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Abstract—Decompressing a file made by the gzip program
at an arbitrary location is in principle impossible, due to the
nature of the DEFLATE compression algorithm. Consequently,
no existing program can take advantage of parallelism to rapidly
decompress large gzip-compressed files. This is an unsatisfac-
tory bottleneck, especially for the analysis of large sequencing
data experiments. Here we propose a parallel algorithm and an
implementation, pugz, that performs fast and exact decompres-
sion of any text file. We show that pugz is an order of magnitude
faster than gunzip, and 5x faster than a highly-optimized
sequential implementation (libdeflate). We also study the
related problem of random access to compressed data. We give
simple models and experimental results that shed light on the
structure of gzip-compressed files containing DNA sequences.
Preliminary results show that random access to sequences within
a gzip-compressed FASTQ file is almost always feasible at low
compression levels, yet is approximate at higher compression
levels.

Index Terms—compression, bioinformatics, DNA sequences,
parallel algorithms

I. INTRODUCTION

The compression of genomic sequencing data continues to

be a busy research area, using fundamental techniques such

as Lempel-Ziv parsing [16], Burrows-Wheeler transform [5],

or de Bruijn graphs [2]. Despite many promising advances,

the most popular and practical program for compressing raw

sequencing data nowadays remains the Lempel-Ziv based

gzip program, arguably due to its speed and availability on all

systems. There exist parallel programs for speeding-up gzip
compression, e.g. pigz1. The underlying compression algo-

rithm of gzip, DEFLATE, easily lends itself to processing of

blocks of data concurrently.

However, the decompression aspects are more challenging

and have been less studied, leaving us with only sequential al-

gorithms. Investigating decompression would not be a pressing

matter if it was already an IO-bound operation, but actually

only around 30-50 MB of compressed data per second can be

processed by gunzip on a modern processor. This is much

below the 500 (resp. 100–200) MB/sec read throughput of

SATA solid-state (resp. mechanical) drives. In the near future,

the wide availability of NVMe solid-state drives will allow

for even faster reads, up to 3 GB/sec. Therefore a potential

1github.com/madler/pigz

slowdown of 1-2 orders of magnitudes exists at the beginning

of many tools, and in particular bioinformatics pipelines that

take compressed files as input.

If one could efficiently perform random accesses to content

in gzipped files, it would unlock multi-core decompression. As

a result, data would be streamed significantly faster than if it

was read from an uncompressed file. However, the DEFLATE

compression algorithm in gzip works in such a way that

accessing a random location does in principle require to read

the whole file up to the desired location. This is because

(1) variable-length blocks are created without any index nor

explicit block starts/ends, and (2) back-references are made

to strings that appear previously in the decompressed file,

which is the essence of Lempel-Ziv parsing. A more precise

description of DEFLATE is provided later in the article.

To build some intuition on why random access is hard, let

an example file contain n identical repetitions of a sentence

then followed by m identical repetitions of a completely

different sentence. Suppose that neither the sentences lengths,

n nor m are known. The compression algorithm in gzip uses

heuristics yet is very likely to always encode repetitions of the

sentences using back-references and not in clear form, except

at two locations: (i) the beginning of the file, and (ii) the

DEFLATE block(s) where the second sentence appears for

the first time. A random access towards the end of the file

would require to somehow obtain information that is present

only at location (ii). Yet, since this location cannot be easily

guessed, it is challenging to design a better strategy than to

fully decompress the file.

There exist techniques to create so-called ”blocked gzip”

files, i.e. files that are compressed as a sequence of small and

independent blocks. Such files can also contain an additional

index that enables random access and parallel decompression.

However as we will see in Section 2, these techniques are i)

not so wide-spread and ii) yield worse compression ratios.

In this work, we will focus on the parallel decompression

of files compressed by the gzip program. In bioinformatics,

virtually every tool that processes large amounts of raw

sequencing data begins by reading large .fastq.gz file(s).

We first present simple models to provide a general under-

standing of gzip compression. Parallel decompression would

be straightforward if one could perform decompression at
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random locations. We therefore start by studying the feasibility

of random access in compressed files, with a focus on files

containing DNA sequences. Random access turns out to be

challenging for files with high compression ratio. We thus

propose an alternative strategy via the design of a new, general-

purpose, exact and parallel gzip decompression algorithm

that can process any arbitrary ASCII file. We demonstrate

the usefulness of this algorithm by showing significant speed-

ups compared to the baseline method (gunzip) and a highly

optimized implementation (libdeflate).

