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Abstract—With recent improvements in DNA sequencing tech-
nologies, the amount of genetic data available for analysis has
grown rapidly. The increasing size of datasets has created
a demand for high performance implementations capable of
processing and analyzing data in a timely manner. In addition,
rapid growth in genetic data has also led to the development
of more accurate analysis techniques used in DNA forensics and
law enforcement. At the heart of some analyses is the comparison
of single nucleotide polymorphisms (SNPs) to detect the absence
and/or presence of minor alleles, which has been shown to be
similar to matrix-matrix multiplication from the domain of dense
linear algebra. This similarity suggests that SNP comparison is
embarrassingly parallel and may perform well on GPUs. In this
paper, we present a portable GPU framework that allows us to
leverage the CPU algorithm on GPUs to perform SNP compar-
isons. We demonstrate that with minor parameter changes to
the framework, SNP comparison can be ported onto a variety of
GPU platforms from both AMD and NVIDIA. In addition, we
provide a model for defining the new parameters for a given
GPU. Finally, we demonstrate performance portability across
multiple GPU architectures where end-to-end (data transfer +
computation) execution time is between 47% and 677% faster
than a CPU implementation that is close to the theoretical peak
of the CPU, and the kernel execution attains between 55% to
97% of the theoretical peak throughput of each specific GPU
architecture.

Index Terms—linkage disequilibrium; population genetics;
dense linear algebra; matrix multiplication; GPUs; FastID

I. INTRODUCTION

Advances in sequencing technology have made available a

large and increasing amount of genetic data, which in turn

has facilitated advancements in population genetic studies of

human diseases identification [1] and more effective and per-

sonalized drug treatment [2] through genome-wide association

studies. Beyond population genomics studies, law enforce-

ment and forensics communities can also benefit from the

improvement in sequencing technology through the use of an

increasing number of single nucleotide polymorphisms (SNP)

per forensic sample. Greater amounts of DNA data paired with

increasing number of identities and forensic samples collected

(on the order of tens of millions profiles) in multiple law

enforcement databases can facilitate more detailed analysis

with increased accuracy [3]–[7].

The essence of the computation for both computational

biology and law enforcement is in the identification of the

presence or absence of minor alleles at each SNP site. In

addition, the expected increase in data availability suggest

that high throughput implementations for performing SNPs

comparisons are vital for efficient analysis.
Graphical processing units (GPUs), conventionally known

to perform matrix-matrix multiplication very efficiently, pos-

sess a large number of special functional units that can perform

the population count operation [8], [9], an important sub-

operation for SNP comparison. In addition, linkage disequi-

librium (LD) [10], a fundamental computation in population

genomics that requires SNP comparisons, can be cast in

term of specialized dense linear algebra operations where the

specific entries of the vectors and matrices are 0s and 1s [11].
These observations have been exploited in current work that

suggests using GPUs for SNP comparisons [12]. However,

such work typically focuses on a specific application domain,

and on the use of a specific GPU platform. They do not address

the portability of their approach across different problem

domains or different GPU platforms, especially across GPUs

from different hardware vendors. In addition, GPU frameworks

that support portability across different GPU platforms from

the same vendor (e.g. CUBLAS [13] and CUTLASS [14])

are restricted to traditional dense linear algebra computation.

Porting this platform to other application domains in order to

perform computations such as SNP comparison is currently not

supported. A third limitation is that existing high performance

libraries for population-based analysis such as PLINK [15] do

not support the use of GPUs.
In this work, we propose an OpenCL framework that

facilitates the computation of SNP comparison on different

GPU platforms. Specifically, we show that the CPU algorithm

for SNP comparison is amenable for computation on GPUs.

We specialized the OpenCL framework for higher performance

by allowing users to configure the framework through the use

of a configuration header file. Finally, we describe how the

values for the configuration parameters can be obtained from

the hardware features of the GPU platforms.
Contributions.

The specific contributions of this paper are as follows:

– Demonstration of the feasibility of performing SNP com-

parison using a CPU-based algorithm on general purpose

GPU architectures, where we show that the end-to-end

execution time (i.e. inclusive of data transfer) on the GPU

is still lower than the execution time on the CPU.

– A portable framework implementing SNP comparisons

across GPUs with different micro-architectures and be-
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Fig. 1. Difference in matrix shapes and sizes. The two input matrices for LD
are of the same size, whereas one matrix (the query) is often much smaller
than the other (database) for FastID comparisons. Darker colors represent the
output of the computation.

tween different vendors.

– A systematic approach identifying how software parame-

ters characterizing the SNP comparison algorithm can be

specialized for specific GPUs hardware features.

