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Abstract—Maximum likelihood based phylogenetic methods
score phylogenetic tree topologies comprising a set of molecular
sequences of the species under study, using statistical models of
evolution. The scoring procedure relies on storing intermediate
results at inner nodes of the tree during the tree traversal. This
induces comparatively high memory requirements compared to
less compute-intensive methods such as parsimony, for instance.

The memory requirements are particularly large for maximum
likelihood phylogenetic placement, as further intermediate results
should be stored at all branches of the tree to maximize
runtime performance. This has hindered numerous users of our
phylogenetic placement tool EPA-NG from performing placement
on large phylogenetic trees.

Here, we present an approach to reduce the memory footprint
of EPA-NG. Further, we have generalized our implementation and
integrated it into our phylogenetic likelihood library, libpll-2,
such that it can be used by other tools for phylogenetic inference.
On an empirical dataset, we were able to reduce the memory
requirements by up to 96% at the cost of increasing execution
times by �23 times. Hence, there exists a trade-off between
decreasing memory requirements and increasing execution times
which we investigate. When increasing the amount of memory
available for placement to a certain level, execution times are only
approximately 4 times lower for the most challenging dataset we
have tested. This now allows for conducting maximum likelihood
based placement on substantially larger trees within reasonable
times. Finally, we show that the active memory management ap-
proach introduces new challenges for parallelization and outline
possible solutions.

Index Terms—phylogenetics, phylogenetic placement, memory
management, parallelization

I. INTRODUCTION

As in most areas of molecular biology, there is also a

constant need to develop and adapt algorithms to the steadily

increasing data volume in molecular phylogenetics. Work on

scalability typically focuses on reducing the execution times

of respective data analysis tools, as this constitutes the primary

limiting factor for most analyses. However, depending on

the resources available, the memory requirements can also

constitute a limiting factor. Furthermore, high memory require-

ments can yield the deployment of hardware accelerators, such

This work was financially supported by the Klaus Tschira Foundation.

as General-Purpose Graphics Processing Units (GPGPUs),

challenging as such devices typically have less RAM available

than the host system. Even when access to high performance

computing systems is available, the memory requirements of

specific analyses can still be prohibitive. For example, third

generation sequencing will further increase the number of

available high length and high quality sequence assemblies,

up to and including whole genomes.

For likelihood-based phylogenetic inference (Maximum

Likelihood (ML) and Bayesian inference), improving memory

efficiency represents a particular challenge due to the way

we compute the likelihood on a phylogenetic tree. At each

internal node of the tree, we calculate a conditional likelihood

for each possible character state (typically DNA or protein

data) of a site in the underlying input Multiple Sequence

Alignment (MSA) and typically store it as a hard-to-compress

floating point value. Realistic models of nucleotide substitution

(e.g., the Γ model of rate heterogeneity [1] or other mixture

models) further increase the memory requirements as we need

to calculate and store conditional likelihood values for several

rates of evolution per state, internal node, and MSA site. The

data structure holding these conditional likelihoods at each

inner node of the tree is called Conditional Likelihood Vector

(CLV).

Apart from general phylogenetic tree inference, memory

efficiency becomes even more performance-critical in the

special case of likelihood-based ML phylogenetic placement

(henceforth simply denoted as placement), as implemented,

for instance, in our tool EPA-NG [2]. The goal of placement

is to identify a set of likely insertion locations on a given,

fixed reference phylogeny for a given query sequence. To

accelerate this process, EPA-NG calculates and stores CLVs

for all possible directions (i.e., all three outgoing branches) at

each internal node of the tree in memory. Note that most tree

search tools typically only store one CLV per node due to the

distinct pattern of likelihood calculations they conduct. This

memory organization in EPA-NG incurs a significant memory

overhead, making placement infeasible for large reference

trees [3], [4] containing thousands of sequences/species.
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Fig. 1. We illustrate a subtree of the phylogenetic tree during a recursion
step of the Felsenstein Pruning Algorithm (FPA). The Conditional Likelihood
Vector (CLV) index number of the nodes is displayed inside the nodes. In
the FPA step shown here, we combine the CLV information from the two
nodes labeled child 1 and child 2 in the parent node. After this step, the two
child node CLVs become obsolete. We repeat this recursion until we reach
and calculate the CLV of the root node (not shown, direction of root indicated
by arrow), that is then used to calculate the overall likelihood of the tree.