II. RELATED WORKS

Several algorithms have been proposed for the compression

of genomic data (for a survey, see [6]). Yet, the most popular

solution arguably remains gzip. It achieves roughly a 3-

fold size reduction on files in the FASTQ format. While

files produced by gzip are not designed to make random

access efficient, there exists variants that permit this operation.

For instance, a modification of Lempel-Ziv parsing has been

proposed to support random access at the expense of slightly

lower compression ratio [10], but the gzip program does

not implement it. In the same spirit, the tabix/bgzip pro-

grams from the SAMtools/HTSlib project [12] create so-called

blocked files that are indexed and gzip-compatible2. One

can also create an index of blocks within a classical gzip-

compressed file for later faster access to random locations [11].

The index is created during an initial sequential decompression

of the whole file. This essentially solves random access, except

that the technique is not so widespread as it requires a separate

file or a different file format, and does not apply when one

only needs to read a given compressed file once. Anecdotally,

a majority of compressed files hosted in the Sequence Read

Archive repository and uploaded in 2018 are not compressed

in blocks.

Previous efforts have aimed to improve compression via

better algorithms or hardware acceleration, e.g. in [1], [14]. Ef-

ficient decompression has been relatively less studied, except

in the following works. A fine-grained hardware-accelerated

decompression algorithm achieves a 2x speedup compared

to gunzip [15]. A recent unpublished highly-optimized se-

quential implementation (libdeflate) achieves roughly a

3x speedup3. Perhaps the closest work to ours is an attempt

to recover corrupted DEFLATE-compressed files [3], [4]. It

is proposed that damaged gzip-compressed files containing

English text can be partially reconstructed from random loca-

tions. However, the bulk of the method hinges on frequency

analysis which does not directly translate to files containing

DNA, and also settles for lossy reconstruction.

III. DEFLATE ALGORITHM

A file compressed using gzip (or zlib) consists of a

header, a sequence of bytes compressed using the DEFLATE

algorithm, and a final checksum [8]. In this section we provide

a high-level description of DEFLATE, where many details

2blastedbio.blogspot.fr/2011/11/bgzf-blocked-bigger-better-gzip.html
3github.com/ebiggers/libdeflate

will be omitted [7]. Input data is partitioned into blocks,

that may or may not be compressed, depending on whether

the data is ccompressible. To simplify the exposition we

will consider (in this section only) the creation of a single

compressed block, which is performed in two stages. The

first stage is LZ77-style parsing, which encodes the input

data into a succession of literals (i.e. unmodified bytes) and

offset/length integer pairs, later denoted as matches, referring

to previous occurrences of decompressed characters. In the

original definition of LZ77 [16], the parsing has to be of the

form ”match-literal-match-literal-. . . ”, as follows.

Definition 1 (LZ77 parsing). Let s be a string. A LZ77 parsing

of s is a sequence of phrases p1, . . . , pz , where each pi is

a tuple consisting of two integers (offset and length) and a

character. The first phrase p1 encodes an empty match (0, 0)
along with the first character of s. If p1, . . . , pi−1 represent s
up to position j, then pi records the offset and length of the

longest prefix of s[j+1 . . .] that occurs in s[. . . j], along with

the character that immediately follows the prefix.

We now define a more general flavor that better abstracts

the product of DEFLATE.

Definition 2 (mixed LZ77-style parsing). Let s be a string, a

mixed LZ77-style parsing (mLZ) of s is a sequence p′1, . . . , p
′
z ,

where each p′i is either a single character of s or a pair of

offset/length integers that refers to a substring of s within

p′1, . . . , p
′
i−1.

LZ77 parsing can be seen as a special case of mLZ. In

DEFLATE, matches are of length between 3 and 258 bytes,

and are made within a sliding window of length 32 KB, i.e.

offsets are never larger than 32 KB.

The second stage of DEFLATE uses Huffman coding to

entropy-compress the output of the first stage. In practice,

DEFLATE uses two Huffman code trees, but going into more

details will not be necessary here. An important point however

is that Huffman compression is reset at the beginning of each

block. To summarize, we can abstract the compression process

as follows.

Algorithm 1 (DEFLATE compression). Let s be a string,

DEFLATE compression produces a Huffman-compressed rep-

resentation C from a mixed LZ77-style parsing of s.

Note that Algorithm 1 is not fully specified, as there are

multiple ways to encode a string as a mLZ (e.g. using more

literals at the expense of longer matches, or the opposite).

Decompression, however, is more straightforward.