II. ALGORITHMS INVOLVING SNP COMPARISONS

In this section, we describe three algorithms, linkage dise-

quilibrium, identity search and mixture analysis, all of which

require SNP comparisons as a basis for their computation.

A. Linkage disequilibrium (LD)

Linkage disequilibrium, the non-random association of alle-

les at different loci, is a statistic of interest in genetic associa-

tion and population studies, since alleles in a given population

may change due to natural selection, demographic history, or

other genetic factors. The degree at which alleles at different

loci correlate may be a function of the underlying genetic

processes that structure a population. Alleles at different loci

are said to be in linkage equilibrium when the occurrence of

one does not affect the occurrence of another, which is to

say that the alleles are statistically independent and randomly

associated. Linkage disequilibrium between alleles a and b,
signified as DAB , can be computed as the difference between

the probability of both alleles occurring at a loci and the

product of the probability of each allele occurring at that loci,

or

DAB = pAB − pApB

Alachiotis et. al. [11] showed that LD can be cast in terms of

dense linear algebra, so the accumulated knowledge of the high

performance computing (HPC) community can be leveraged to

produce efficient implementations for computing LD. Where

general matrix multiply (GEMM) is of the form C = αAB+
βC, and each output value γ can be implemented as a dot

product in the form

γ = aT b,

each element of the pAB term of LD can be expressed as

γ = (a& b)T (a& b) (1)

B. FastID Identity Searching

Identity searching is the comparison of a suspect’s DNA

profile against a database of reference DNA profiles. FastID is

a newly developed method for performing rapid and scalable

analysis of forensic DNA samples through the use of SNP

comparisons [16]. Specifically, the FastID method compares

a small number of sample DNA sequences (known as the

“query”) against a known database of reference DNA profiles

that have been collected. Typical DNA comparison against

many DNA profiles is done in large datacenters, so provid-

ing fast and efficient implementations can reduce costs and

facilitate investigations.

The suspect’s DNA profile is compared against a reference

sample by using the exclusive OR (XOR) operation, denoted

as ⊕. Any differences between the samples will manifest

themselves as set bits in the result. The number of set bits in

the result is an indication of the likelihood that an input comes

from the suspect. No set bits in the result signifies a positive

match. Mathematically, identity search can be described as

γ = (a⊕ b)T (a⊕ b), (2)

where a and b are the binary vectors representing the input

SNP profiles. In this case, greater γ values indicate that it is

less likely that the individual is a match in the database.

C. FastID Mixture Analysis

Mixture analysis is the process of identifying the probability

that an individual is one of the many individuals whose DNAs

contribute to form the mixture of DNA profiles.

To perform this computation, the differences between the

individual and the mixture profile are first identified with the

exclusive OR (XOR) operation. The intermediate result is

then intersected (using the logical AND operation) with the

individual profile. The result represents minor alleles that are

present in the individual profile but not in the mixture. This

means that number of set bits in the result is inversely related

to the likelihood that the individual is part of the mixture.

Mathematically, we can express the mixture analysis as

γ = ((r ⊕m) & r)T ((r ⊕m) & r) (3)

where r is the reference profile and m is the mixture.

The above expression can further be simplified into the

following expression:

((r ⊕m) & r) ≡ r & ¬m.

The importance of this simplification is that there exist instruc-

tions on certain CPU and GPU architectures, that can perform

the negation of m as part of computing the logical AND

operation. This reduces the number of instructions required,

hence increasing the attainable throughput. Alternatively, on

architectures that do not support the fused negation-logical

AND operation, the mixture profile (m) can, in advance, be

negated and stored in the database. In this second scenario,

mixture analysis reduces down to the same computation as

linkage disequilibrium.
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Fig. 2. Example SNP matrix of bitvectors representing the presence or
absence of minor alleles where 1 represents the presence, and 0 represents
the absence of the minor allele. Reproduced with permissions from [11].

D. Comparisons of the algorithms

While each algorithm relies on SNP comparison as its basic

computation, the resulting matrix formulation of the problem

will result in different input matrix shapes. Specifically, typical

input matrices for linkage disequilibrium tend to be rectangular

with a small inner dimension, while the dimensions of the

output matrix are the large dimensions of the input matrices.

However, the input matrices for identity search and mixture

analysis are typically asymmetric in that one matrix (the

database of DNA profiles) is typically significantly larger than

the other (query) matrix. This difference in input shape is

highlighted in Figure 1.

The shapes of the input matrices are important since it

has been shown that different matrix-matrix multiplication

algorithms are optimized for different input matrix sizes [17],

[18]. The implication of the differences in input matrix shapes

is that the proposed portable framework must handle both

cases adequately.

