
LBE: A Computational Load Balancing Algorithm
for Speeding up Parallel Peptide Search in

Mass-Spectrometry based Proteomics
Muhammad Haseeb†, Fatima Afzali†, Fahad Saeed*†

†School of Computing and Information Sciences
Florida International University, Miami, Florida 33199, USA

Email: {mhaseeb,aafza002,fsaeed}@fiu.edu

Abstract—The most commonly employed method for peptide
identification in mass-spectrometry based proteomics involves
comparing experimentally obtained tandem MS/MS spectra
against a set of theoretical MS/MS spectra. The theoretical
MS/MS spectra data are predicted using protein sequence
database. Most state-of-the-art peptide search algorithms index
theoretical spectra data to quickly filter-in the relevant (similar)
indexed spectra when searching an experimental MS/MS spec-
trum. Data filtration substantially reduces the required number
of computationally expensive spectrum-to-spectrum comparison
operations. However, the number of predicted (and indexed)
theoretical spectra grows exponentially with increase in post-
translational modifications creating a memory and I/O bottle-
neck. In this paper, we present a parallel algorithm, called
LBE, for efficient partitioning of theoretical spectra data on a
distributed-memory architecture. Our proposed algorithm first
groups the similar theoretical spectra. The groups are then finely
split across the system allowing machines to perform almost equal
amount of work when querying a MS/MS spectrum. Our results
show that the compute load imbalance using LBE based data dis-
tribution is ≤ 20% allowing speedups of order of magnitudes over
existing methods. The proposed algorithm has been implemented
on a compute cluster using MPI library. Experimental results for
increasing index sizes are reported in terms of execution time,
speedups and memory footprint. To the best of our knowledge,
LBE is the first load-balancing technique for MS/MS proteomics
data on memory-distributed clusters that incorporates proteomics
domain knowledge for efficient load-balancing. Source code is
made available at: https://github.com/pcdslab/lbdslim/tree/mpi

Index Terms—proteomics, mass-spectrometry, load balancing,
indexing, distributed computing

I. INTRODUCTION

Fast and accurate identification of peptides in an experimen-
tal MS/MS spectra dataset is a critical bottleneck in proteomics
research since the rate of experimental data generation is
much higher than its processing and identification rate [1].
The experimental MS/MS data are generated from a shotgun
proteomics experiment which involves enzymatic proteolysis
of a complex protein mixture followed by an automated liquid-
chromatography (LC) followed by mass-spectrometry (LC-
MS/MS) pipeline [2]. The obtained tandem MS/MS spectra are
then computationally compared against a set of theoretically
predicted MS/MS spectra [1] , [3] (also referred to as reference
data). The theoretical MS/MS spectra are generated using the

* Corresponding Author

peptide sequences obtained by in-silico digestion of a protein
sequence database. The in-silico methods for peptide and spec-
tra generation allow fine control over the characteristics (post-
translational modifications, peptide lengths etc.) and volume
of generated reference data.

Both the set of experimental (query) and the predicted
(reference) spectra contain millions of spectra each [4]. There-
fore, computing similarity scores for all experimental spectra
against all reference spectra is highly inefficient and extremely
compute intensive. Therefore, a two-step approach is em-
ployed where the reference data are first pre-indexed which
allows reference data filtration such that the number of spectra-
to-spectrum comparisons between are substantially reduced.
Several database filtration methods have been introduced that
index the reference data (peptides and spectra) to quickly
filter the reference data that have high likelihood of correctly
matching to a given query spectrum. However, there are
two caveats associated with peptide data filtration. First, the
size of index may grow much larger than available memory
resources on the system. Second, parallel querying large index
at high frequency bounds the performance by I/O bandwidth
bottleneck.

Motivation: This huge demand for CPU, I/O and memory
resources is a bottleneck for the performance of existing state-
of-the-art peptide search algorithms including [5], [6], [7], [8],
[9]. Therefore, we propose employment of distributed systems
for peptide identification problem such that the data and
workload are spread over a set of independent asynchronous
compute nodes to alleviate resource bounds. However, to
achieve maximum system throughput, the data must be ef-
ficiently partitioned to ensure load balance across the system.
To the best of our knowledge, there is no existing mechanism
to partition theoretical MS/MS data such that the query-load is
balanced across the parallel architecture. Further, the methods
designed for shared memory systems cannot be directly used
for distributed system since they would result in imbalanced
system and high communication costs.