DEFLATE decompression processes a stream of Huffman-

coded symbols, and writes decoded bytes into a circular buffer

of fixed size W = 32 KB, that we call context. A data byte is

simply appended to the buffer if it corresponds to a literal

value, otherwise a match is decoded by copying a certain

number of bytes from a previous position in the buffer.

Algorithm 2 (DEFLATE decompression). The algorithm

decompress(C,w) takes as input a representation of an
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entropy-compressed mixed LZ77-style parsing C, and a cir-

cular buffer w (context). While parsing C from left to right,

decoded literals are sequentially appended to w, and matches

are copied from previous positions in w.

In essence, gzip performs decompression by calling

decompress(C,w) on a stream of compressed data, using

an initially empty context w. Clearly the first phrase of C
needs to be a literal. And at the beginning of C, matches can

only copy characters from what was previously appended to

the context.

IV. FEASIBILITY OF RANDOM ACCESS

A. Problem statement

Random access could be performed into positions in the

original uncompressed file, or positions within the compressed

stream. In this article we will exclusively focus on the

latter. Performing decompression at a random location in

a DEFLATE stream requires the knowledge of two pieces

of information: the start position of a nearby block, and a

fully decompressed 32 KB context. We will later see that a

block position can be reliably guessed using exhaustive search.

Obtaining a decompressed context is the challenging part. We

formulate the problem as follows:

Problem 1 (Random access in DEFLATE stream). Given a

mixed LZ77-style parsing C corresponding to the compression

of an unknown string s, return the smallest possible integer i
and a context w such that decompress(C[i . . .], w) returns

a suffix of s.

Here, the input C can be thought as a suffix of a mLZ

produced by Definition 1. We allow a prefix of C to be

discarded, typically to avoid having to decompress any back-

reference to the (unknown) context that precedes C. Note

that the problem does not appear to be well-formulated, as

checking that the decoded string is indeed a suffix of s is not

possible without the knowledge of s. However, one can make

sure that there is no ambiguity as to how the output could

have been decompressed.

B. Undetermined context propagation technique

When starting decompression at a random location, reli-

ably guessing the contents of the context w that precedes

the decompression location does not appear to be a trivial

task. Therefore it makes sense to start with an undetermined
context, e.g. a context that consists only of question mark ’?’

characters, that we will call undetermined characters.

We postulate that for certain compressed files, running the

decompress procedure for a certain amount of time ends up

with decoded contexts that no longer contain undetermined

characters. On the one hand, back-references (matches) to

initially undetermined characters propagate those characters

into later contexts. On the other hand, characters that are

compressed as literal values contribute to making the current

context less undetermined, and are possibly propagated into

future contexts as well. Thus if sufficiently many literals are

produced by the compression algorithm, there is a chance

that any undetermined character no longer get back-referenced

after a sufficiently long decompression. An illustration of the

process is given in Figure 1.

C. Experimental test on random DNA

To further study the postulate above, we experimentally

created a random DNA string of length 1 Mbp and compressed

it with gzip at various compression levels. For each level we

ran decompress starting from the second compressed block,

using a fully undetermined context. At the default compression

level (-6), the average offset of matches is oa = 3602.

We then counted the number of undetermined decompressed

characters in non-overlapping windows of size oa. While

gzip uses a sliding window for back-references, using non-

overlapping windows more appropriately mimics the model

developed later in Section V-C.

We refer the reader to the top part of Figure 2, disregarding

for now the ”model” line. At the default and -4 compression

levels, after decompressing around 150*3600=540 KB of ran-

dom DNA compressed data, the proportion of undetermined

characters in a window vanishes. At compression level -9,

the percentage of undetermined characters eventually vanishes

after window index 790 (not shown in Figure 2). If no unde-

termined character remains, what is decompressed must be a

correct suffix. Thus, this experiment hints that the approach

proposed in Section IV-B provides a solution to Problem 1 on

files containing random DNA that were compressed with level

-4 and higher.

It may appear intriguing that at the lowest compression

levels (-1 to -3), the whole file starting from block 2 is

encoded using only matches and zero literals and thus solving

Problem 1 appears to be impossible. In fact this phenomenon

occurs also on much larger files (200 MB) containing random

DNA. However we will later see that the model proposed in

Section V-A explains this effect, and that it is not a critical

problem as we are mainly interested in FASTQ files. Indeed,

FASTQ files have a different structure than files containing

random DNA and their compression using gzip behaves

differently, as we see next.