III. HIGH PERFORMANCE LD ON CPUS

High performance linkage disequilibrium on the CPU can

be computed by casting the operation as a sequence of dense

linear algebra operations, where the bulk of the computation is

performed as part of a matrix-matrix multiplication [11]. The

authors also established the theoretical peak of SNP compar-

ison on a modern CPU by highlighting that the performance

bottleneck is the throughput of the population count operation,

a specific instruction that counts the number of set bits in a

word size (64 bits on a CPU).

In order to achieve high performance, this matrix-matrix

multiplication is specialized in the following manner:

– Input SNPs are converted into binary matrices that have

been packed, padded and stored as bit vectors (unsigned

long integers). Major alleles are encoded as 0s while

minor alleles (mutations) are captured as 1s in the binary

matrices. Each SNP is represented as consecutive bit

vectors. An example of such a matrix is given in Figure 2.

– Computation is also simplified by replacing the multipli-

cation and addition with a sequence of three operations,

4th loop around micro-kernel

3rd loop around micro-kernel

mR

mR

1

+=

+=

+=

+=

+=

kC

kC

mC mC

1

nR

kC

nR

Pack Ai → Ai
~

Pack Bp → Bp
~

nR

Ap

Bp
Cj

Ai
~ Bp

~

Bp
~Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

1st loop around micro-kernel

2nd loop around micro-kernel

micro-kernel

Ai

Fig. 3. BLIS framework for instantiating high performance matrix matrix
multiplication on traditional CPU architectures (Reproduced with permission
from the authors [20]). Architecture-specific parameters are captured in a
highly optimized micro-kernel and parameters for the loops around the micro-
kernel.

logical and (&), population count(POPC), and integer

addition (+), i.e.

γi,j = γi,j +
∑

k

POPC(αi,k & βk,j),

instead of the usual

γi,j = γi,j +
∑

k

αi,k × βk,j .

In addition, Alachiotis et. al. showed that the BLAS-like

instantiation framework (BLIS) [19] can be leveraged to easily

incorporate these changes to obtain high performance LD

implementations on the CPU. Specifically, the authors showed

that these changes are restricted to the micro-kernel in the

BLIS framework (Shown in Figure 3). By updating this micro-

kernel, a parallel LD implementation that attains between 80-

90% of the theoretical peak of the CPU can be obtained.

IV. SNP COMPARISONS ON GPUS

Our approach to performing SNP comparison on the GPU

is to map the BLIS framework onto the GPU. We start by

first casting a model GPU hardware abstraction onto the CPU

abstraction underlying BLIS. We then leverage the analytical

models in Low et. al. [21] to determine software parameters

that guide how the GPU kernel is to be written using the BLIS

framework.
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A. Model GPU architecture
In order for our framework to target different GPUs, it is first

necessary to define a model GPU architecture that captures

essential features of modern GPUs. Our assumptions about

the model GPU are as follows:

– Thread Group. Computations on the GPU are performed

using Ngrp different groups of threads. Specifically, each

thread group comprises of NT threads that execute the

same instruction at any given clock cycle. Thread groups

are know as warps and wavefronts on NVIDIA and AMD

GPUs, respectively.

– Compute Cores. A GPU is made up of NC computational

cores. Each core can perform its computation independent

of other compute cores. These compute cores are also

known as streaming multi-processors or compute units.

– Compute Clusters. Each compute core is organized in

terms of Ncl clusters of computation. Each of these

clusters can execute a group of threads independently,

which implies that Ncl groups of threads can execute

simultaneously on each core.

– Arithmetic Units. A compute cluster is comprised of

multiple arithmetic units. For a given instruction, there

exist Nfn arithmetic units that execute that specific

instruction. It is assumed that each of these arithmetic

units has a latency of Lfn cycles and can be effec-

tively pipelined through the use of Lfn different thread

groups. It is assumed that Nfn is different for different

instructions. To differentiate between different numbers

of arithmetic units, we use a superscript to denote the in-

structions. For example, N+
fn is the number of functional

units that can perform an addition. In addition, some of

these arithmetic units may compute more complicated

functions. We make the simplifying assumption that Lfn

is the same for all instructions.

– Shared Memory. Each compute core is assume to have

fast memory of Nshared bytes that is shared between all

thread groups that execute on the same compute core.

This fast memory is assume to be organized into Nb

banks that can be accessed in parallel. However, simul-

taneous accesses to different elements in the same bank

will cause a “bank conflict,” resulting in a serialization of

memory accesses and an associated drop in performance.

– Load/Store Architecture. It is assumed that data has to

be loaded from memory before they can be computed on.

In addition, each thread is assumed to be able to load and

store Nvec elements at the same time.