In previous work we have shown that the likelihood of a tree

with n leaves can be calculated using a minimum of log2(n)+
2 CLVs [5]. Based on this property, we conceived strategies

to reduce the overall memory requirements of ML likelihood

calculations at the cost of additional computations. However,

this approach was never integrated into our production-level

tools.

Here, we show how this memory saving technique can be

applied to placement and we outline its integration into our

production-level placement software EPA-NG. More specifi-

cally, we describe the necessary adaptations to the paralleliza-

tion approach of EPA-NG and we experimentally assess the

respective memory versus inference time trade-offs.

II. METHODS

The likelihood of a strictly binary tree is computed bottom-

up via a post order traversal, starting at the leaves of the tree

and moving toward the virtual root via the Felsenstein Pruning

Algorithm (FPA) [6]. The virtual root of the tree can be placed

into any position of any branch of the tree for the sake of

defining a traversal order. Its placement does not alter the

likelihood score of the tree as long as the substitution process

is time-reversible, which is the case for all standard statistical

models of evolution. Each step of the FPA operates on a small

subset of the overall tree, where the CLV of a parent node

is computed by accessing the CLVs of the two child nodes.

The parent CLV summarizes the data/signal contained in the

subtree it roots. When this recursive algorithm terminates at

the virtual root of the tree, the entries of the CLV(s) at the

virtual root are used to calculate the overall likelihood of the

tree. We illustrate one step in the FPA recursion in Fig. 1.

In standard phylogenetic likelihood implementations, mem-

ory is allocated for all CLVs visited during the FPA, that

is, at all inner nodes of the tree. This memory allocation

scheme yields ’good’ computational efficiency, as a large

fraction of CLVs can typically be reused in subsequent like-

lihood calculations, for instance, when only a part of the tree

topology has changed. However, this comes at the expense

of an increased memory footprint. In general, this trade-off is

justified taking into account the input data sizes of typical

phylogenetic analyses and the increasing amount of main

memory available in modern computers. However, as already

mentioned, for certain likelihood based tools there is pressing

need to offer alternative solutions that allow to explicitly limit

the amount of memory used by likelihood calculations. This

is particularly the case in EPA-NG which stores 3 ∗ (n − 2)
CLVs, compared to n−2 CLVs in most standard phylogenetic

tree inference programs. Note that, storing the CLVs clearly

dominates the memory requirements of all likelihood-based

phylogenetic inference tools.

A solution to reduce the number of CLVs that need to

be concurrently held in memory is to exploit the recursive

structure of the FPA. In particular, once a parent CLV has

been successfully computed from its child CLVs, the data held

by the children is no longer needed (hence the name ’pruning

algorithm’) to compute the overall likelihood of the specific,

fixed tree. Thus, the memory allocated to the children CLVs

can be overwritten by CLVs entries required at other internal

nodes. Hence, for a given tree topology and (virtual) root, there

exists some minimum required number of CLVs that need to

be held in memory. In [5], we have shown that this minimum

number of required CLVs is log2(n)+ 2 in the worst case for

a fully balanced binary tree with n leaves. We will henceforth

refer to this method as the logn approach.

Further, in [5] we described a data structure and a CLV

management approach, to dynamically determine which CLVs

to overwrite. Central to this is the concept of a slot, which

denotes the allocated memory that stores one CLV. Different

CLVs occupy this set of slots at different stages of the tree

traversal as induced by the FPA. Note that the number of

available slots does not need to be set to the minimum of

log2(n)+2, but can also be set to a larger value. In particular,

it can be set such that the CLV storage space corresponding to

the number of slots matches the amount of memory available

on the system. When CLVs can be reused between applications

of the FPA, which is the case for placement, providing more

memory than absolutely necessary reduces the number of

CLVs that have to be recomputed. In other words, the memory

versus runtime tradeoff can be tuned via the number of

available slots.

Here, we implement a generalized version of this Active

Management of CLVs (AMC) mechanism (described in more

detail in Section IV) into our free, open source library for

ML phylogenetic likelihood calculations libpll-2 on which

EPA-NG relies. By deploying this approach, the user can now
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set an approximate explicit limit for the memory footprint in in

EPA-NG. This allows for placing sequences on substantially

larger reference trees than before.