D. Compression of FASTQ-like strings

The FASTQ format is a text file format that consists of

groups of four lines: a header, a DNA sequence, another

header, and a string of ASCII-encoded quality values. Since

DNA sequences are separated by headers and quality values,

compression of FASTQ files yield larger offsets than in files

containing only random DNA (i.e. as in Section IV-C). This

will have an impact on compression as, at least at the lowest

compression levels, gzip favor matches with small offsets

and may output literals instead of matches with large offsets.

We created a FASTQ-like string of length 150 MB by

repeating 150 random DNA characters followed by 300 ’x’

characters. Figure 2 (bottom) shows that, at the lowest com-

pression level, all DNA characters eventually become decom-

pressed as literals, but only after around 25 MB (> 7000oa) of
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????????????????
????????????????
????????????????
????????????????
????????????????

????B???A@95<058
@A3:?AA?????????
????????????????
????????????????
?????1????6?????
????????????????
????????????????
????????????????
????????????????
????????????????
????????????????
????????????????
...

@4@?????????????
????????????????
?????8452??99???
????????????GC?C
C????????????T??
?TA?????????????
AAAAAAC?????????
?????GT?????????
T???????T??????A
??????????A????C
??=?@D??????????
?G????????I???I?
...

DDDBDDDB9@<BDDDC
??CCCB???D??????
????????????????
???????????9652:
7982????????????
??CA?G?TTT??G??T
TATG?GAT?GAAG??G
GCGGG?C??GC?GCT?
CAACTATA????????
??GG?CAGCGTCT??C
GGGG???TGG?TC?GG
TG??TC ?????????
...

IGIGHHHEEHCEFF?F
EE?FEECACCCDCCDD
ECA@@B??????????
????????????????
???????12743?214
91??????????????
GTCATGCTCTT??AGC
CCA?C?ACC?TATCTC
TC?GCGAAAGACTTCC
ATGGTAGTACGGCTAT
AAAACAGAAAAGAAAA
CTCTTCCG?TATCTCT
...

Initial 32 KB 
undetermined
context

Block 0 (after
random access)

Block 1 Block 10 Block 50

Fig. 1. Illustration of the decompression process starting from a random location in a gzip-compressed FASTQ file. The location of the first following
block is determined. A 32 KB context is initialized, consisting of undetermined ’?’ characters. Then, all subsequent blocks are decompressed into literals and
back-references. Each back-reference copies characters from its 32 KB context. The first 192 bytes of a selection of compressed blocks are shown, on a real
Illumina FASTQ file. Subsequent blocks contain less and less undetermined characters, as more literals are decompressed and back-referenced.

decompressed data. Consequently, random access in FASTQ-

like files appears feasible at any compression level.

V. GZIP COMPRESSION OF DNA SEQUENCES

In this section, we provide simple models that explain our

observations from Section IV-C. Concretely, we will quantify

the number of literals emitted during gzip compression of

DNA sequences.

A. Simplified model for the compression of random DNA

Let us consider two blocks of random4 DNA of length

W each, and let us compress the second block using only

matches to the first one. The DEFLATE algorithm would

compress the second block using also matches within itself

or matches overlapping both blocks, but separating matches

between blocks will simplify the analysis. Under another

simplifying assumption that each position has an independent

chance to match, the probability that a match of length k
occurs at any given position in the second block is

pk = 1− (1− 1

4k
)W−k+1 ≈ 1− e−4−k(W−k+1)

by a Poisson approximation. The probability that all positions

in the second block have a match of length k is pW−k+1
k . For

the minimum matching length in gzip (k = 3) and its typical

context size (W = 215), pk ≥ 1 − 10−225 and pW−k+1
k ≥

1− (W −k+1)10−225 ≥ 1− 10−220 by Bernoulli inequality.

Therefore all positions in the second block have a match, with

probability essentially 1.

This model hints that a DEFLATE-based algorithm such as

gzip could in principle encode the suffix of a random DNA

4A random DNA model may appear inapplicable to files containing short
sequencing reads, but in fact previous studies have established that reads
are difficult to compress [6], in particular with gzip, making them behave
similarly to random data. To check this, we extracted 32 KB windows of
sequences positions 0, 1 MB and 20 MB of 10 Illumina datasets (from the Re-
sults section) and tested their randomness via compression [13]. All windows
except in 2 datasets showed compression ratios above 2.1 bits/character using
bzip2 -9, i.e. above a naive 2-bit conversion and indicating that the files
behave similarly to random sequences. The remaining windows in 2 datasets
compressed to respectively 1.7 and 1.9 bits/character but the corresponding
reads had low GC-content and adapter sequences, respectively.

string using only matches of length 3 or more, i.e. without

emitting any literal after some point. In such a scenario,

Problem 1 would seem impossible to solve. This is indeed

what we had observed in Section IV-C when a random DNA

string is encoded using gzip -1 (lowest compression level).