A pictorial representation of our model GPU architecture is

shown in Figure 4. It should be highlighted that an actual GPU

architecture is more complicated and contains more hardware

features than those captured by our model GPU architecture.

However, additional features are not necessary to achieve high

performance SNP comparison.

B. CPU / GPU abstractions
A commonly used abstraction for mapping GPUs to CPUs

is the SIMD/SIMT abstraction [22]. This prevalent abstraction

Fig. 4. Organization of the hardware features on the model GPU architecture.
The GPU above can be characterized by the following parameters: NC = 2,
Ncl = 3, and Nfn = 16.

between CPU and GPU highlights the conceptual similarity

between each thread group comprised of multiple threads that

execute the same instruction (hence, single instruction multiple

threads) and the single instruction multiple data (SIMD)

instructions on the CPU, where each instruction performs the

same operation on multiple pieces of data.

On a modern CPU, multiple SIMD instructions can be exe-

cuted at the same time due to the presence of multiple SIMD

functional units on the same CPU core. In addition, these

SIMD functional units on the CPU achieve peak performance

when they are pipelined. This means that sufficient number

of independent SIMD instructions must be issued to fill the

instruction pipelines to these functional units.

Since multiple thread groups can execute independently at

the same time on different computational clusters within the

same compute core, one could treat each computational cluster

on the GPU as a SIMD functional unit on the CPU. This

abstraction is enhanced when one considers pipelining of the

SIMD functional unit. Recall that in order to hide the latency

of the arithmetic units on the GPU, one has to rely on Lfn

different thread groups. As thread groups are the equivalent of

SIMD instructions, the equivalent of SIMD pipelining on the

GPU can be achieved when the outputs of the Lfn different

thread groups are independent.

The natural extension of the above abstractions is the

abstraction that views the GPU compute core as the equivalent

of the CPU core. Both CPU and GPU cores contain multiple

independent SIMD functional units/compute clusters.

C. Mapping BLIS onto the GPU

Using the CPU/GPU abstraction presented previously, we

now discuss how a GPU kernel for performing SNP com-

parison can be designed and implemented within the BLIS

framework.

Recall that GPU cores are the conceptual equivalent of

CPU cores. Within the BLIS framework, the cores partition

both the second and third loops around the micro-kernel

202



in a hierarchical fashion such that each core computes an

independent mc×nr tile of C [23]. Similarly, we assign tiles

of size mc × nr of C to each compute core on the GPU

by parallelizing the second and third loops around the micro-

kernel amongst the available GPU cores.
Each mc × nr tiles on a GPU core is further subdivided

into smaller tiles that are computed by each thread group

assigned to the GPU core. Recall that each GPU core is made

up of compute clusters, each of which executes multiple thread

groups. The mc × nr tiles is split into mr × (nr/Lfn) sub-

tiles, where each sub-tile is computed by multiplying two

input matrices of sizes mr × kc and kc × (nr/Lfn) together.

Thread groups “resident” to a compute cluster are assigned

sub-tiles in the same row, while thread groups that can execute

simultaneously are assigned sub-tiles from the same column.
The distribution of GPU cores between the second and

third loop is left as a parameter since different problems

may require different distribution of the GPU cores. This is

because problem sizes offer different amounts of parallelism

in each of the dimensions. For example, in mixture analysis,

the dimension corresponding to the number of profiles in the

database would have more parallelism than the dimension of

the queries. This would imply a more skewed distribution of

the cores to best utilize the available parallelism.

V. PORTABLE FRAMEWORK AND GPU SPECIALIZATION

Our SNP comparison framework is built on the

OpenCL [24] framework that allows us to easily port

the framework between GPUs. The use of OpenCL also

allows us to standardize the creation and initialization of

the various supported OpenCL devices. Standard operations

such as writing data from host memory to device memory,

compute kernels that operate on said data, and reading

results from device memory to host memory are handled in

a platform-independent manner within our framework using

OpenCL.
Specifically, our GPU framework implements the third

loop (and its content) around the micro-kernel of the BLIS

framework. This is implemented in terms of a parameterized

GPU kernel that first loads a tile of A into shared memory, then

computes assuming that A resides in shared memory while B
is read from main memory. Unlike BLIS which requires a cus-

tom hand-tuned micro-kernel for every architecture, our GPU

kernel is parameterized via C macros which are captured in a

header file. Performance is attained on the various GPUs by

specializing this GPU kernel based on the available hardware

resources and the problem being computed. Specifically, only

4 values are required for us to configure the framework for

different GPUs. These values are

mc, mr, kc and nr,

which are the corresponding values required by the BLIS

framework.