In placement, the goal is to find a set of most likely edge(s)

from a given Reference Tree (RT) that a Query Sequence (QS)

belongs to. When using the maximum likelihood approach to

placement, we calculate the likelihood of a QS placement as

the likelihood of the RT, extended at a given branch by the

QS. To save time, EPA-NG pre-calculates and stores the CLVs

for each possible insertion branch in the RT in memory. This

means that the placement of a QS comprises calculating (i)

one CLV summarising the signal from the insertion branch

for a specific insertion point along that branch, (ii) setting the

CLV at the newly added leaf, and (iii) using these two CLVs

to compute the placement likelihood.

While the above implementation exhibits good runtime

performance and facilitates parallelization (i.e., offers a high

degree of parallelism), it also requires a comparatively large

amount of main memory as we need to allocate memory for

all possible CLVs in the tree. To address this, we can apply

the logn approach to substantially reduce the peak memory

consumption of EPA-NG.

However, this comes at the cost of increased execution

times, as for each iteration over the tree, the per-branch CLVs

will have to be re-computed, potentially including the re-

computation of CLVs in the respective subtrees defined by

this branch. Further, using the logn approach to save memory

substantially complicates the parallel placement procedure

implemented in EPA-NG, as it relies on the assumption that

immediate random access to any desired CLV is available

at any time. To address this, we now split up the parallel

placement of QSs into blocks of RT branches. The CLVs for

the next branch block are pre-computed asynchronously, while

we work on placing QSs on the current branch block.

Another challenge with such an active CLV memory man-

agement approach is to minimize the general computational

overhead under memory constraints. EPA-NG utilizes addi-

tional memoization techniques, trading additional memory,

beyond the CLVs storage space, for increasing speed. More

specifically, we use a lookup table that contains constant,

precomputed placement results for every branch that allow

to rapidly pre-score putative placements. When executing

EPA-NG in default mode with memory saving disabled, this

lookup table already provides a substantial (�15 fold) speedup.

As we show in our experimental results, executing EPA-NG
with AMC, using this lookup table improves execution times

by up to �23 times (neotrop data). The reason for this is

straight-forward: when using pre-scoring heuristics, the only

time every QS is matched against every branch is during this

first phase. Branch block precomputation, if done for every

branch, has an extremely high computational cost compared

to the rest of the program. Thus, we can eliminate the vast

majority of the computational effort in the AMC case by using

the lookup table, as we will only have to utilize the branch

buffer precomputation for the second phase of placement,

where each QS only gets matched against a small set of

promising branches.

Incidentally, for the typical dataset and using the AMC

approach, using the lookup table will result in a dramatic

increase in speed. Thus, this lookup table should be used

whenever the memory constraints allow for it.

An additional parameter affecting runtime performance is

the number of QSs processed per iteration, called the chunk
size. EPA-NG processes QSs in blocks (i) to overlap I/O with

computations and (ii) to limit the impact of the sheer QS

data volume on the overall memory footprint. Note that a

comprehensive placement based analysis involves on the order

of 107 QSs or greater [7].

When AMC is enabled, using a larger chunk size de-

creases the number of times the CLVs of the tree need to

be recomputed, as the CLVs have to be recomputed at least

once per QS block. However, a higher QS block size also

means that there is less memory available for other data

structures. This is especially evident for large RT, as there

are internal intermediate datastructures that save results for

each combination of RT branch and QS, which can occupy a

significant fraction of the available memory (see Section V)

Hence, there is an additional trade-off to consider here.

III. RELATED WORK

The logn approach to performing the FPA was originally

implemented as proof-of-concept option in RAxML-Light,

where it enabled phylogenetic inference of trees comprising

more than 100, 000 leaves [8]. To our knowledge the only other

ML phylogenetics software that offers AMC is IQ-TREE
2 [9]. IQ-TREE 2 also explicitly uses the logn [5] approach.

With respect to placement software there are, to our knowl-

edge, no other programs that employ an active memory man-

agement strategy. Of those based on ML methods [2], [10]–

[12], only pplacer offers a dedicated option to handle input

data sets with large memory footprints. For large datasets,

the user can specify the location of a memory-mapped file,

which will be used for larger memory allocations, thereby

reducing the peak main memory consumption. Consequently,

the runtime performance of this approach depends on the

latency and bandwidth of the underlying file system.

For RAPPAS [12], the operation of the program is split up

into two phases. First, a database is constructed, involving the

calculation of posterior probabilities for ancestral sequences

on the given reference tree. For executing this step, the user

can chose among several ML phylogenetic inference programs.