Contributions: In this paper, we present a parallel algo-
rithm, called LBE, for distributing reference data across a set
of symmetrical parallel compute units so that the querying
load is almost equal across the system units. The proposed
algorithm first collects highly similar reference data elements

191

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00040

into groups. The data clustering/grouping method depends on
the underlying algorithm employed for data filtration. The
grouped data are finely spread among the parallel units such
that each compute node has a similar data distribution. In this
paper, we focus on data partitioning with respect to shared-
peak based data filtration methods. We implemented our
algorithm in the SLM-Transform index [6] (also called SLM-
Index) code base. We chose SLM-Index because it is the most
memory-efficient among other state of the art shared-peak
based algorithms. Further, its source code is open-sourced
unlike other algorithms. The proposed algorithm has been
implemented on a cluster of workstations using MPI library.
Our results show that the system imbalance for LBE based data
distribution is under 20% enabling significant performance
speedup over conventional partitioning method. The source
code of LBDSLIM is available as open-source software at:
https://github.com/pcdslab/lbdslim/tree/mpi

II. RELATED WORK

A. Data Filtration Methods

1) Peptide Precursor Mass: or simply peptide mass based
filtration method restricts the search space to only the reference
peptides having precursor mass within query spectrum’s mass
± the precursor mass tolerance window. However, the precur-
sor mass based filtration fails to identify the query spectra that
contain unknown post-translational modifications. i.e. ’the dark
Matter of shotgun proteomics’ [10], [11], [12]. As a solution,
the precursor mass tolerance is usually increased to several
hundred Daltons (open-search) but that results in search spaces
that too huge to be efficiently processed [5], [13].

2) Sequence-Tag: based search space filtration method
extracts a few amino acid characters long sequence tags
from each query spectrum and the search space is restricted
to the peptide sequences generated from all database pro-
tein sequences containing one more k-mers of the extracted
sequence-tag. The variants of sequence-tag method has been
employed in [14], [7], [15], [16], [17].

3) Shared Peak Count: or fragment-ion based filtration
method indexes all the ions in reference spectra along with
their peptide sequences. The search space is then restricted
to only the indexed reference spectra that share more than a
certain number of ions, also referred to as peaks or fragments,
with the query spectrum. The variants of shared-peak based
data filtration method has been employed in [18], [19], [20],
[5], [21], [22].

B. Shared Memory Data Partitioning

Since the size of index grows exponentially and usually
beyond available main memory on the system, the index must
be partitioned into smaller chunks. The chunks are processed
independently and may be stored on disks when not in use.
The existing shared memory data distribution methods group
the similar data by first sorting the peptide entries in the index
by their precursor masses. Then the ion-index is sorted by first
ion-masses and then their parent peptide masses. The index is
then simply partitioned into smaller independent chunks as

shown in Fig. 1. The data partitioning scheme ensures that for
a given experimental spectrum, the similar reference data are
located as contiguous entries at only one index chunk. This
technique speeds up the search by reducing the number of
index chunks that need to be loaded into memory or processed
along with superior cache performance when accessing data
for further processing.

Employing existing partitioning method for distributed sys-
tem based partitioning may result in some system machines
to share all computational load while rest of the machines are
idling resulting in an inefficient system as depicted in Fig. 2.

Fig. 1. The reference spectra in shared memory algorithms are sorted and
then partitioned into chunks so that the similar data may lie as contiguous
entries on the same chunk.

Fig. 2. The existing method if employed for partitioning across distributed
memory system will result in groups of similar spectra to be located on one
machine. This may result in highly imbalanced system when querying the
index.

III. METHODS

A. Problem Statement

The distributed memory based data distribution requires data
partitioning such that for a given experimental spectrum, equal
number of similar reference spectra may lie as contiguous
entries on all machines in the system as shown in Fig. 3.

