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Abstract—Galaxy is an open-source web-based framework that
is widely used for performing computational analyses in diverse
application domains, such as genome assembly, computational
chemistry, ecology, and epigenetics, to name a few. The current
Galaxy software framework runs on several high-performance
computing platforms such as on-premise clusters, public data
centers, and national lab supercomputers. These infrastructures
also provide support for state-of-the-art accelerators like Graph-
ical Processing Units (GPUs). When coupled with accelerator
support, the tools executing in Galaxy can benefit from mas-
sive performance gains in terms of computation time, thereby
allowing a more robust computational analysis environment for
researchers. Despite tools having GPU capabilities, the current
Galaxy framework does not support GPUs, and thus prevents
tools from taking advantage of the performance benefits offered
by GPUs. We present and experimentally evaluate GYAN, a
GPU-aware computation mapping and orchestration function-
ality implemented in Galaxy that allows the Galaxy tools to be
executed on a GPU-enabled cluster. GYAN has the capability of
identifying GPU-supported tools and scheduling them on single
or multiple GPU nodes based on the availability in the cluster.
GYAN supports both native and containerized tool execution.
We performed extensive evaluations of the implementation using
popular bio-engineering tools to demonstrate the benefits of
using GPU technologies. For example, the Racon consensus tool
executes ∼2× faster than the regular baseline CPU-only jobs,
while the Bonito base calling tool shows ∼50× speedup.

I. INTRODUCTION

Galaxy is a web-based open-source framework [1] widely

used by thousands of researchers [21] for a variety of compute-

intensive applications, including computational chemistry [13],

genome assembly, epigenetics, metagenomics, machine learn-

ing, and drug discovery [34]. Galaxy can be installed on

various compute platforms, such as local clusters, public

datacenters, and national lab supercomputers [20], and is also

available as a world-wide network of managed free services

(known as usegalaxy.*). As a result of its accessibility, Galaxy

has been cited over 10,000 times in the last decade [22].

Galaxy allows users to access tools, manage workflows, repro-

duce, store and share experimental results with the community

with these deployment options.

As evidenced by prior research [30], many of the tools

that are used in Galaxy, have parallelization opportunities,

potentially enabling substantial performance improvements

This research is generously supported by NSF Award #1931531

when executed on hardware accelerators. An example is Py-

PaSWAS [39], which is a sequence alignment application that

shows a 33× speedup with GPU compared to CPU. Within

the broad spectrum of hardware-accelerators including GPUs,

Field-Programmable-Gate-Arrays (FPGAs), and Application-

Specific Integrated Circuits (ASICs), GPUs have been dom-

inating the landscape due to their multi-faceted nature of

supporting modern-day applications [30]. GPUs have become

an essential part of modern computing systems with their

use reaching far beyond their initial target domain (com-

puter graphics) to many parallel application domains such as

bioinformatics, nuclear physics, deep learning, and others [4],

[6], [11], [24]. With the rapid increase in programmability as

well as compute and storage capabilities of GPUs, there has

been ongoing development of a growing set of applications

and problems that have been mapped to GPUs. For instance,

Argonne National Laboratory’s researchers have accelerated a

COVID-19 vaccine study that simulates an important part of

a protein spike on coronavirus made up of 1.5 million atoms.

By using the latest V100 GPUs, they were able to achieve 5×
speedup compared to CPU-only execution [10].

With the proliferation of parallel bioinformatics applica-

tions/tools, deployment platforms like HPC supercomputers

and public datacenters have begun to include GPUs as a part

of their mainstream hardware infrastructure. For instance, the

Brookhaven National Lab has expanded its supercomputers

to include a 200-node GPU cluster [17]. Despite GPUs being

available in today’s hardware infrastructure, the current Galaxy

framework does not support GPUs. This apparent deficiency

in Galaxy motivates the central premise of our work: can we
make the Galaxy framework “GPU-aware” such that GPU-
enabled tools can leverage the flexibility offered by executing
in Galaxy for enhancing performance?

However, it is non-trivial to integrate GPUs into the current

Galaxy framework without affecting the user experience (i.e.,

users should be able to retain their original tool deployment

method, while the tools should be able to leverage GPUs when

applicable). Towards addressing this problem, in this paper, we

present GYAN, an enhanced Galaxy framework with support

for executing GPU-enabled tools. We achieve this through

minimal code enhancements and user-agnostic modifications

to the Galaxy framework, and we further test our modifications

on an in-house Galaxy deployment.
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In this paper, we make the following key contributions:

1) We make Galaxy GPU-aware such that the tools with

GPU capability can seamlessly execute in Galaxy along-

side CPU-enabled tools. We support both bare-metal

(locally running) and containerized tools to be executed

in Galaxy.

2) We design an intelligent GPU-aware orchestration policy

such that a given tool can be executed on a CPU

or a GPU based on the availability. Furthermore, we

provide multi-GPU support that facilitates the spreading

of highly compute-intensive tools across multiple GPUs.

The GPU selection is designed based on the availability

and utilization of all GPUs in a cluster.

3) We evaluate the effectiveness of the proposed GPU

support in Galaxy using two widely used tools: Racon
and Bonito. Racon is a genome consensus [37] tool and

Bonito performs base calling [36].

4) The results from our experiments indicate that the GPU

versions of these two tools show ∼2× (for Racon) and

∼50× (for Bonito) speedups over their original CPU-

based counterparts.