Hence, the program choice directly influences the memory

requirements. The constructed database is then used in the

second phase to perform QS placement. While the database-

construction phase exhibits the overall peak memory con-

sumption, the intended use case is to build the database once

(perhaps on more powerful hardware), and to subsequently use

it to perform multiple placement runs on the same, fixed RT

represented by the database.

Finally, there exist several placement tools that do not rely

on ML methods [3], [4]. Characteristic for these programs

is their extremely low memory consumption, that is typically

220



several orders of magnitude lower than for ML methods. For

example, APPLES [3] is a distance-based approach that uses

least-squares minimization to determine the placement of a QS

on a RT. APPLES was used to perform placement on a tree

with 200, 000 leaves, by only using �4GiB of main memory.

The most recent addition to placement methods is

App-SpaM [4], which uses a phylogenetic distance based on

filtered spaced word matches [13].

IV. IMPLEMENTATION AND PARALLELIZATION

Our AMC implementation in libpll-2 comprises two

major components, which we illustrate in Fig. 2. The first

component is the mapping of a potentially large number of

global CLVs to a substantially smaller set of physical memory

locations available to hold them, called slots. This can be

efficiently implemented by using two arrays that map the

global index of a CLV to its slot index, and vice versa. When

a slot is currently not associated with a CLV index, or when

a given CLV index is not present in memory (not slotted ), we

use dedicated values to denote these special states.

The second major component is the mechanism for choosing

which slotted CLVs to overwrite. This slotted CLV overwriting

mechanism is in some ways analogous to cache line replace-

ment policies, but under additional constraints as we can not

overwrite any slotted CLV we wish, due to the tree traversal

order that defines the data access pattern. Hence, designing an

appropriate overwriting strategy is not trivial and can evidently

have implications on runtime performance. It is beneficial to

retain slotted CLVs that are probable to be accessed again

in the near future during subsequent likelihood calculations.

The overwriting strategy heavily depends on the order of

CLV operations which might be highly program-/algorithm-

specific. Thus, we have implemented a generic replacement

strategy interface via a set of callback functions that allow the

developer to fully customize how a slot is chosen/overwritten.

As default strategy, we have implemented an algorithm that

calculates the approximate cost for recomputing a given CLV,

and that chooses which to replace based on this cost. We

approximate the recomputation cost of a CLV as the number

of descendant leaves the CLV summarizes (i.e., the size of the

subtree).

Finally, an additional mechanism for maintaining consis-

tency is required which is called pinning. As mentioned before,

some intermediate CLVs must remain slotted/pinned to the

slots during the FPA that traverses the tree in post-order to

be able to compute the likelihood score. We illustrate this

mechanism via the tree shown in Fig. 1. We assume that we

have just calculated the CLV of node 2. Next, the FPA recurses

into the subtree rooted by node 3. However, we can not yet

discard the result stored at node 2, and thus need to pin the

associated memory slot as it will be required to compute the

CLV at node 4. The pinning mechanism can also be exploited

beyond a single tree traversal in order to retain and re-use

CLVs among successive tree traversals. However, care has to

be taken to not pin too many slots, as this could cause the FPA

to fail if an insufficient number of unpinned slots is available.

As EPA-NG operates on a static tree (i.e., the underlying RT

is fixed and does not change), we are able to utilize the CLVs

pinning mechanism between successive iterations over the tree

to minimize recomputation cost. This is of particular use for

the aforementioned branch block precomputation. Here, we

traverse the RT, and for each branch we visit, we recompute

the two CLVs at either end of the branch. To do so, we first

determine on which CLVs in the respective subtree defined

by that branch these depend, and consequently also have to

be computed. For the CLVs in the subtrees, we construct a

list of those that are currently slotted, along with a value

reflecting their approximate recomputation cost. From this list

we retrieve the entries with the highest recomputation cost,

and subsequently pin the corresponding CLVs to their slots.

We choose the number of slots we pin such that after this

high-cost CLV pinning step, the number of unpinned slots is

at least log2(n) + 2 (Section I), which ensures that we can

successfully execute the FPA.

The AMC strategy also has implications on the degree

to which we are able to effectively parallelize the code.

