriptome, spatial
omics, and isothermal profiling of sars-cov-2 infection reveals unique
host responses, viral diversification, and drug interactions. Nature
Communications, 12(1):1660, 2021.

[16] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot,
and Hanspeter Pfister. Upset: visualization of intersecting sets. IEEE
transactions on visualization and computer graphics, 20(12):1983–1992,
2014.

[17] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel
Marin, John Mellor-Crummey, and Nathan R Tallent. Hpctoolkit: Tools
for performance analysis of optimized parallel programs. Concurrency
and Computation: Practice and Experience, 22(6):685–701, 2010.

208