The remainder of this paper is structured as follows. Sec-

tion II presents the necessary background information on

Galaxy, bioinformatics tools, GPUs, and containerization. We

then explain, in Section III, the motivation along with the

challenges in the design. The details of the implementation

of the enhancements we made to the Galaxy framework to

allow GPU-aware job mapping and orchestration are given

in Section IV. The experimental results are presented and

discussed in Section V, followed by the conclusions.

II. BACKGROUND AND RELATED WORK

We present a brief background on Galaxy, containerization

support, parallelism, and GPUs.

A. Galaxy Software Framework

Galaxy is an open-source web-based framework, which

is maintained by a large, world-wide community. Galaxy

enables thousands of researchers without informatics expertise

to perform computational analyses [20]. Galaxy framework

consists of two main components. The first is The Galaxy
Software Framework, which is a web-based application for

computational analysis. The framework interacts with the

underlying computational infrastructure, which is hidden from

the user. This infrastructure can be a conventional cluster,

cloud, or a hybrid system that combines the two. The second

component is called usegalaxy.* and it is a set of hosted, free

servers around the works that allow thousands of users to use a

variety of tools. These servers are typically hosted on national

cyberinfrastructure (e.g., Texas Advanced Computing Center

(TACC) as part of the CyVerse project [20] in US, NeCTAR

academic cloud in Australia).

The hosted Galaxy instances offer a set of popular,

commonly-used tools. Tools are the applications that are run

on Galaxy instances. These tools are used by an end-user,

installed as a “Galaxy Admin”, and developed by a tool-

developer. When a user wants to execute a tool, it is submitted

as a “Galaxy Job”. A single job can be a single tool instance or

a workflow consisting of a sequence of multiple tools. Galaxy

tools have XML files which are called “tool configuration

files” or “wrapper files” and these files are automatically

rendered into the web user interface for the tool. The wrapper

files create a bridge between the tools and Galaxy to inform

Galaxy on how to execute the tool, what options to pass as

parameters, and what output file(s) will be generated [23].

B. Containerization Support in Galaxy

Galaxy can also take advantage of containerized tools by

launching jobs as “containers”. A container is a “standard

unit of software that packages up code and its dependencies”

[18]. Containerization allows seamless reliable execution from

one platform to another and makes end users’ jobs easier

by managing all the dependencies. Docker containers [18]

are instantiated, at runtime, from Docker Container Images,

which are lightweight and standalone packages that include the

implementation, tools, libraries, and other settings necessary

for that application to be executed independent of the operating

system [18]. Singularity is a tool that works almost the same

as Docker; however, it has different permission configura-

tions which allow it to be executed on HPC clusters easily

[28]. Galaxy currently supports both Docker and Singularity-

containerized tools. Galaxy also supports “Biocontainers”.

Biocontainers [33] is an open-source project that helps manage

bioinformatics packages for applications and allows to deploy

them as containers. Biocontainers include Docker containers

which are built from Dockerfile recipes and Conda based

containers that first develop a Conda package and then build

a Docker container from the package [33].

C. Parallelism and GPUs

GPUs are designed to be powerful engines for computation-

ally demanding applications. They deliver a great performance

for many types of parallel computations. A GPU is a highly-

parallel-programmable processor with large arithmetic capa-

bilities and memory bandwidth, therefore it is not only meant

for graphics purposes. So for many parallel applications, it

yields high performance advantages over its CPU counterpart.

Further, with parallelism and throughput being increasingly

more important than latency in many application domains,

GPU architectures have developed substantially over the years.

Especially the recent NVIDIA GPUs can achieve thousands of

GFLOPS (giga-floating point operations per second) [30].

In an NVIDIA GPU architecture, an application code is

parallelized by using CUDA parallel programming model [15],

which maps threads, blocks, grids and warps to the GPU

architecture. In this model, GPUs are referred to as “devices”

and CPU is referred to as “host”. The functions that run in

GPUs are called “device kernels”. In a device kernel, the

threadIdx gives the ID of the current thread, blockIdx gives

the ID of the current block, blockDim gives the size of each

dimension of the current block, and lastly, gridDim gives the
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Figure 1. Tesla K80 GPU architecture.

size of each dimension of the current grid [15]. GPUs can

run many device kernels in parallel, and each device kernel

accesses a grid to access threads and blocks. The number of

grids, blocks per grid, and threads per block depends on the

GPU’s compute capability. Threads are organized in 1, 2, or

3-dimensional blocks, and similarly, blocks are organized in

1, 2, or 3-dimensional grids [15]. Within a block of threads,

the threads are executed in groups of 32, which are named as

“warps” and all threads in a warp execute the same thing [7].

Each thread in a warp accesses a shared memory.

NVIDIA GPUs contain Streaming Multiprocessors (SMs)

and each SM contains Streaming Processors (SPs) or CUDA

cores. SMs execute the device kernels in block(s) (therefore

several warps) one after another. In the current GPU architec-

tures, each SM has several warp schedulers [25]. This shows

the dynamic scheduling nature of these GPUs, which allows

scalability. So higher number of blocks used in a device kernel

allows better scaling across any GPU architecture.