Normally, parallelization of placements is straight-forward:

we merely perform the core placement procedure for each

QS and branch pair to be evaluated via random accesses to

the corresponding precomputed CLVs. However, when the

AMC strategy is enabled, the number of these fine-grained

placement tasks is limited by the block of branches (subset

of branches in the RT) and corresponding CLVs available to

the current iteration. Further, making available in memory the

CLVs of the subsequent branch block is limited by the logn
limited FPA execution, which is all but straight-forward to

parallelize efficiently. As a consequence, this branch block

precomputation for the subsequent branch block can constitute

a bottleneck. This is especially true when we can not deploy

the preplacement lookup table (Section II). In this case, the

computational effort required to compute the CLVs of branch

blocks dominates the execution time.

V. EXPERIMENTAL SETUP AND RESULTS

We assessed the performance of EPA-NG with AMC en-

abled on 3 representative empirical datasets with distinct

characteristics. We list these datasets in Table I. In this table,

we show the number of leaves of the RT, the number of sites

in the alignment of the reference sequences with the QS, the

type of the underlying data (NT for nucleotide, AA for Amino

Acid), as well as the reference to the source of the data.

The neotrop dataset covers the QS number/volume dimen-

sion. This dataset was used to evaluate the microbiome of

neotropical soils, including a reference tree that was tailored

to the studied environment [7]. The corresponding reference

alignment and QSs are 16S rRNA nucleotide data, and their

95, 417 query sequences.

The serratus dataset aims to cover the alignment width and

resulting CLV-size dimension by using a reference alignment

with 10, 170 amino acid sites. This dataset was the result on

our work on the Serratus open science project [14] which

uncovered new sequence diversity from the Sequence Read
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Fig. 2. Illustration of the Conditional Likelihood Vector (CLV) management and replacement strategy. We show a snapshot of the CLV management data
structures. These include the cost of each CLV, which we approximate by the number of descendant nodes that the CLV summarizes (i.e., the nodes in the
subtree rooted by the CLV). We also show the mapping of CLV indexes to their locations in physical memory, called CLV slots. If a CLV has not been
assigned to a slot, it is marked by (-). For each slot, we also record if it is pinned, meaning that it can not be overwritten. Note that these illustrations
correspond to the tree shown in Fig. 1. On the left, we show the situation where CLV x has to be computed and stored, while we have not yet assigned a
physical memory location for x, and all slots are occupied. Thus, we need to invoke the overwriting strategy to select an appropriate slot among the unpinned
slots. The strategy is to select the slot occupied by the CLV with the smallest recomputation cost. On the right we show the result of this operation: we assign
x to the slot that previously belonged to the CLV with ID 0. Finally, we also mark this slot as pinned, as this example is part of FPA execution where x is
a current parent.

Archive [15]. More specifically, the reference alignment spans

546 sequences from the Coronaviridae virus family. Here,

the QSs only comprise 136 RdRP sequences from assembled

genomes that showed high sequence similarity to the Coron-

aviridae family.
Lastly, the pro ref dataset covers the RT-size dimension.

This dataset comprises the largest default RT from the

PICRUSt2 software, spanning 20, 000 reference sequences

[16]. To this, we added a set of 3, 333 16S QSs, sampled

from the wild blueberry rhizosphere [17].
All scripts and datasets used for our experiments are avail-

able online at: https://github.com/pbdas/memsaver-paper

TABLE I
DATASETS

Name leaves sites #QSs type reference
neotrop 512 4, 686 95, 417 NT [7]
serratus 546 10, 170 136 AA [14]
pro ref 20, 000 1, 582 3, 333 NT [16], [17]

A. Execution Time
To assess the memory versus runtime trade-offs of EPA-NG,

we used the PEWO testing framework [18]. In PEWO, we have

extended an already available workflow to measure the runtime

and the memory footprint with our new EPA-NG memory

saving mode.
In our tests, we evaluated how constraining the memory

available to EPA-NG increases overall execution times. We

performed placement on the datasets described in Table I

for different maximum memory settings (set by --maxmem)

in each run. Every --maxmem/dataset configuration was ex-

ecuted five times, and the results we show are calculated
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Fig. 3. Runtime characteristics of varying memory limitation settings
(--maxmem), relative to the fastest execution without active CLV manage-
ment (reference execution). The x-axis indicates the memory limitation setting
as a percentage of memory used by the reference execution. The y-axis
indicates the slowdown factor relative to the reference execution. The sharp
sudden decline in execution times occurs when the memory limit is large
enough to allow using the preplacement lookup table.

as the mean of all five runs, both for execution time and

memory footprint. Note also that PEWO limits individual

executions to one worker thread per run (i.e., --threads
1 for EPA-NG). We denote the fastest run using the default

EPA-NG parameters (i.e., with AMC disabled) as reference
run.