A. Mapping software configuration to hardware parameters
Each thread group on the GPU computes a output matrix

of mr× (nr/Lfn), stored in its local registers, by multiplying

the input matrix A that is mr × kc by the input matrix B
that is kc × (nr/Lfn). Each thread in a thread group can

load/store Nvec elements at the same time. This means that

mr (or nr/Lfn) should be a multiple of Nvec. To maximize

the reuse of the output matrix stored in registers, it is important

to maximize kc. For that reason, we choose to set

mr = Nvec. (4)

Recall that the block of A packed into shared memory is of

size mc×kc. As all thread groups will require A, and access to

the same element of A by different thread groups will result

in a degradation in performance due to bank conflicts, Ncl

compute clusters must simultaneously access different banks

of shared memory in order for all compute clusters to be able

to perform their computation. This implies that at most

mc =
Nb

Ncl
(5)

elements can be accessed by each of the Ncl compute clusters

without causing a bank conflict. In addition, as shared memory

is Nshared bytes, and each element is (by default) 4 bytes, kc
can be computed as follows:

kc =
Nshared

4Nb
. (6)

Given that mr elements are accessed by a thread, and

each cluster (and hence each thread group) has access to mc

elements of the matrix A, this means that each thread group

can be subdivided into mc/mr smaller subgroups of size

NTmr

mc
.

The size of this subgroup is important because it is also the

minimum number of elements of the B matrix that is required

to ensure that each thread computes a unique value of the

output matrix. As each thread can load Nvec elements, this

means that a total of

NTmr

mc
Nvec

elements of B is accessed by a single thread group. Finally,

Lfn thread groups have to be assigned to each compute cluster

to ensure that there are sufficient thread groups per compute

cluster to hide the latency of the arithmetic units. This implies

that the parameter, nr can be computed using the formula

nr ≥ NTmr

mc
NvecLfn (7)

Note that unlike the previous software parameters, Equa-

tion 7 is an inequality because this is highly dependent on the

compiler use of the available registers on the GPU. Ideally,

this value should be as large as possible without resulting in

register spilling. In practice, we set the upper bound of nr as

the number of registers divided by the total number of threads

used in each CPU core. By reducing the number of thread

groups, the amount of available resource is increased, and will

also result in a reduction in resource contention that could
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cause an associated drop in performance. This is consistent

with the observation by Volkov [25] that lower occupancy can

lead to higher performance.

It is important to note that while we provide the analytical

formulas for mapping the software parameters to the GPU

hardware features, these formulas are captured as part of the

configuration header file. Users of the framework are expected

to only identify the hardware features of the GPU.

B. Determining hardware parameters

While some of the hardware parameters required for our

model GPU architecture are readily available on GPU speci-

fication sheets, we found that we had to manually benchmark

the GPUs to identify the throughput and latency (Lfn) of the

different instructions that are required for our kernels 1.

C. Instruction latency

To measure the latency of a given instruction, we write a

simple program that consists of a long chain of dependent

operations using the instruction. An operation is dependent
on a previous operation if its input depends on the output

of the previous operation. By creating a dependent chain of

instructions, we can ensure that one instruction must wait for

its previous instruction to complete before it can be issued,

thus exposing the full latency of said instruction. Dependency

chains are necessary to prevent superscalar processors from

issuing multiple instructions, thus overlapping the latency of

multiple instructions and providing us with incorrect latency-

per-instruction figures. In practice, when writing such a mi-

crobenchmarking program, it may be necessary to use some

source value from memory (or to store results of the operation

to memory) to persuade the compiler not to optimize the

code in cases where the operations can be simplified statically

(or remove code that accomplishes no work). A loop can

be placed around the dependent chain to execute the chain

many times and diminish any effects of launching the kernel

or loading values from memory. Also, increasing the number

of instructions in the loop body will diminish the effects

of managing the loop (for example, instructions executed to

increment a loop counter, comparison on an induction variable,

or performing a conditional branch). For example, a dependent

chain to measure the latency of population count would look

like
unsigned int temp = Array[thread_index];
for (int i = 0; i < MANY_ITERATIONS; i++) {

temp = popcount(temp);
temp = popcount(temp);
...

}
Array[thread_index] = temp;

where each thread operates on its own value.

1NVIDIA release instruction throughput for their architectures [9] which
we verified through microbenchmarking. We were unable to locate documen-
tation for relevant instruction throughput on Vega 64, so we determined the
theoretical peak solely through microbenchmarking.

Executing the kernel with one thread group is sufficient to

measure instruction latency2. Latency can be calculated as

clock frequency× execution time

# of instructions

where the number of instructions is taken from the mi-

crobenchmarking program as the product of the number of

instructions in the loop body and the number of iterations the

loop is executed.