B. The LBE Method

The LBE algorithm design ensures the system load bal-
ance by sorting/clustering the reference data into groups.
The groups are then partitioned across the system such that
data sketch is similar across the system as illustrated in
Fig. 3. To minimize communication among nodes, the peptide
information is stored only on the master machine while all
the machine work with their own indices and only the results
are transferred to main machines which are mapped back to
original entries via the mapping table. The subsequent sections
discuss the methods employed by LBE in detail.

192

Fig. 3. The LBE partitioning method first sorts the theoretical spectra into
groups which are finely partitioned to allow similar data sketch across all
system machines. The data may be further partitioned at each node according
to the scheme shown in Fig. 1.

C. Data Grouping

The employed grouping method depends on the underlying
database filtration algorithm. For instance, if the underlying
algorithm filters reference data based on precursor masses,
then the LBE must ensure identical average peptide precursor
mass across the system. In our case i.e. shared peak count
based filtration, the peptide sequences are clustered since
similar peptide sequences yield similar theoretical spectra as
shown in Fig. 3. We implemented a data grouping method
that is similar to [23]. The existing amino acid sequence
clustering algorithms [24], [25], [26], [27] can also be used.
The purpose of data grouping/clustering is to localize the
peptide sequences that will yield similar theoretical spectra so
that they could be equally spread across the system. Further,
our method does not consider the variant peptide grouping and
the normal peptide sequences and their modified variants are
considered to be part of the same data group. The modified
variant theoretical spectra may be very different if they have
multiple modifications or even single modification at or near
either N- or C- terminus of peptide sequence. Therefore, the
MS/MS spectra clustering algorithms such as [28], [9], [29],
[30], [12] may be employed in future to cluster the reference
data at spectra level instead of peptide sequence level. The data
grouping algorithm employed by LBE is explained as follows:

1) Grouping Peptide Sequences: The peptide sequences
are first sorted by their lengths followed by lexicographi-
cal sort. Then the peptide groups are formed in the fol-
lowing manner. Start the first group 𝑔1 from the first
peptide sequence 𝑠1. Then the algorithm looks for subse-
quent peptide sequence entries 𝑠𝑗 ∣ 1 < 𝑗 < 𝑖 + 𝑔𝑠𝑖𝑧𝑒
(def: 𝑔𝑠𝑖𝑧𝑒 = 20) that satisfy 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠1, 𝑠𝑗) ≤
𝑚𝑎𝑥{𝑑, 𝑙𝑒𝑛(𝑠𝑗)/2} (def: 𝑑 = 2) to be included in 𝑔1.
We also employed another grouping criterion given as:
𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠1, 𝑠𝑗)/𝑚𝑎𝑥{𝑙𝑒𝑛(𝑠1), 𝑙𝑒𝑛(𝑠𝑗)} ≤ 𝑑′ (def:
𝑑′ = 0.86). The parameters 𝑑 or 𝑑′, grouping criteria, and
𝑔𝑠𝑖𝑧𝑒 may be configured as required. Moving on, the next
group 𝑔2 starts from the next peptide sequence in the database
and the same process is repeated until all sequences are
grouped as depicted in Algorithm 1.

2) Output: The peptide sequences contained in each group
are concatenated together along with rest of the groups in
FASTA format to yield a clustered database.

Algorithm 1: Grouping Peptide Sequences
Data: List of peptide sequences (𝐿𝑖
) Result: List of group sizes (𝐿𝑧)
/* SortByLength */
𝐿𝑖.𝑆𝑜𝑟𝑡𝐵𝑦𝐿𝑒𝑛𝑔𝑡ℎ();
/* Lexicographical Sort */
𝐿𝑖.𝐿𝑒𝑥𝑆𝑜𝑟𝑡();
/* First sequence in group */
𝑠𝑒𝑞 = 𝐿𝑖[1];
/* List: group sizes */
𝐿𝑧.𝐴𝑝𝑝𝑒𝑛𝑑(1);
for 𝑘 = 2 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐿𝑖) do

/* Edit Distance */
𝑑𝑖𝑠𝑡 = 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑒𝑞, 𝐿𝑖[𝑘]);
/* Any of the cutoffs may be used