B. Non-greedy parsing

Fortunately, gzip attempts to maximize compression ratio

and sometimes uses literals instead of matches. It can indeed

be less costly to emit a couple literals, say 3 literals encoded

using 4 bits each (12 bits total), as opposed to a short match

that has a large offset, say 32000, that would require around 16
bits to be encoded in the worst case. While this effect would be

interesting to model, we turn our attention to another related

property of the DEFLATE algorithm called lazy matching [7]

or non-greedy parsing (as analyzed in [9]). This is a strategy

that improves compression by favoring longer matches.

Algorithm 3 (non-greedy parsing [7]). The mLZ of a string

s is constructed sequentially, by induction, considering the

following cases. If the maximal length of a match at position

i is l, but the maximal length of a match at position i+ 1 is

l2 > l, then emit literal s[i] followed by one of the longest

match(es) at position i + 1 and advance in s by l2 positions.

If not, emit a match at position i if one exists (and advance

by l positions), otherwise emit the literal s[i] and advance by

one position.

For DNA sequences, as we will see next, non-greedy parsing

turns out to greatly increase the number of literals being

emitted during the compression. In gzip, it is always used

except in the three lowest compression modes (flags -1, -2,

or -3).

C. Compression of random DNA under non-greedy parsing

Keeping our previous compression model of two blocks

of random DNA, along with the assumption that matches

occur independently, let p� be the probability of a literal being

emitted at a given position under non-greedy parsing. Using
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Fig. 2. Counting undetermined characters in the decompression stream of
gzip-compressed files: random DNA (top) and FASTQ-like with random
DNA sequences (bottom). Files were decompressed from block 2 starting
with an undetermined context. In the first four lines of the legend, the x axis
corresponds to indices of non-overlapping windows of average offset length
oa. The y axis corresponds to the percentage of undetermined characters in
a window. The ’model’ line corresponds to our idealized non-greedy parsing
model developed in Section V-C: here the x axis corresponds to indices i and
the y axis are the values (1− Li).

a decomposition into disjoint events depending on the length

of the first match,

p� =
∑

k≥3

pk(1− pk+1)pk+1

where pk(1−pk+1) is the probability that the current position

has a maximal match of length k, and pk+1 the probability that

a match of length at least (k+ 1) occurs at the next position.

Given an average match length la, an experimentally-verified

approximation for the number of literals being emitted due

to non-greedy parsing is E� = p�W/(la + 2), guided by the

intuition that on average only one position out of la+1 will be

available for matching, and non-greedy parsing adds one literal

(hence the term la + 2). For W = 215 and la experimentally

determined to be 7.6, E� ≈ 1283. Thus in our model, around

E�/W = 4% of characters would be encoded in the second

block as literals.

Currently our compression model has only two blocks.

Consider an extension to n blocks, still with matches restricted

to within a block before the current one. How many literals or

copies of literals would make up subsequent blocks? Let Li be

percentage of literals or copies of literals at block 1 ≤ i ≤ n.

Our previous estimations gave L1 = E�/W . Suppose that any

subsequent block is compressed using E� literals due to non-

greedy parsing, and the remaining characters are independently

sampled from the previous block. Then we obtain a classic

arithmetic progression:

Li+1 =
E� + (W − E�)Li

W
= L1 + (1− L1)Li

= 1− (1− L1)
i+1

Therefore under this simplified non-greedy parsing model in

the compression of random DNA, the number of characters

that are not copies of literals decreases exponentially.

D. Experimental validation

We now refer the reader to the ”model” line of the top part

of Figure 2, which plots the proportion (1 − Li) of undeter-

mined characters remaining within a window, using L1 = 4%.

We notice that this non-greedy parsing model fits reasonably

well the actual behavior of gzip at the default compression

level. As a side note, the maximum compression level (-9)

produces matches of higher average offset (o′a = 12755) that

also fit our non-greedy model (data not shown).

VI. ALGORITHM AND IMPLEMENTATION DETAILS

So far, it appears possible to (i) extract suffixes from a ran-

dom location in a gzip-compressed FASTQ file, which would

lead to (ii) decompress whole gzip-compressed FASTQ files

and possibly even arbitrary files efficiently in parallel. In this

section, we describe two key components to achieve these

goals: robust detection DEFLATE block start positions, and

a heuristic algorithm that extracts DNA sequences from a

decompressed DEFLATE block. And finally we will describe

a general parallel decompression algorithm.