The results of these tests are shown in Fig. 3. In this

graph we show the fraction of memory used, compared to

the memory required by the reference run on the x-axis. On

the y-axis we show the execution time slowdown of each run,

relative to the reference run. For legibility we have scaled the
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y-axis using the binary logarithm.

Additionally, we show absolute execution time and memory

footprint values for these runs in Table II. Here we distinguish

between the reference runs which we mark O, the runs using

AMC to the fullest extent (i.e., with the greatest memory

limitation possible) marked F, and an intermediate setting

marked I. We chose the intermediate run such that it represents

the setting, unique to each dataset, for which we still observed

comparatively low execution times (i.e., before the execution

time rises sharply).

TABLE II
MEMORY FOOTPRINT AND EXECUTION TIME WITHOUT (O), WITH FULL

(F), AND WITH INTERMEDIATE (I) AMC

dataset time (s) memory (MiB)
O I F O I F

neotrop 160 165 3, 908 416 319 205
serratus 18 34 370 6, 344 875 258
pro ref 104 123 5, 134 8, 701 7, 600 3, 800

We observe two distinct characteristics.

Firstly, there is a high variance with respect to the lowest

possible memory footprint we can achieve. For the serratus

dataset we are able to reduce the memory footprint to 4% of

the reference run. In contrast, for the neotrop dataset we are

only able to decrease the memory footprint to 48.7% of the

reference run. This limitation of the lowest possible memory

setting is in part due to the QS chunk size (see Section II),

which, in this set of experiments, was set to the default value

of 5, 000 QS per chunk. A larger chunk size increases the

size of intermediate result structures, which EPA-NG allocates

proportionally to the number of QSs in each chunk. Thus,

decreasing the chunk size, that is, reducing the number of QS

that are processed in one pass over the tree allows to further

decrease the minimum required memory footprint, but at the

expense of increased execution time. We show this relationship

in Fig. 4.

Secondly, as we approach this minimum possible memory

footprint, there is a sharp, sudden increase in execution time.

This effect is caused by not being able to allocate the lookup

table memoization (Section II) any more when the available

memory does not allow for it.

To further showcase the previously mentioned impact of the

chunk size on both, the minimum possible memory footprint,

as well as the increase in execution time, we repeated the

above experiment using a chunk size of 500. For this additional

experiment we also repeated the reference runs using the lower

chunk size. We show the results of this test in Fig. 4. In

general, we observe an analogous behavior as for the initial

experiment. As expected, we now also observe a lower min-

imum memory footprint of �25% for both, the neotrop, and

pro ref data. We also observe that the increase in execution

time for the neotrop data remains largely unaltered. Both, in

this test, and the initial test, we measured a �23-fold increase

in execution times relative to the respective reference runs.

In contrast, for the pro ref data and a chunk size of 5, 000,
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Fig. 4. Runtime characteristics of varying memory limitation settings, using a
lower QS chunk size. The tests are identical to those presented in Fig. 3, with
the exception that the QS --chunk_size was lowered from the default of
5, 000, to 500. This illustrates the improved lowest possible memory footprint,
and the impact of chunk size on the memory footprint, as well as the execution
time.

we observe a �49 fold increase in the execution time over the

reference run. For the same data and with a chunk size of 500,

we observe a �90 fold increase in the execution time over its

reference run. To provide some perspective, this particular run

took �2.4 hours on a single core, which should not present an

issue to most users.

This substantial deviation between the behavior of the

neotrop and pro ref analyses is due to the large difference

in respective RTs sizes (512 versus 20, 000 taxa), as the latter

requires an increased number of CLV (re-)computations. The

results for the serratus data remain unchanged, as for both

chunk size settings, all QSs fit into a single chunk. Note

also that one pro ref datapoint shows both, a higher memory

consumption as well as a slightly increased execution time

compared to the reference run. We attribute this behavior to

imperfect memory consumption accounting of our implemen-

tation. This accounting is the basis of a memory budgeting

with which we determine the amount of resources we are able

to spend before exceeding the user set limit. Thus, a flaw

in this accounting can lead to a larger than desired memory

footprint. We intend to address this issue in the future.