*/
𝑐𝑢𝑡𝑜𝑓𝑓1 = 𝑚𝑎𝑥{𝑑, 𝑙𝑒𝑛(𝐿𝑖[𝑘])/2};
𝑐𝑢𝑡𝑜𝑓𝑓2 = 𝑑𝑖𝑠𝑡/𝑚𝑎𝑥{𝑙𝑒𝑛(𝑠𝑒𝑞), 𝑙𝑒𝑛(𝐿𝑖[𝑘])} ≤ 𝑑′

/* Check conditions */
if (𝑑𝑖𝑠𝑡 > 𝑐𝑢𝑡𝑜𝑓𝑓𝑥) OR (𝐿𝑧[𝑠𝑖𝑧𝑒(𝐿𝑘)] == 𝑐𝑠𝑖𝑧𝑒)
then
/* Init new group */
𝑠𝑒𝑞 = 𝐿𝑖[𝑘];
𝐿𝑧.𝐴𝑝𝑝𝑒𝑛𝑑(1);

else
/* Increase curr group size */
𝐿𝑧[𝑠𝑖𝑧𝑒(𝐿𝑘)]+ = 1;

end
end

D. Data Partitioning

The clustered data are read by all system machines where
each machine extracts out its data partition according to the
specified distribution policy. Please note that the data parti-
tioning is mandatory if the index size is larger than 2 billion
ions (8GB) since C++ arrays are indexed by data type int.
The extracted data are then processed by the SLM-Transform
[6] to construct parallel partial SLM-Index on each machine.
Note that the data are re-grouped and may require further
partitioning by SLM-Transform at each machine as shown
in Fig. 3. The MPI master machine constructs a mapping
table to backtrack each machine’s peptide indices to original
peptide index entries. The mapping table is a simple an array
of size 𝑁 (size of peptide index) where each 𝑖𝑡ℎ chunk of
array of size 𝑁/𝑝 contains the indices of peptide index entries
mapped to machine 𝑖. The rest of compute machines discard
their partial peptide indices after construction of SLM-Index.
Assuming total number of entries in SLM-Index to be 𝑁 , and
the number of machines in the system to be 𝑝, each machine
roughly receives 𝑁/𝑝 peptide entries. The distribution policies
available in LBE are discussed as follows:

1) Chunk: policy splits the input data in simple chunk fash-
ion. Chunk policy is equivalent to conventional partitioning
method that splits the whole input data into chunks. Assuming

193

the total number of entries in input is 𝑁 , the number of
machines in the system to be 𝑝, the peptides 𝑝𝑒𝑝(𝑚) indexed
by machine 𝑚 using Chunk policy are given as:

𝑝𝑒𝑝(𝑚) =
{
𝑖 ∣ 𝑁

𝑝
×𝑚 ≤ 𝑖 <

𝑁

𝑝
× (𝑚+ 1)

}

2) Cyclic: policy distributes the peptide sequences in each
group in a round robin fashion. Assuming the total number of
entries in input is 𝑁 , the number of machines in the system
to be 𝑝, the peptides 𝑝𝑒𝑝(𝑚) indexed by machine 𝑚 using
Cyclic policy are given as:

𝑝𝑒𝑝(𝑚) =
{
𝑖 ∣ ∧ (𝑖 mod 𝑚 = 0)

}

3) Random: policy distributes the peptide sequences in
each group in a random fashion. The peptide sequences in
each group are shuffled and split using the Chunk policy. The
quality of distribution may depend on initial choice of seed
value. Assuming the total number of entries in input is 𝑁 ,
the number of machines in the system to be 𝑝, the peptides
𝑝𝑒𝑝(𝑚) indexed by machine 𝑚 using Random policy are given
as:

𝑝𝑒𝑝(𝑚) =
{
𝑐ℎ𝑢𝑛𝑘(𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝑖))

}

E. Distributed Querying

The raw MS/MS data are converted to mzML or MS2
format using msconvert.exe [31] before any processing. Then,
all compute units in the system read the query spectra from
the MS/MS dataset and pre-process them using the specified
fragment extraction parameters. The compute units search
the query spectra concurrently against their partial SLM-
Index chunks. The peptide entries for resultant peptide-to-
spectrum match candidates can then be returned to the user
at MPI master machine by simply sending virtual indices to
the master machine where they are mapped back to original
peptide entries in 𝑂(1) time (simple 1 memory access). This
is illustrated in Fig. 4.