A. Detection of DEFLATE block start positions

DEFLATE blocks that make up a gzip-compressed file

are neither indexed nor aligned on byte boundaries. Therefore

they can occur at any bit offset. Once a block start position

is known, decompressing the block gives the bit position of

the next block. Hence once the position of an initial block

is determined, the rest of the file can be decompressed. Our

strategy consists in trying to run the decompression routine

from every bit position. Each time the decompression of a

putative block fails, we backtrack to the next bit that follows

the start position of the failed block. From a performance

standpoint, it is important to fail early and as quickly as

possible. We implemented a set of stringent checks (see
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Appendix X-A), and used branch probability hints to guide

the C++ compiler.

Once a block decompression succeeds, we decompress five

more blocks to confirm that we are effectively synced to the

DEFLATE stream. A failure to do so would backtrack to the

bit after the first decompressed block. Overall this strategy

robustly finds the next block start position after a certain bit

offset, in around 100–300 milliseconds.

B. Heuristic determination of sequence-resolved blocks

We provide a prototype software implementation that per-

forms random access to DNA sequences in a compressed

FASTQ file: https://github.com/rchikhi/fqgz. The implemen-

tation uses a heuristic linear-time procedure to extract DNA-

like segments from a decompressed FASTQ file block that

still contains undetermined characters. For details, see Ap-

pendix X-B.

A gzip-compressed block is said to be sequence-resolved
if the parser returns sufficiently many sequences (determined

by a fixed threshold), and none of these sequences contain

an undetermined character. There may still be undetermined

characters elsewhere in the block, i.e. in headers and/or quality

values. We note also that our current implementation may,

in pathological cases, (1) wrongly determine that a block

is sequence-resolved or (2) fail to recognize that a block is

sequence-resolved. Note also that subsequent blocks follow-

ing a sequence-resolved block are not necessarily sequence-

resolved.

In practice, none of the above problems are critical as

the implementation will only be used to estimate, in Sec-

tion VII-A, whether undetermined nucleotides remain in DNA

sequences long after a random access is performed using an

undetermined context. In its current state, the implementation

is not a robust FASTQ parser. However, it is suitable for

forensics applications, e.g. when dealing with data corruption

in compressed FASTQ files.

As random access appears to be a challenging task, we now

turn to a different strategy for whole-file decompression.

C. Full file decompression in two passes (pugz)

To decompress a gzip file in parallel, we propose an exact

and general-purpose parallel decompression algorithm. It is

based on breaking the compressed file at block boundaries,

into n ≥ 2 roughly equal parts C1, . . . , Cn.

So far we have considered that, in a random access setting,

the initial context of a block should contain repetitions of

the same undetermined character (as per Section IV-B). We

propose here a finer technique that consists in representing

the initial context using a sequence of unique symbols ŵ =
[U0, . . . , U32767], allowing to keep track of their propagation

when back-referenced by matches in the decompressed stream.

This special context encoding can be leveraged to design

a parallel decompression algorithm in two passes. During

the first pass, the gzip-compressed file is decompressed in

parallel on n ≥ 2 threads but no character is output. The origin

of all back-referenced characters is recorded, and traced back

to the initial context of the thread.

Formally, each thread i ≥ 0 runs decompress(Ci, ŵi),
yielding decompressed text Di. Let wi+1 be the last 32 KB

characters of Di. The idea is that symbols in wi+1 can be used

to resolve the initially unknown context ˆwi+1 that was given to

thread i+1. In particular, observe that thread 0 produces a suf-

fix w1 that does not contain any undetermined character. But in

general, wi+1 may contain undetermined characters for i ≥ 1.

This is why we need a second pass, where for i = 2 . . . n,

a sequential replacement of all undetermined characters in wi

is performed using characters from wi−1. Then, after all the

wi for i ≥ 1 no longer contain any undetermined character,

in parallel each thread i ≥ 1 replaces occurrences of symbol

Uj in Di by wi[j] for all 0 ≤ j ≤ 32767, yielding the fully

decompressed file.

See Figure 3 for an illustration. While this scheme requires

holding the whole decompressed stream in memory before

translation, it enables the parallel decompression of any kind

of data without relying on heuristics or prior knowledge of

the file structure (unlike our FASTQ heuristic). The memory

requirements can be reduced by processing in parallel only

a portion of the file at a time. A software implementation,

created by modifying an existing highly-optimized single-

threaded software (libdeflate), is available at: https://

github.com/Piezoid/pugz.