D. Instruction throughput

To measure throughput, we can use the same program as

before, but change the number of thread groups that execute

the program and compute throughput as

# of instructions×NT ×Ngrp

clock frequency× execution time

For the architectures we targeted, we expect the execution

time to remain nearly constant for Ngrp ≤ Ncl since thread

groups are assigned to a compute cluster and functional

units in unoccupied compute clusters remain idle. From the

analytical model, using Ngrp = Ncl × Lfn is sufficient

for achieving peak throughput. We expect additional thread

groups will not improve throughput since the latency between

dependent instructions is covered by other thread groups and

the functional units are fully saturated.

Some operations may be difficult to benchmark alone due

to compiler optimizations (for example, a sequence of ANDs

on the same value can be reduced to one, or a sequence of

ADDs can be replaced by a multiply). Microbenchmarking

each kernel (LD, FastID) was sufficient to determine what peak

throughput would be. It is also possible to combine instructions

that are not so easily reducible (e.g. c = popcount(a & c); or c

+= a & c;). Combining different instructions can expose which

instructions share functional unit pipelines. For example, we

observed that population count is on a separate pipeline from

integer math operations since execution time remained nearly

constant when exclusively performing population count and

when simultaneously performing population count with an

equal number of arithmetic operations. Instructions that share

a pipeline reduce the effective throughput of each instruction

since the resource must be shared. For example, on the

Vega 64 the addition and logical AND operations fall on

the same pipeline which becomes the bottleneck. The peak

throughput per functional unit can be determined by identify

the bottleneck (i.e. the minimum throughput on all pipelines

in use).

Instead of running any comparable program on a CPU, we

report the calculated theoretical peak that would be achievable

or use execution time reported in [11]. Even though the clock

speed on CPUs is typically higher, fewer functional units

return lower theoretical peak throughput for the entire device.

2According to the model GPU architecture, thread groups are pipelined on
the functional units within a compute cluster. Executing the microbenchmark
with more than enough thread groups to saturate the pipelines on all compute
clusters will likely increase the execution time and produce misleading latency
figures.
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E. “Limitations” of OpenCL

It is generally acknowledged that OpenCL may sacrifice

performance for portability. However, our experience showed

that some of these limitations of OpenCL can be reduced with

our approach.

OpenCL determines a maximum value of thread groups,

given by the parameter CL_KERNEL_WORK_GROUP_SIZE,

that can be instantiated for each kernel. However, this limit

in the number of thread groups is not a limitation for our

implementation. This is because we limit the number of thread

groups necessary to reside on a core (i.e. occupancy) to the

product of the number of compute clusters and the latency

of an arithmetic operation. This number of thread group is

significantly less than the maximum number of thread groups

allowed by OpenCL 3.

We observed that NVIDIA’s OpenCL implementation re-

served several bytes of shared memory instead of making the

entire shared memory available for use by the kernels. This

means that we can store a smaller tile of the input matrix in

shared memory. However, recall that a mc×kc tile of an input

matrix is packed into shared memory where kc is determined

by the amount of memory available (See Equation 6. Since the

value of kc is in the order of 100s, the impact of not having

access to all of shared memory is minimized since the reduced

shared memory means reducing kc by 1. We encountered no

such limitation to shared memory on the Vega 64.

VI. RESULTS

We evaluated our approach using three different GPUs.

Specifically, the NVIDIA Titan V, NVIDIA GTX 980, and

AMD Vega 64 GPUs were chosen to demonstrate the portabil-

ity of our proposed framework in providing high performance

across generations of GPU micro-architectures and between

GPUs from multiple hardware vendors. The specific hardware

parameters related to the model GPU architectures are cap-

tured in Table I.

To motivate the use of GPUs for SNP-based comparisons,

we also compare against the 12-core Intel workstation used in

[11]. Even though modern processors have been released with

updated micro-architectures (such as Intel’s 9th generation

Core series), the throughput of population count instructions

on these architectures are only improved by increased core

count and clock frequency.

A. Experimental Setup

1) Profiling: For our evaluation, we used OpenCL’s event

profiling to measure the elapsed time of kernel executions.

End-to-end execution time was measured using the CPU’s

realtime clock. To hide the latency overhead of transferring

data to and from the GPU, we implemented double buffering

for the input and output matrices of the GPU. This also allows

us to enqueue data transfer commands to be processed during

computation, as well as allowing the CPU to pack inputs into

one buffer while reading from another.

3The thread groups that are to be scheduled onto a particular compute core
are a part of the same workgroup.
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Fig. 6. End-to-end performance comparison of LD computation based on
simulated datasets that consist of 10,000 SNPs. CPU execution time taken
from [11], which uses a workstation with two Intel Xeon E5-2620 v2 (Ivy
Bridge) 6-core processors running at 2.10 GHz.