To evaluate GYAN, we used a machine with two Tesla

K80 GPUs. The Tesla K80 GPU has two Tesla GK210 GPUs

as seen in Fig. 1. Both GPUs have 2,496 processor cores

with a core clock of 560 MHz to 875 MHz; the memory

bandwidth is 480 GB/sec, and the total board memory is 24

GB [26]. In this GPU, the number of threads per warp is 32;

the maximum number of threads per block is 2048; and the

maximum number of warps per SM is 64. There are 15 SMs,

each containing 4 warp schedulers, allowing 4 warps to be

executed simultaneously. The SMs in this GPU have improved

performance for double-precision workloads [25].

D. Related Work

We briefly describe the infrastructure and software enhance-

ments to Galaxy and bioinformatics tools over the years. On

the infrastructure front, cloud computing can offer on-demand

access to elastic computational infrastructure, however, it is not

available for “as is” usage for biologists. “Galaxy CloudMan”

was developed [2] to allow researchers to manage an arbitrarily

sized compute cluster on Amazon EC2. This system does not

require informatics knowledge as it allows the creation of

configured compute cluster within five minutes and it makes

the entire biological tools suite available for immediate usage.

Besides the cloud computing support, there have been

several other application-level enhancements for the Galaxy

Framework. One of which is related to expanding Galaxy’s

reference data [38]. For many bioinformatics analyses, the

proper management of reference datasets is an important task.

Refgenie [38] is a reference management system that enables

this task and it is integrated into the Galaxy platform with

a graphical user interface. Similarly, Galaxy was recently en-

hanced with another platform related to long-read sequencing,

which has become popular, allows sequencing long contigs

at low cost and minimal preparation. “NanoGalaxy” [5] was

developed and it is a freely available Galaxy-based toolkit

for analyzing long-read sequencing data. PyPasWAS is a

Python-based multi-core GPU and CPU sequence alignment

tool. While PyPasWAS achieves 33× speedup in execution

time using GPUs for alignment, it is not a platform for

running different sequence alignment tools and it does not

provide infrastructure nor an interface with Galaxy. Another

recent work [16] designed infrastructure for NGS analyses

using Galaxy with GPU support. While providing limited

implementation details, this work is an in-house framework

that uses Galaxy as a middleware to run jobs along with the

Slurm scheduler. It is not integrated into the main Galaxy

repository.

III. MOTIVATION

While the current implementation of Galaxy does not allow

GPU-enabled tools to run, prior research demonstrates that

the GPU versions of many tools currently running in Galaxy

can potentially achieve significant speedups (compared to

their CPU versions). The speedups for a few life sciences

applications are as follows: Direct Coulomb Summation ∼45×
[30]; Cutoff Pair Potentials application ∼17× [35]; Fluores-

cence Microphotolysis ∼11× [3]; and Multi-Level Summation

Method Short-Range application ∼25× [9].

As seen in these examples, using GPUs can improve

performance in the important research areas for human life,

which shaped the accelerator development in recent years. At

Argonne National Laboratory, researchers study a COVID-19

vaccine, where a 24 DGX A100 system cluster empowers them

to accelerate the simulations, enabling a faster understanding

of how this virus infects humans [10]. Furthermore, The

National Energy Research Scientific Computing Center uses

A100 for AI-based simulations [10]. They had speedups up to

5× (V100 GPU vs. CPU) in different areas, and they expect

more gains with A100 [10]. These results show that these

use cases and tools are highly parallelizable and can yield

significant performance improvements when coupled with

GPUs. Further, these tools are often embarrassingly parallel,

allowing them to scale across multiple GPUs.

Scientific Impact: Galaxy is used by thousands of researchers

who significantly contribute to various important domains,

where they execute hundreds of thousands of both compute

and data-intensive experiments. With GPU infrastructure sup-

port, these experiments will benefit from massive speedups

due to the inherent parallelism they offer. This advantage

unilaterally motivates the need for enabling GPU-aware tool

execution in the Galaxy framework.
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Figure 2. The system flow diagram for Galaxy tool execution.

A. Challenges in Bringing GPU-Support

To design and develop the GPU support, we first investigate

the four main steps involved with Galaxy’s tool execution flow.

As seen in Fig. 2, first, users trigger a job submission through

the Galaxy web-interface. Galaxy parses the tool requirements

from the wrapper file (which includes references to the re-

quired libraries and hardware). Second, Galaxy executes the

submitted job via a runner, which maps the job to a destination

using a job configuration file. Third, Galaxy submits the job to

a job scheduler, or executes it locally as a dedicated process.

Finally, Galaxy collects the results from the job execution

and presents them to the user via the web-interface. While

inspecting this tool execution workflow, we identified four

critical challenges about the first two steps in the workflow.

The first challenge, Challenge-I, is to include a new compute

requirement for GPU (in the form of XML tags) in the tool

configuration file. The current Galaxy implementation does

not provide explicit hardware requirement specification tags.

Hence, it is non-trivial to include a new hardware specification

while retaining the original Galaxy execution flow. The second

challenge, Challenge-II, lies in exposing the GPU availability

to the Galaxy runner. The runner makes use of dynamic desti-

nation mapping to map jobs into physical hosts (destinations).

The runner needs to extract information from the new GPU

requirement, such as GPU availability, GPU model, etc., to

dynamically map GPU jobs alongside CPU jobs. Additionally,

if GPUs are unavailable, the runner needs to switch jobs to

CPU nodes in a user-agnostic fashion.

Since we need to support both bare-metal and container-

ized tools, Challenge-III, is to enable GPU-support for con-

tainerized tools. Although Galaxy supports launching tools as

Docker containers, it does not support NVIDIA Docker-based

GPU containers. To enable this support, the primary challenges

lie in defining a new compute requirement (in Challenge-I) as

a part of the existing container launch script.