VII. EXPERIMENTAL RESULTS

We downloaded 192.8 GB of compressed FASTQ files (100

files) from the European Nucleotide Archive. The first file of

each of the latest experiments posted in ftp://ftp.sra.ebi.ac.uk/

vol1/ as of April 2018 was selected, excluding files below 200

MB. We also excluded special blocked/multi-part gzip files,

as they are currently not handled by neither libdeflate nor

pugz, but this is only due to an unimplemented special case

in DEFLATE decompression. The list of files is available in

our Github repository. Experiments were run on a 2x12-core

2.3 GHz Xeon E5-2670 v3 machine, 512 GB of RAM, NAS

storage.

A. Success rate of decompressing at random location

We investigated whether one could retrieve all sequences

after decompressing at a random location in a compressed

FASTQ file. This is a slightly easier flavor of Problem 1, as

it focuses only on the DNA sequences inside a FASTQ file,

disregarding headers and quality values. We first noticed that

the compression level of a file plays a critical role. Therefore

we partitioned our dataset into three compression levels,

according to the UNIX ’file’ command: lowest (e.g. likely

the result of gzip -1), normal (any parameter between -2
and -8, usually -6), and highest (gzip -9). Note that other

gzip-compatible compressors may report a compression level

that does not match the performance of gzip.

Table I summarizes the results. At the lowest compres-

sion level, virtually no sequence after a sequence-resolved

block contains undetermined characters. Only in two files
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Thread 0

Thread 1

Thread 2

Thread 1

Thread 2

First pass: 
decompression

with undetermined
symbols

Second pass: 
resolving

undetermined
symbols

0 Decompressed stream postion

Back-references to 
undetermined symbols

Fig. 3. Two passes decompression (pugz). The first pass decompresses each part of the gzip file in parallel with initially undetermined windows ŵ
containing unique symbols, for tracking back-references. The second pass resolves theses back-references with the initial context obtained from the previous
part in the decompressed stream.

Dataset Random access to sequences
Compress.

level

Number

of files
Total size

(GB)

Delay to sequence-

resolved block (MB)

Unambiguous

sequences (%)
Lowest 26 53.8 52.4 ± 55.8 100.0 ± 0.0
Normal 68 111.8 387.5 ± 731.6 72.5 ± 37.6
Highest 6 27.2 1,292.6 ± 1,531.9 36.8 ± 45.2
Total 100 192.8 317.8 ± 703.7 77.5 ± 36.5

TABLE I

COMPRESSION LEVEL, NUMBER AND SIZE OF FILES IN OUR DATASET. We
performed random access decompression of sequences as per Section VI-B
at 4 different locations in each file: 1

4
th, 1

3
rd, 1

2
th, and 2

3
rd of the total file

size, each time until the end of the file. ”Delay to sequence-resolved block”
reports the average number of bytes decompressed until a sequence-resolved

block is found. ”Unambiguous sequences” gives the percentage of
sequences without any undetermined character returned by the heuristic

parser after the first sequence-resolved block.

(ERA966074 and ERA990245), a dozen of sequences out

of respectively 11 and 27 million contain undetermined nu-

cleotides. Therefore, one can perform virtually exact random

accesses to low-compression files, requiring only around 52

MB of decompression to ’prime’ the context.

However at the normal and highest compression levels, only

respectively 72% and 37% of sequences on average are fully

determined after a sequence-resolved block. This is likely due

to back-references that occur between DNA sequences and

quality sequences or headers, which can also harbor DNA

characters. At the normal compression level, in 48% of the files

(data not shown), nearly all returned sequences (99.9–100%)

are unambiguous. For the rest of the files, either no sequence-

resolved block is found or a variable fraction of sequences

contain undetermined characters.

B. Propagation of initial contexts

To further understand why some FASTQ files lend them-

selves to random access decompression and some do not, we

instrumented our implementation to track how far characters

from the initial undetermined context travel along matches.

We also compared the undetermined context with the cor-

responding actual context and annotated each character by

type: DNA, quality value, sequence header, or quality header

(usually just the ’+’ character). Figure 4 shows two instances

of FASTQ files being decompressed from a random location.