2) Clock speed: We calculate peak throughput using max-

imum clock frequencies reported by OpenCL.

B. Linkage Disequilibrium Performance

Figure 5 shows the performance of the LD kernel com-

putation as the number of SNP strings increases with the

length of SNP strings fixed near each device’s maximum

for one tile. This is consistent with expected behavior of a

high performance matrix-matrix multiplication. As the number

of SNP strings increases, there is greater data reuse on the

accumulation of comparisons for each locus, thus reducing

demand on the memory system and allowing the performance

to achieve closer to the theoretical peak, shown by the corre-

sponding dotted line (achieved throughput percentage of peak

for GTX 980: 90.7%, Titan V: 97.1%, Vega 64: 54.9%).
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Compute Capability Parameter Xeon E5-2620 v2 GTX 980 Titan V Vega 64
Microarchitecture Ivy Bridge Maxwell Volta Vega (GCN5)
Freqency (GHz) 2.1 1.367 1.455 1.663
Thread Group Size NT 1 32 32 64
Max Thread Groups Ngrp 2 32 32 16
Compute Cores NC 2×6 16 80 64
Compute Clusters Ncl 1 4 4 4
Arithmetic Units per Cluster
32-bit addition [26] N+

fn 4 32 16 16

32-bit logical and N&
fn 4 32 16 16

32-bit population count Npopcount
fn 1 8 4 16

Instruction Latency Lpopcount
fn 3 6 4 4

Global Memory (GiB) 3.934 11.754 7.984
Max Allocation (GiB) .983 2.939 6.786

Shared Memory (KiB) Nshared 48 48 64
Shared Memory Banks Nb 32 32 32
Registers per Core 16 logical 64K 64K 64K
Max Registers per Thread 255 255 256

TABLE I
MAPPING OF THE GPU FEATURES TO THE CORRESPONDING CPU ARCHITECTURE

Figure 6 shows the end-to-end runtime for LD using an

increasing number of sequences, each with 10 thousand SNPs.

Due to the overhead associated with initializing OpenCL

(on the order of hundreds of milliseconds), initialization can

dominate end-to-end execution time for small problem sizes.

Large enough problems sizes provide enough computation to

offset the cost of initialization and data transfer to and from

the device. Since kernel functions (those programs that are

built to run on the GPU) can be compiled before runtime,

the kernel compilation time was excluded from our end-to-

end timing. As problem sizes increase, GPUs will provide

further improvements in execution time and achieve greater

computational efficiency.

C. Scalability of the algorithm

We tested the scalability of the algorithm by increasing the

number of compute cores that are used to compute the overall

algorithm, and the results are shown in Figure 7. In general, the

NVIDIA GPUs retain high performance (relative to a single

compute core) as we increase the number of cores. However,

the performance of the Vega 64 decreases more rapidly as the

number of compute cores increases.

The scalability of the Titan V rises above 100% for fewer

cores, which may be due to dynamic frequency changes during

experimentation or due to the kernel launch cost amortizing

across several cores. If launching a kernel is a relatively fixed

cost, then performing more computation across more cores

will diminish the cost of the kernel launch and result in greater

operations per cycle. It is more useful to notice that the Titan

V scales almost perfectly, losing virtually no performance as

the problem size scales with an increased number of cores.

The GTX 980 reaches about 90% efficiency when using all

16 cores.

Our framework performs less efficiently on the Vega 64’s.

As demonstrated in Figure 7, the performance per core of our

framework drops drastically when using more than 8 compute

cores on the Vega 64. This scalability issue may be related to

memory system behaviors that we have not captured in our
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performance as the number of cores in use shows poor scalability. This
illustrates that more work should be done to evaluate the scalability of GPUs,
such as the effects of the memory hierarchy.

analytical model, and is an area of research that we will be

pursuing in the near future .

D. FastID Performance

Figure 8 shows end-to-end execution time of FastID for

generating the resulting comparisons of 32 queries against a

database containing more than 20 million entries 4. Since per-

forming forensic analysis can have strict time constraints, we

opted to show performance for the smallest supported query

size that would still make use of all of the available compute

resources for our GPUs (in this case, 32 was determined by the

number of shared memory banks). As was seen with LD, larger

query (matrix) sizes can achieve better compute efficiency so

FastID scales well with greater numbers of queries.