The final challenge Challenge-IV, concerns the design of

multi-GPU-aware computation mapping support. To efficiently

enable multi-GPU support, we need the following: (i) allow

the end-user to specify the IDs of GPUs as a requirement;

(ii) obtain the real-time GPU information such as GPU IDs,

the number of executing processes, and memory usage and

(iii) design a GPU device allocation strategy without (or

minimally) affecting the currently running processes. These

four challenges highlight the design complexities involved in

enabling GPU support in Galaxy.

IV. DESIGN AND IMPLEMENTATION OF GYAN

To address the challenges discussed in Section III-A, we

design and implement GYAN – a GPU-aware computation

mapping support for Galaxy. While retaining the original

execution flow of Galaxy, the essential features of GYAN

are (i) minimal to no user involvement, (ii) easily extensible

code enhancements to Galaxy’s core framework, (iii) minimal

overheads for cluster administrators, and (iv) under-the-hood

automated decision-making process. We further explain in

detail below, the individual design components of GYAN.

A. GPU-Aware Computation Mapping

1 <macros>
2 <xml name="requirements">
3 <requirements>
4 <requirement type="package" version="@VERSION@

">racon</requirement>
5 <requirement type="compute">gpu</requirement>
6 </requirements>
7 </xml>
8 ...
9 </macros>

Code 1. The macros.xml file. It specifies the requirements of the tool and is
imported into the racon.xml file. The requirement of type “gpu” is at line 5,
allowing Galaxy to recognize that the tool requires GPU to be executed.

As mentioned in the previous section, Challenge-I is the

design of a new compute requirement of type GPU in the

form of XML tags. To overcome this challenge, we designed

and implemented a new parser which interprets the new

requirement type. The new requirement type is to be used in

the tool wrapper file as shown in Code 1. The new requirement

type is utilized when deciding if GPU is required in the

upcoming steps of the Galaxy execution flow. The values of

the compute requirement type can be “gpu” or “cpu” (default).

1 <job_conf>
2 <plugins>
3 ...
4 <plugin id="dynamic" type="runner">
5 <param id="rules_module">galaxy.jobs.rules</

param>
6 </plugin>
7 </plugins>
8 <destinations default="gpu_cpu_decision">
9 <destination id="gpu_cpu-decision" runner="

dynamic">
10 <param id="type">python</param>
11 <param id="function">dynamic_map</param>
12 </destination>
13 </destinations>
14 </job_conf>

Code 2. The “job conf.xml” configuration file which specifies the dynamic
job destination decision making dynamic destination.py script as the runner.

Recall that Challenge-II is about exposing the GPU availabil-

ity to the Galaxy runner. We added a new job rule to address

this challenge, which allows us to dynamically map between

CPU or GPU destinations according to different conditions.

The job rule obtains the system GPU availability and the
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number of GPUs using the “pynvml” Python library. If the

tool’s wrapper file has the compute requirement of type “gpu”

and if there is at least one GPU available, then the destination

is configured to be “local GPU”. At the same time, a boolean

environment variable called “GALAXY GPU ENABLED” is

introduced to Galaxy; it is set to “true” if the “local GPU”

destination is configured, and “false” otherwise. The Galaxy

administrators configure the job execution destinations by

using the “job conf.xml” file. The new job rule is used in

the “job conf.xml” file as a “destination” (shown in Code 2).

In the Galaxy framework, the backend Python variables

are exposed to the tool developer with the dictionary data

structure, which is the output of the “build param dict”

function. This function resides in the “evaluation.py” script

and serves as a bridge between the Galaxy backend and

the tool developer. Using this information, we exposed the

“GALAXY GPU ENABLED” environment variable to the

tool wrapper file with the insertion of a dictionary entry.

Hence, we assign the “GALAXY GPU ENABLED” value to

“ galaxy gpu enabled ” in the tool-config file.

1 <tool id="racon" name="Racon" version="@VERSION@">
2 ...
3 <command detect_errors="exit_code"><![CDATA[
4 ...
5 #if $__galaxy_gpu_enabled__=="true":
6 racon_gpu
7 #else:
8 racon_cpu
9 #end if#

10 ...
11 ]]></command>
12 </tool>

Code 3. The “racon.xml” wrapper file for the Racon tool. The wrapper files
allow users to specify the executable and include the parameters that the
end-user can set. This file is necessary for Galaxy to recognize the tool.
The “GALAXY GPU ENABLED” environment variable is accessed via the
parameter dictionary entry “galaxy gpu enabled”, as shown in line 5.

Code 3 shows how the tool wrapper file utilizes

the “ galaxy gpu enabled ” key from the parame-

ter dictionary. The tool wrapper checks the value of

“ galaxy gpu enabled ” and decides on which executable

to use. By default, in CUDA programming, if the tool does

not specify any GPU device preference, all the GPUs are made

available. However, if the tool has a specific GPU preference

within the requirements XML, then that GPU is used. In case

that the GPU is busy, the tool will be offloaded to another

GPU device based on availability.

B. GPU-Awareness for Containerized Tools

Challenge-III is about enabling GPU support for con-

tainerized tools. Although Galaxy supports launching tools as

containers and a tool’s container has support for GPU, Galaxy

does not launch the containers with GPU support. To overcome

this challenge, we need to modify the container launch script

to utilize the GPU compute requirement that the tool developer

specifies using the wrapper file.