Fig. 4. The data are searched by each machine against its partial index. The
indices of matched peptides/spectra are sent to MPI master where they are
mapped to original peptide index entries in 𝑂(1) time using the mapping
array.

IV. IMPLEMENTATION

The LBE algorithm has been implemented as an abstraction
layer, called LBE layer. The SLM-Transform code base was
modified to make it compatible with MPI (mpi branch of

LBDSLIM GitHub repository). The peptide sequence data
grouping explained in the text has been implemented sep-
arately as a Python 3.x script (provided with source code)
that prepares the input data for LBE based distributed SLM-
Transform. This will be incorporated in the main code base in
the future versions. The software can be compiled using GCC
toolchain + MPI distribution on a Linux machine (GCC 6.3.0
+ MPICH/OpenMPI) or Windows machine (MinGW GCC
6.3.0 + Microsoft MPI). We also implemented another version
of software (ircc branch of LBDSLIM GitHub repository) to
make the codebase compatible with GCC 4.6.2 (without glibc
v2.14) + OpenMPI 1.6.3 to allow its use on computers/clusters
that have with old compiler versions. The build is managed
by a simple Makefile script. Please refer to the README on
GitHub repository for detailed information about how to build,
configure and use the software as well as any limitations or
known issues in software.

V. RESULTS

A. Experimental Setup

1) Database Preprocessing: The Human proteome
database (UP000005640) was downloaded from
UnitProtKB. The database was digested in-silico using
Digestor [32] tool which yielded a peptide sequence
database. The digestion settings used are as follows:
fully tryptic, upto 2 missed cleavages, peptide lengths
from 6 to 40, peptide mass from 100amu to 5000amu.
Following digestion, the duplicate peptide sequences
were then removed using DBToolkit [33]. The peptide
sequence data were clustered using criterion 2 with
default settings using Algorithm. 1.

2) Dataset Preprocessing: The dataset PXD009072:
Changes in the human platelet protein ubiquityla-
tion landscape following GPVI activation, containing
305,431 query spectra was downloaded from PRIDE
Archive. The dataset files were converted to MS2 format
using msconvert.exe [31].

3) SLM-Transform settings: The SLM-Transform was
configured to extract the 100 most intense peaks from
each query spectrum. The rest of SLM-Transform set-
tings used are as follows: Internal Data partitioning
= Disabled, Resolution (𝑟 = 0.01), fragment mass
tolerance (Δ𝐹 = 0.05𝐷𝑎), precursor mass tolerance
(Δ𝑀 = ∞), Shared-Peak threshold (𝑆ℎ𝑝𝑒𝑎𝑘 ≥ 4), and
max modified residues per peptide to 5. The variable
modifications including deamidation on asparagine and
glutamine, gly-gly adducts on lysine/cysteine, and oxida-
tion on methionine residues were added to the index. The
parameter values were chosen based on the description
of dataset on PRIDE website.

4) Compute Cluster: The experiments were conducted on
an HPC compute cluster. The allowed access to cluster
resources was restricted to 4 physical machines, 16 cores
and 32 GB RAM so we could not go beyond the allowed
resources. Please note that the employed CPUs were
symmetrical or nearly symmetrical.

194

The complete dataset search yielded 22,517,426,929 can-
didate peptide-to-spectra matches (cPSMs) (∼ 73, 723
cPSMs/query). We benchmarked the LBE based distributed
SLM-Index for multiple performance metrics by searching
the FL0320 MSQ805 IBombik Stimb 6ul.ms2 file (23, 264
spectra) from PXD009072 dataset against distributed SLM-
index instances with variable sizes and executed on different
cluster resource configurations.