Finally, as expected, execution times improve with in-

creasing memory available. Once the memory limit allows

allocating the lookup table memoization, the execution time

rapidly approaches the execution time of the reference run.

As described in Section II, computing the lookup table is

a one-time computational overhead. Subsequently it is used

to accelerate all QS pre-placement operations. Thus, if the

QSs of a chunk are pre-placed on a small common subset of

RT branches, the high computational overhead of successive

re-computations of reference CLVs is substantially reduced.

Analogously, if there is only one single QS chunk to be

processed, the run time impact of re-computing the CLVs in

the RT is less pronounced.
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B. Comparison with pplacer

Next, we showcase the capabilities of EPA-NG when

using AMC, compared to the closest competitor software

pplacer [11].

To our knowledge, pplacer is the only other ML phy-

logenetic placement software that offers an option to reduce

the memory footprint. pplacer does so by allocating a

significant part of the required memory using a memory-

mapped file, effectively extending the available main memory

by using disk space. This is an on/off approach, meaning it

does not allow the user to more finely control the impact on

execution time.

For our showcase test, we chose the two datasets that have

the highest memory footprint (serratus and pro ref). For both

datasets, EPA-NG requires more than 4GiB of memory, which

is a common main memory size for older personal laptops, and

which we believe represents a common limitation for users

with limited access to newer hardware. Thus, the goal of this

test was to show how limiting the memory to 4GiB affects the

execution times of EPA-NG and pplacer.

We show the results of this test in Fig. 5. We ran both

softwares using their default parameters, with the exception

of limiting the chunk size of EPA-NG to 500. We ran each

combination of dataset and placement tool both with and

without memory saving techniques enabled. As before, each

run was repeated five times, and we report the mean of the

runs. Arrows indicate the change in memory footprint and

execution time going from memory saving disabled to having

memory saving enabled.

We observe that, for the same data, EPA-NG performs sig-

nificantly better than pplacer in both memory consumption

and execution time, both for memory saving disabled and

enabled runs. With their memory saving enabled, pplacer
achieves a significant relative reduction in memory consump-

tion at a moderate cost in execution time. However, when

pplacer has memory saving enabled, its memory consump-

tion is �2-3 times higher than EPA-NG with its memory saving

techniques (AMC) disabled.

Regarding EPA-NG, as in previous tests, we again observe

the significant difference in the execution time impact of AMC

between the serratus and pro ref datasets.

C. Parallel Efficiency

Due to our adapted parallelization approach for the memory

saving option, we also re-evaluated the per-node Parallel

Efficiency (PE) of EPA-NG. For each dataset, we evaluated

the PE under three scenarios: limiting the memory as much as

possible (full ), limiting the memory such that the maximum

number of slots can be allocated (i.e., three CLVs per inner

node), resulting in approximately the same memory footprint

as without memory limitation (maxmem), and not limiting

the memory at all, that is, disabling the memory saving

mode (off ). Furthermore, we again choose the fastest out of

five runs run as the representative datapoint. We compare

the run time of each parallel configuration to the fastest

serial run under the same configuration. For the serial runs

under each of the above three configuration, we compiled a

dedicated version of EPA-NG under a setting that disables

any kind of multithreading (EPA_SERIAL=1 make ...).

We performed all tests on a shared memory system with 48
physical cores (two Intel® Xeon® Platinum 8260 Processors),

and 754GB total available RAM.

The results of the PE test are shown in Fig. 6. In this graph

we show the number of threads used in each run on the x-

axis. Note that, when AMC is enabled, the asynchronous CLV

precomputation means that we are using one additional worker

thread. Thus, results using the full or maxmem setting include

one additional thread. On the y-axis, we show the PE. To

calculate the PE, we first calculate the parallel speedup S(r)
of a run r with execution time T (r) as

S(r) =
T (s)

T (r)
(1)

where s denotes the serial run, and T (s) the execution time

of the serial run, respectively. Subsequently we calculate the

Parallel Efficiency (PE) E(r) of a run r as

E(r) =
S(r)

P (r)
(2)

where P (r) denotes the total number of threads/processors

utilized in the run.

When AMC is disabled, we observe similar results to our

previous evaluation of EPA-NG in [2]. Further, we observe

that PE improves with an increasing number of QS.