In the original Galaxy framework implementation, when the

job conf.xml file has the “docker enabled” parameter set to

“true” [19], the Docker runner takes effect. Next, the Galaxy

container launching script reads the required container ID

from the tool wrapper file and pulls the container from the

docker-hub or bioconda. Subsequently, the script executes the

container by assembling a bash command. While assembling

this command, GPU support for both Docker and Singularity-

containerized tools can be added using an additional flag. The

machine or cluster that hosts Galaxy should have NVIDIA-

Docker installed so that the user driver components and the

GPU devices into the container are mounted to the container

at launch.

To add the GPU support, we must first obtain information

about GPU availability and the tool’s GPU requirement. To

this end, we use a similar approach to the one described in

Section IV-A. The destination to execute the tool on is changed

to “docker” destination in the job conf.xml configuration file.

If there is no GPU available, the NVIDIA-Docker library will

not work. Therefore, when we are adding the new GPU flag

with the command_part.append("--gpus all") line to the

Docker run command, we first check the environment variable

that is set according to the GPU availability and requirement

using the statement if os.environ[’GALAXY_GPU_ENABLED’]

== "true".

We added GPU support to Singularity-containerized

tool execution similar to the GPU support design

for Docker-containerized tool execution. If the

“GALAXY GPU ENABLED” environment variable value is

“true”, the GPU support is added to the Singularity container

launch command using the command_part.append("--nv")

statement. Theoretically, this addition should suffice for GPU

support for Singularity containers to work. However, in the

current Galaxy framework implementation, when volumes are

mounted to the Singularity image, the “rw” and “ro” flags are

given for the read-write or read-only permissions. These two

flags are removed with the GYAN enhancements, because

Singularity’s new version (Version 3.1) does not support these

flags when adding the GPU flag.

C. Multi-GPU-Aware Computation Mapping

In addition to the single GPU support, we also provide a

multi-GPU computation mapping support, which executes a

given tool using multiple GPUs, provided that there is more

than one GPU available on the host. To this end, the first

part of Challenge-IV is to enable the end-users to specify

the IDs of GPUs for tools as requirements in the wrapper

files. The non-trivial challenge here is with allowing the end-

user to specify the GPU ID along with the already-defined

GPU compute requirement. To solve this problem, we used

the existing “version” XML tag of the tool wrapper file’s

requirement object. Therefore, the “version” tag corresponds

to the GPU minor ID(s) in our design. The second part of this

challenge involves obtaining the real-time GPU information

such as GPU IDs, executing processes, and memory usage for

each GPU. To solve this part of the challenge, we propose

an algorithmic design that determines the processes executing

on each GPU. This information is obtained by executing a

GPU query command from the Python local runner script

(“local.py”). This command uses the “nvidia-smi” query and

then returns the output as XML. The “BeautifulSoup” library
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is used to process the XML output to extract the GPU IDs and

PIDs of the processes executing on each GPU. As shown in

Pseudocode 1, a dictionary with the key-value pairs is created

by processing the output, where keys are GPU minor IDs and

values are process IDs.

Pseudocode 1: The “get gpu usage” function which

resides in the “local.py” script. This functions captures

the executing processes for each device and returns a

list of available GPUs and all GPUs in the system.

Input: None
Output: avail gpus, all gpus
proc gpu dict = {};
avail gpus = [];
all gpus = [];
bash cmd = “/bin/bash -c ’nvidia-smi –query -x’”;
out, err = subprocess.Popen(...);
soup = bs(out, “lxml”);
gpu find = soup.find(“nvidia smi log”).find all(“gpu”);
process find = p.find(“processes”).find all(“process info”);
for ( p in gpu find ) {

minor id = p.find(“minor number”);
for ( proc in process find ) {

pid proc = proc.find(“pid”);
proc gpu dict[minor id].append(pid proc);

}
}
for ( x,y in proc gpu dict ) {

all gpus.append(x);
if y is empty then

avail gpus.append(x);
}

The next part of Challenge-IV is to design a GPU device

allocation strategy without affecting the currently executing

processes. To solve this challenge, we introduce two method-

ologies explained below.
1) Process ID Approach: The “ command line” function,

located in the “local.py” script, assembles a command to

execute the tool submitted by the end-user and launches the

command as a sub-process. The “get gpu usage” function is

called in the “ command line” function. It returns the lists

of available GPUs along with all of the GPU IDs on the host

machine. If the list of available GPUs contains the required

tool GPU IDs, the value of the “CUDA VISIBLE DEVICES”

environment variable is set to those GPU IDs. Next, it is

exported to the local runner as shown in Pseudocode 2.