We observe that in the top plot (normal compression), none

Method gunzip libdeflate pugz, 32 threads
Speed (MB/s) 37 118 611

TABLE II
DECOMPRESSION SPEEDS (MEGABYTE OF COMPRESSED DATA PER

SECOND) FOR SEQUENTIAL AND PARALLEL GZIP-COMPATIBLE

SOFTWARE. The 3 first FASTQ files of experiments ERA970963,
ERA973411 and ERA981545 were preloaded into memory and

decompressed three times each. The average wall-clock time over
compressed file size was recorded.

of the initial context characters that encode DNA sequences

remain in matches after around position 221 in the decoded

stream; but a small amount of quality values do. Some headers

characters remain until the end of the file. In other files with

normal compression levels, none of the quality values from

the initial context remain until the end of the file (data not

shown). However, in the bottom plot (highest compression),

parts of the DNA sequences remain in matches until the end

of the file. This is likely due to gzip trying harder at finding

long/far matches instead of outputting literals.

C. Parallel decompression speed

We performed parallel decompression of three FASTQ files

(of sizes 3–7.5 GB) at normal compression level. The files

were preloaded into system memory to avoid IO bottlenecks:

the purpose of this benchmark is to compare pure decompres-

sion speeds of gunzip, libdeflate, and pugz. We ran

pugz using 32 threads; gunzip and libdeflate cannot

be multi-threaded.

We further observed that synchronizing outputs between

threads, or piping to wc, degrades performance (10–20%).

Therefore we redirected all outputs to /dev/null. For

pugz, we allowed each thread to write to the output without

synchronization, to mimic the behavior of a FASTQ parser (as

in some applications, the order of the reads is irrelevant).

Table II shows that pugz is 16.5x faster than gunzip and

5.2x faster than libdeflate. Figure 5 shows parallel scaling

performance.

VIII. DISCUSSION

We developed the first parallel decompression algorithm

for gzip-compressed ASCII files. Note that the current im-

plementation requires the whole decompressed file to reside
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Fig. 4. Number and type of characters copied from an initial context
during decompression of two gzip-compressed FASTQ files, starting from
a location inside the file. Characters are counted in sliding windows of
size 32 KB. The analyzed files are (top) DRC_BKV_01_R1.fastq.gz
(normal compression) from ERA972077 decompressed at offset 160 MB, and
(bottom) CNC_CasAF3_CRI1strepeat_rep1_R1.fastq.gz (highest
compression) from ERA987833, decompressed at offset 210 MB.

in memory, yet further engineering efforts could lift this

limitation with little projected impact on performance. It also

does not compute cyclic redundancy check (CRC32), nor

handle multi-part gzip files. Furthermore, it may be possible

to decompress non-ASCII (binary) files, but this would require

more careful determination of block boundaries.

We also demonstrated for the first time the decompression of

sequences at random locations in gzip-compressed FASTQ

files. The method is near-exact at low compression levels,

but often a large fraction of sequences contains undetermined

characters at higher compression levels. This is due to long

chains of back-references that trace back to the initial 32 KB

context containing undetermined characters. It did not escape

our attention that guessing those undetermined characters

could be possible, but we did not yet explore this direction.
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Fig. 5. Decompression speed of pugz when executed with 2–32 threads
compared to gzip, libdeflate, and the command cat as an upper bound.
Lines show mean bandwidth while error bars represent standard deviation.
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X. APPENDIX

A. DEFLATE block decompression checks

• The first bit of the block needs to be 0, indicating that it

is not the last block in the stream. This implies that we

will never seek to the very last block.

• The next two bits encoded the block type, but there are

only three valid types: the remaining 2-bit code is invalid.

• The next bits may contain a dynamic Huffman tree, where

the encoding may be invalid in different ways.

• A decompressed block may only contain valid ASCII

characters.

• Invalid back-references with an offset exceeding the con-

text size (32 KiB)

• Decompressed block should be larger than 1 KiB and

smaller than 4 MiB.

B. Heuristic extraction of DNA sequences in DEFLATE block

Given a decompressed block, the procedure returns all

maximal non-overlapping substrings that match the follow-

ing grammar: TD+(U+D+)∗T , where T is a newline or

undetermined character, D is a nucleotide (A,C,T,G,N), U
is an undetermined character, and the notations X+ (resp.

X∗) classically represents a non-empty (resp. possibly empty)

sequence of consecutive X’s.

The leading and trailing T characters of each sequence are

removed from the results, but are needed to filter out parts of

quality sequences that look like DNA. In the implementation,

matches shorter than a minimum read length are discarded,

and a special case is needed to handle sequences that span

two blocks.

Some of the false positive sequences returned by the parser

can be trivially detected and removed on files where reads all

have the same lengths. However, due to possible matches to a

DNA sequence from quality sequences or even headers (both

of which often contain undetermined characters), a sequence

may have undetermined characters even after a sequence-

resolved block.

217