In contrast, when AMC is enabled, the PE decreases

substantially. This is due to the overhead of CLV recom-

putations for the branch buffer, which is only parallelized

insofar as running on a separate, asynchronous thread. The

goal of this parallelization approach was to overlap the CLV

computation for one branch block with the QS placement

computations of another branch block. The key limiting factor

is, that based on our experience with concurrent likelihood

calculations, parallelizing the CLV recomputation per se on

typical reference datasets, is difficult. Hence, the PE of such

an additional parallelization at this level is expected to be

sub-optimal. We nonetheless investigated the impact on PE

when using a version of libpll-2 that parallelizes CLV

calculations over individual sites of the reference alignment.

For this, we modified EPA-NG to perform the branch buffer

precomputation synchronously. In this version, we first use all
available worker threads for the CLV precomputation of one

block and subsequently use all worker threads to perform the

placement operations on this block. We show the results of

this test in Fig. 7.

Due to time constrains we were only able to obtain data for

the serratus dataset, which also presents the most promising

candidate for this type of parallelization scheme. For this

dataset we observe a significant improvement in PE. When

using 32 threads and the full mode, the asynchronous ap-

proach showed �4% PE, whereas our experimental approach

yields �16%. The maxmem setting performed nearly identical
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Fig. 7. Parallel efficiency using an experimental across-site parallelization
scheme to accelerate branch buffer precomputation. We measured the serratus
dataset, with varying memory limitation settings: no Active Management of
CLVs (AMC) (off), minimum memory AMC (full), and maximum memory
AMC (maxmem).

for 32 threads for both the asynchronous and experimental

approaches. However for the same number of threads and

when not using AMC, the asynchronous approach had a PE

of �10%, whereas the experimental approach achieved �8%.

Note however, that the serratus data presents the rather atypical

case of a very wide alignment. Wide alignments with a large

number of alignment sites are known to increase the efficiency

of the across-site parallelization approach we deploy.

In contrast, supplying too few sites per thread can be

detrimental to the overall execution time [19]. Our preliminary

results for combining the experimental parallelization suggest

the same behaviour for the neotrop dataset. With the neotrop

data and the full mode, we observed the run using 32 threads

to be �20% slower than the serial reference. Thus, we can

only recommend an across-site parallelization for sufficiently

wide alignments.

D. Verification

Both EPA-NG and libpll-2 include regression testing

to ensure the validity of any changes made to the code.
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Additionally, EPA-NG includes a suite of unit tests. We

executed all available tests for the versions of EPA-NG we

evaluated here, and found no fault or deviation from previous

results.

VI. CONCLUSION AND FUTURE WORK

In this work we presented the implementation of a novel

memory saving approach for likelihood-based placement by

example of EPA-NG. By default, this approach does not

require any sort of user intervention as the limit for the amount

of available memory is determined automatically by our pro-

gram. However, when the user desires to do so, he/she can

explicitly set a specific memory limit via a simple command

line option (--maxmem).
Thereby, we enable maximum likelihood based phyloge-

netic placement on large scale datasets under resource limita-

tions and/or on extremely large reference trees. We have shown

that, while in some cases, the slowdown of EPA-NG induced

by aggressive memory saving can be substantial, this only

presents the most extreme case. In particular, when the allotted

memory allows for using the EPA-NG memoization technique,

the memory saving to runtime trade-off is acceptable and

practical. For example, using the most aggressive memory

saving setting, when applied to the pro ref data, we are able

to reduce the memory footprint by �77%, increasing the

execution time to 2.4 hours. With the memoization technique

enabled, we are able to reduce the execution time to �6
minutes, while still reducing the memory footprint by �43%.

This holds in particular for large datasets where otherwise

using EPA-NG would merely not have been possible due to

memory limitations.
As we have generalized and implemented the CLV memory

management in our free, open source phylogenetic maximum

likelihood library libpll-2 [20], other likelihood-based

tools such as, for instance, RAxML-NG [19] can now also

deploy this technique.
In the future, we will exploit the new ability to explic-

itly decrease the memory footprint of EPA-NG for GPGPU

integration, as on-card memory is typically limited. We will

further investigate alternative options to improve the parallel

efficiency under the memory saving option.
Finally, we believe that there exists potential for further

improving the execution times under memory constraints, both

in terms of improving the memory saving-specific changes to

the parallelization strategy, as well as by using different (e.g.,

adaptive or machine learning based) replacement strategies.
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