Like the earlier approach, the GPU support for containerized

tools with multi-GPU support is developed by exposing GPU

information to containers. Note that, we have not used the “–

gpus x” command which is meant to expose the desired GPUs

because it did not work as intended. Instead, we have exported

the “CUDA VISIBLE DEVICES” environment variable ac-

cording to the GPU availability. Then, we have used the “–

gpus all” flag to obtain all of the GPU IDs that the environment

variable exposed. These GPU IDs are determined with the

algorithm shown in Pseudocode 2. This flag is necessary for

the Docker runtime to support the GPU-enabled containerized

tools.
2) Process Allocated Memory Approach: The “Process ID

Approach” is not efficient for some scenarios. For example, if

Pseudocode 2: The “ command line” function which

resides in the “local.py” script.

input : self, job wrapper
output: CUDA VISIBLE DEVICES
if job wrapper.tool exists then...

for ( req in reqmnts ) {
if req.type = “compute” and req.name = “gpu” then

if req.version and req.version != “” then
gpu id to query = req.version;

flag = 1;
}
if gpu flag and gpu count > 0 and flag then

GALAXY GPU ENABLED = “true”;
avail gps, all gps = get gpu usage();
for ( dev in all gps ) {

all gps str += dev;
}
if gpu id to query in avail gps then

gpu dev to exec = gpu id to query;
else

gpu dev to exec = “”;
for ( dev in avail gps ) {

gpu dev to exec += dev;
}

CUDA VISIBLE DEVICES = gpu dev to exec;

all GPUs are executing at least one process and if an incoming

task is distributed to all GPUs, some GPUs can have very high

memory utilization. This situation may cause stalling due to

context switching between tasks. Instead, with the “Process

Allocated Memory Approach,” we place the upcoming job on

a GPU which has the least device memory allocated for the

executing process(es). This approach uses the “nvidia-smi” call

as mentioned in Section IV-C1. Instead of obtaining the pro-

cess IDs from this query, we get the “fb memory usage.used”

of each GPU. We then expose the GPU ID which has the

minimum memory usage, to the upcoming job.

3) GPU Hardware Usage Script: To evaluate the design

choices and enhancements mentioned in the previous sections,

we implemented a GPU hardware usage script, which allowed

us to monitor GPU utilization and GPU memory utilization

chronologically throughout the tool executions. This script is

embedded inside the Galaxy Framework implementation and

is executed when a tool execution starts. It is essential for

understanding the tool characteristics.

V. EVALUATION FRAMEWORK

In this section, we discuss the evaluation of GYAN using

the experiments conducted in Galaxy hosting on a Chameleon

Cloud test-bed, which has GPU nodes. We compared runtimes

of CPU-only executions and GPU-supported executions along

with the multi-GPU enhanced Galaxy executions for two tools.

With the use of GYAN, running GPU-supported tools on

Galaxy does not introduce any extra overhead, because GYAN

executes and schedules jobs to GPUs without adding another

layer of software stack. Therefore, to evaluate GYAN, we

showed how GPU-supported tools have speedup over CPU-

only versions to motivate the need for GPU computation

mapping for Galaxy. These speedups can increase the the
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number of compute and data-intensive experiments, leading

to increased research bandwidth.

A. Workloads

We focus on two major workloads for testing GYAN: Racon
and Bonito. These are popular tools for processing next-

generation sequencing data [12] from the two most popular

long-read technologies – PacBio [27] and Oxford Nanopore

Technologies [31]. We chose them because they capture a

broad range of sequencing data analysis, covering multiple

platforms and multiple stages of the data processing pipeline

and they are highly amenable to GPU-based parallelization.

Sequencing data typically goes through a processing

pipeline before it can lead to biological insight. One of the

earliest steps in the pipeline is “basecalling” [14]. A basecaller

is an algorithm that converts sequencing data from its raw

form, which captures the complex combination of optical

sensors, hardware, and chemistry underlying the technology,

into a sequence of individual nucleotides. Oxford Nanopore

Technologies provides a PyTorch-based basecaller for its data,

called Bonito [36]. Bonito is inspired by the usage of convo-

lutional neural networks (CNNs) in speech recognition. It has

several functionalities, like training a bonito model (bonito
train), converting an hdf5 training file into a bonito format

(bonito convert), evaluating a model performance (bonito eval-
uate), downloading pre-trained models and training datasets

(bonito download), and basecaller which obtains a fasta format

output from .fast5 files (bonito basecaller). Bonito has both

GPU and CPU execution support. It also has automatic mixed-

precision support for accelerating the training tool [36].

Basecalled reads are often used to perform a de novo

assembly. An assembler outputs long reference sequences for

shorter read segments as it predicts sources of these reads.

The assembler first constructs a draft backbone sequence of the

reference. It then aligns the reads to that backbone and corrects

each position in the backbone according to the consensus of

the nucleotides that align to it. Racon performs this step for

PacBio sequencing data. While this is a compute-intensive

process, it leads to significantly better quality assemblies [37].

Racon uses the mapping data to construct a partial-order align-

ment with single-instruction, multiple-data (SIMD) support to

accelerate the consensus generation an order of magnitude

faster than state-of-the-art methods [37].

B. Experimental Setup

We used a machine with an Intel Xeon E5-2670 processor

with 48 CPUs and two NVIDIA Tesla K80 GPUs to conduct

our experiments. The GPU driver version is 455.45.01, and the

CUDA version is 10.2. The Python version we used to execute

Galaxy is Python 3.6.9. We created different experiments to

analyze all of the contributions. The first set of experiments

execute the Racon tool with the local runner and compare the

performance with different parameters and the GPU vs. CPU

execution. Next, we created a Docker image for the Racon-

GPU tool and used that to compare the execution times of runs

with different parameters and GPU vs. CPU. Lastly, to evaluate
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Figure 3. Performance across different thread numbers for the Racon tool
comparing the GPU and CPU-only versions.

the multi-GPU functionality, we created different cases to test

the multi-GPU process scheduling.