4The size of the database was chosen due to the size of the FBI NDIS
database which as of December 2018 has around 18 million profiles [27].
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GPU GTX 980 Titan V Vega 64
Linkage disequilibrium
Core configuration 4× 4 80× 1 32× 2
mr 4 4 4
nr 384 1024 1024
kc 383 383 512
mc 32 32 32
FastID
Core configuration 1× 16 1× 80 1× 64
mr 4 4 4
nr 768 1024 1024
kc 383 383 512
mc 32 32 32

TABLE II
SOFTWARE CONFIGURATION PARAMETERS FOR PERFORMING SNP

COMPARISON ALGORITHMS. NOTICE THAT THE TILE COMPUTED BY EACH

CORE REMAINS THE SAME WHILE THE CONFIGURATION OF THE CORES

ARE DETERMINED BY THE PROBLEM THAT IS BEING COMPUTED.
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Fig. 8. End-to-end execution time of FastID 32 queries against a database of
more than 20 million sequences for SNP counts from 128 to 1024.

E. Adapting for Microarchitectural Features

1) Arithmetic Units: Each of the GPUs used in evaluation

implemented a different microarchitecture, which manifests

in the model GPU as differing hardware parameters. The

available arithmetic units per cluster becomes relevant when

considering how to implement a microkernel efficiently for

a given device. For FastID mixture analysis, we note that

the kernel can be represented using the AND-NOT operation,

or pre-negating one input matrix to avoid performing the

additional negation upon execution. For the NVIDIA GPUs,

since the ratio of arithmetic and logic operations (AND,

NOT, ADD) to population count operations (POPC) per output

element is less than the ratio of arithmetic and logic functional

units to population count functional units, the population count

remains the bottleneck. On the other hand, since there as

many functional units for logic/arithmetic operations as there

are for population count on the Vega 64, it is beneficial

to reduce the number of operations that fall on the log-

ic/arithmetic functional units and pre-negate an input matrix.

Although we should theoretically pre-negate on the Vega 64,
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Fig. 9. On 1 core, NVIDIA cards achieve near identical performance when
performing an AND or AND-NOT comparison. For Vega, since the negation
(NOT) operation falls on the same pipe as ADD and AND, performing the
NOT in the computational kernel reduces throughput.

scalability issues reduced throughput and there is little effect

when including the negation in the kernel computation. If the

scalability issues were to be resolved, we would expect to see

lower performance when including the negation in the FastID

mixture analysis kernel. Figure 9 illustrates that including

the NOT in the computation has no noticeable affect on the

NVIDIA cards, but throughput drops for the Vega 64. This was

performed using 1 core to lessen the impact of scalability.

2) Global Memory Size: For GPUs that do not support

matrices of the size required by the database or resulting

output matrix (e.g. the GTX 980), the problem must be broken

down into smaller tile sizes. This can be done naturally due

to the tiling approach taken in our framework. Even for GPUs

that can fit the entire database and output matrix in global

memory (e.g. the Titan V), double buffering input and output

tiles allows some of the data transfer to be overlapped with

computation. The amount of data to be transferred at each

step must be evenly balanced with the amount of computation

that occurs each step to sufficiently overlap execution and data

transfer. Including data transfer characteristics to the analytical

model is a subject for future work.

VII. CONCLUSION & FUTURE DIRECTION

In this paper, we presented a portable framework for per-

forming SNP comparisons on GPUs. Specifically, our frame-

work builds on the work by Alachiotis et. al. by showing that

the same algorithm on both CPUs and GPUs can be used for

performing SNP comparison. In addition, we describe how

different software parameters that characterizes the algorithm

can be derived based on the available GPU hardware features.

Finally, we demonstrate the portability of this approach on

various GPU architectures from NVIDIA and AMD.

This approach represents SNP strings as dense bitvectors,

but a typical DNA sample is expected to contain mostly major

alleles. This suggests that sparse representations of the SNP
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strings may be beneficial. Extending the framework to sparse

matrix-matrix multiplication operations is a goal for future

work.

Notice that the results of the NVIDIA GPUs were relatively

constant as the number of GPU cores scaled up, but the

performance of the AMD GPU did not scale as well with

more cores. One possibility is that the current GPU model

is lacking in detail about the memory hierarchy of the GPU.

A more detailed memory hierarchy model for the GPU may

provide insights and better mapping of the software to the

hardware features. We plan to investigate how algorithms

presented in [28] as matrix multiplication for hierarchical

memory architectures could further extract compute resources

available on GPUs.

We believe that our framework can be extended to handle

even larger problem sizes is to exploit multi-GPU systems such

as the DGX-2. On such multi-GPU systems, the increased

number of functional units (especially the population count

instruction) and the collective memory on the GPUs would

facilitate the storage of even larger datasets and computation

with a high throughput. However, this comes at the cost of

having to communicate between multi-GPUs, which would

require an approach that is similar to distributed-memory

computing. This is something we intend to explore in the near

future.
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