C. GPU Hardware Usage Script

We implemented a script that allows us to collect statistics

about the jobs. This script obtains the GPU utilization, GPU

memory utilization, and PCIe link generation information for

every second, including minima, maxima, and average. It is

executed when a job is submitted and stopped when a job

is either killed or stops. Whenever it stops, a post-processing

function is executed, and it generates .csv files and other log

and statistic files that are aggregated from the chronological

data for each job. The GPU query used for this script is shown

in Code 4. This script captures the increasing/decreasing trends

of the GPU memory usage and SM utilization of the executing

tool. It demonstrates how beneficial GPU usage is and yields

the design of multi-GPU computation mapping support, which

is explained in Section IV-C.

1 bash_command = "/bin/bash -c ’nvidia-smi 00query-gpu
=utilization.gpu, utilization.memory, memory.
total, memory.free, memory.used, pcie.link.gen.
max, pcie.link.gen.current --format=csv -l 1’"

2 sp = subprocess.Popen(bash_command, shell=True,
stdout=File_object, stderr=subprocess.PIPE).pid

Code 4. GPU metric query for obtaining hardware usage metrics. This code
snippet is added to the “queue job” function of the “local.py” runner script.

VI. RESULTS AND ANALYSIS

A. GPU-Aware Computation Mapping

To test the impact of GYAN, we ran the Racon-GPU tool

on Galaxy. We used a 17 GB Alzheimers NFL Dataset, which

contains the polished sequencing results for the Alzheimer

human brain transcriptome [32]. After experimenting with

different batch sizes and CPU thread numbers with the Racon

tool, the best performance configuration was 4 threads and

1 batch without banding approximation with 1.72s. Among

the experiments that use banding approximation, 4 threads

and 16 batches performed the best with 1.67s. The CPU-only

execution using 4 threads took 3.22 seconds, nearly 2× slower

when compared to GPU execution, as seen in Fig. 3.

To understand the speedup reasons and the nature of the

Racon-GPU tool, we used the GPU hardware usage script

shown in Section V-C. We found that the Racon-GPU tool does
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Figure 4. Hotspot functions obtained from NVProf analysis on Racon-GPU.
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Figure 5. Bonito CPU vs. GPU execution times for two datasets.

the “polishing” portion of the consensus generation in GPU.

While the CPU-only polishing execution takes 117 seconds,

using GPU, this execution time is reduced to 15 seconds (2s

for GPU memory allocation + 13s of GPU polishing + 0.0001s

of additional CPU polishing for the remaining portion of the

reads that could not be polished in GPU). Thus, the CPU end-

to-end execution takes ∼410s for the Isoseq NFL Alzheimers

dataset, and the GPU end-to-end execution takes ∼200s. So,

even though polishing time is reduced from 117 to 13 s, there

is an overhead of ∼40s due to CUDA API calls to transfer

input data and results from and to GPU for kernel computation

of polishing and CUDA kernel synchronization.

To see the hotspots and understand how much the API calls

affect the performance, we performed NVProf analysis on the

running job. As plotted in Fig. 4, the majority of the calls

are kernel synchronization calls, memory transfer API calls

(which send the 17 GB dataset in chunks that fit in GPU

memory to device and back to host), and lastly, ClaraGenomics

library kernel calls, which are “generatePOAKernel” and

“generateConsensusKernel”. To understand the bottlenecks,

we did an NVProf stall analysis on Racon and found that

there is ∼70% memory dependency stall and ∼20% execution

dependency stall, which are also reasons why we cannot get

further performance improvements.

We also experimented with the Bonito Basecalling tool (pip

package version 0.3.2) using Acinetobacter pittii (1.5 GB)

and Klebsiella pneumoniae KSB2 (5.2 GB) datasets [29]. The

GPU support reduced the execution time significantly, as can

be seen in Fig. 5. In Fig. 5, the execution times for CPU

are shown as approximate results, because the CPU execution

time for the smaller dataset (Acinetobacter pittii) lasted more

than 210 hours, and the larger dataset is approximated to last

4× longer than the smaller dataset (more than 850 hours).
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Figure 6. Bonito hotspot functions obtained by doing NVProf analysis.
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Figure 7. Performance across different thread numbers and batch sizes for
Racon-GPU with banding approximation executed on Docker containers.

Therefore, the speedup for GPU vs. CPU execution time is

more than 50× for the Bonito Basecaller tool. We did NVProf

analysis for the Bonito Basecaller tool. The main hotspot

functions were found to be CUDA kernel launcher, kernel

synchronizer functions, and GEneral Matrix to Matrix Multi-

plication (GEMM) functions, which are a critical part of neural

networks (Bonito Basecaller uses a pre-trained network).

B. GPU-Awareness for Containerized Tools

We used the Racon-GPU tool and the Alzheimers NFL

Dataset for testing the GPU support for containerized tools.

We experimented with the same parameters and settings to

compare the bare-metal and containerized version of Racon

to infer the container launching overhead and the speedup

between the CPU and GPU-aware containerized execution of

Racon. We created a Racon-GPU Docker container that can

Case 1: 
2 Different 

Tools

Multi-GPU Support

Case 2: 
2 Instance 
Same tool

GPU PID P. Name P. Mem.

0 27755 Racon 60 MiB

1 27039 Bonito 2731 MiB

GPU PID P. Name P. Mem.

0 26901 Bonito 2281 MiB

1 26427 Bonito 3295 MiB

Figure 8. Multi-GPU support Cases 1 and 2.
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Multi-GPU Support

Case 4: 
4 Instance Same 

tool (P. Mem)

Case 3: 
4 Instance 

Same tool (PID)

GPU PID P. Name P. Mem
0 39953 Racon 60 MiB
0 41105 Racon 60 MiB
0 41872 Racon 60 MiB
1 40534 Racon 60 MiB
1 41105 Racon 60 MiB
1 41872 Racon 60 MiB

GPU PID P. Name P. Mem.

0 43244 Racon 60 MiB

0 46137 Bonito 2494 MiB

1 45751 Bonito 2821 MiB

Figure 9. Multi-GPU support Cases 3 and 4.

Figure 10. Multi-GPU support Case 1 console output.

be accessed online [8], or can be pulled using the “docker

pull gulsumgudukbay/racon dockerfile” command. We used

this container as a requirement in the tool wrapper. For the

Racon experiments that did not use banding approximation, the

best performance configuration was with 2 CPU threads and

4 batches for accelerated GPU polishing. For the experiments

that used banding approximation, the best configuration was

using 2 CPU threads and 8 batches for accelerated GPU

polishing, as seen in Fig. 7. We compared the two best-

performing configuration performance numbers and calculated

that approximately 0.6s (36%) of the time was spent on

container launching and cold start overhead.

C. Multi-GPU-Aware Computation Mapping

To evaluate the multi-GPU-aware computation mapping,

we used both Racon-GPU and Bonito Basecaller tools and

executed different experiments with them on Galaxy.

Figure 11. Multi-GPU support Case 3 console output.

1) Case 1: Two Different Tools: This experiment involved

testing the most basic functionality of multi-GPU-aware com-

putation mapping, which is checking whether two jobs will

be scheduled to their own required devices. If a user specified

Device 0 as a compute requirement of the Racon tool and

Device 1 as a compute requirement of Bonito tool, the

experiment checked if the jobs were scheduled to their correct

GPUs. Fig. 8 shows this case under Case 1 along with the

“nvidia-smi” query output of the experiment, which shows the

processes and the GPUs allocated to them. Fig. 10 shows the

console output for this case. Racon process runs on GPU 0, and

the Bonito process runs on GPU 1, which indicated that the

basic functionality is working as intended. Therefore, we can

conclude that two different tools can be executed in parallel

in separate GPUs without performance degradation, running

in their original execution times.

2) Case 2: Two Instance of the Same Tool: This experiment

involved scheduling a second instance of the same tool to

another GPU if the first required GPU is busy with an instance

of the tool. If Bonito’s required GPU ID is 1, the instance

should be scheduled in Device 1. If another instance of Bonito

is started, with the same GPU ID 1, it will be scheduled to a

GPU that is not busy (GPU 0) as seen in Fig. 8 Case 2.

3) Case 3: Four instance of the Same Tool GPU Allocation
Using PID: This experiment involved executing more than

2 instances of the containerized Racon-GPU tool (showing

that both “PID GPU allocation” and “multi-GPU support for

containerized tools” are working). As can be observed from

Fig. 9 and the console output in Fig. 11, the scheduling works

as intended: the first Racon instance (PID 39953) is scheduled

to GPU 0, the second (PID 40534) to GPU 1, and then, since

both GPUs are busy, the upcoming processes with PIDs 41105

and 41872 are scattered to both GPUs.

4) Case 4: Four instance of the Same Tool GPU Allocation
Using Process Memory: This experiment involved executing

instances of both Racon and Bonito tools and then another in-

stance of Bonito. Fig. 9 Case 4 shows that Racon (PID 43244)

is scheduled to GPU 0, Bonito (PID 45751) is scheduled to

GPU 1, and the second instance of Bonito (PID 46137) is

scheduled to GPU 0. This is because, at the time that the

user executes a the second instance of Bonito, the GPU with

minimum memory usage was GPU 0 (with 60 MiB usage).

This case is a better approach than the previous one because

it allows more efficient device allocation than distributing the

3rd process to all GPUs and introducing multi-GPU overhead

for tools that do not have multi-GPU support.

VII. CONCLUSION

The explosion of parallel bioinformatics applications has

driven deployment platforms like HPC supercomputers and

public data centers to embrace GPUs as a part of their hard-

ware ecosystem. Nevertheless, the most popular bioinformatics

application framework, Galaxy, does not support GPU-based

applications. To fill this void, we design and test GYAN, an

enhanced version of Galaxy with GPU-support, which allows

the GPU-capable tools to execute in Galaxy. More specifically,

202



we added an intelligent GPU-aware computation mapping and

orchestration support to Galaxy, for researchers to execute the

tools in both CPU (or) GPU based on the tool requirements.

Furthermore, the GPU-aware computation mapping was ex-

tended to multi-GPU application mapping and orchestration.

Furthermore, we also enabled GPU containerization support

for both Docker and Singularity containers. We performed

experiments using two tools. Our experiments revealed that the

GPU support through GYAN leads to ∼2× improvement in

performance using the Racon-GPU tool with a 17 GB dataset,

and ∼50× improvement for the Bonito base calling tool.

Also, the intelligent multi-GPU-aware computation mapping

allowed us to efficiently allocate GPUs to jobs according to

the states/occupancy of each GPU and execute many instances

of different tools at the same time without degradation in

performance. GYAN’s source code will be open-sourced and

it will soon be merged to the public Galaxy’s repository.
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