B. Memory Footprint

The memory footprint for distributed SLM-Index implemen-
tation was compared against its shared memory implemen-
tation for increasing index size and number of machines in
the system. The index size was varied by changing the type
and number of amino acid modification settings. The memory
footprint results for distributed implementation of SLM-Index
show an average memory footprint of 0.366GB/million spectra
indicating only 6.4% extra memory overhead memory foot-
print reported for shared memory implementation under the
same settings (i.e. 0.346GB/million spectra). The extra mem-
ory overhead varies inversely with the size of data partition
per MPI CPU. Please note that there is a temporary mem-
ory footprint of 100% for distributed SLM-Transform index
(requires 2× index memory) as compared to shared memory
implementation. The temporary overhead can be eliminated if
internal index partitioning is allowed. However, this temporary
requirement limits the index partition size per MPI process to
10.5 million spectra. Fig. 5 shows the comparison between
memory footprint for distributed memory SLM-Transform
against its original shared memory implementation.

0 10 20 30 40 50
0

5

10

15

20

Index Size (Million peptides & spectra)

M
em

or
y

(G
B

)

SLM-Transform
Distributed SLM

Fig. 5. The results show a small memory overhead for distributed SLM-
Transform index over its original shared memory implementation.

C. Load Balance

We evaluated the load imbalance for all distribution policies
for increasing index size. The experiments were performed
with 16 MPI processes (4 physical machines) therefore, 16

index partitions. Assume that the average time consumed
by system machines for an experiment is 𝑇𝑎𝑣𝑔 . The load
imbalance would be zero if the time consumed by all system
machines run in 𝑇𝑎𝑣𝑔 . We define the Load Imbalance (𝐿𝐼)
as the maximum positive deviation in compute time (Δ𝑇𝑚𝑎𝑥)
normalized to average/ideal compute time 𝑇𝑎𝑣𝑔 given as:

𝐿𝐼 =
Δ𝑇𝑚𝑎𝑥

𝑇𝑎𝑣𝑔
(1)

The results obtained for Load Imbalance for cyclic and
random distribution show a substantially superior system per-
formance as compared to shared memory system like (chunk)
data partitioning as shown in Fig. 6. The normalized Load
Imbalance 𝐿𝐼 factor represents the relative system stall due
to imbalance where high imbalance seriously hampers the
system throughput. The detailed results for the experiments
are available at LBDSLIM GitHub repository (mpi and ircc
branch).

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200

Index Size (Million peptides & spectra)

N
or

m
al

iz
ed

L
oa

d
Im

ba
la

nc
e

(%
) Chunk

Cyclic
Random

Fig. 6. This plot depicts percentage 𝐿𝐼 for 16 MPI CPUs (16 partitions)
with increasing index size. The results show that the load imbalance remains
≤ 20% for cyclic and random distribution as compared to ∼ 120% imbalance
for conventional (chunk) data partitioning.

D. Scalability

The speedup scalability was evaluated for both distributed
SLM-Index querying and total execution time. The experi-
ments were performed for increasing number of MPI processes
repeated for increasing index sizes. The index was partitioned
using cyclic distribution in all experiments since it allows the
best load balance. All experiments were run on at least 2
physical machines. The results discussed in this section incor-
porate any speedup degradation due to load imbalance. Fig. 7
shows the query time results while Fig. 8 shows the speedup
scalability for query time. Fig. 8 shows that the query time
scales almost linearly as the number of CPUs are increased.
Since, the allowed CPU resources were limited to 16 as well
as the memory resources to 32GB, we could not perform
experiments beyond 16 MPI processes and 49.5Million spectra

195

index size. However, the results indicate a linear scalability as
the system resources increase.

We also evaluated the speedup scalability for total execution
time as shown in Fig. 9 and Fig. 10. Fig. 10 indicates
that the total execution time does not scale linearly and
saturates. The speedup saturation is due to the serial part of
software. The base case (ideal speedup efficiency) used for
computing speedup results in Fig. 8 was 2 CPUs for 18M
index size and 4 CPUs for the rest. The average efficiency for
experiments with higher number of CPUs was computed and
used to scale that set of experiments including the base case.
The detailed scalability results are available with LBDSLIM
GitHub repository (mpi and ircc branch).

0 4 8 12 16 20
0

100

200

300

400

500

600

Number of MPI processes (CPUs)

Q
ue

ry
T

im
e

(s
)

18M
30M
41M

49.45M

Fig. 7. This plot shows the query time results for cyclic partitioning with
increasing number of MPI processes (CPUs) with increasing index size.

0 4 8 12 16 20

4

8

12

16

20

Number of MPI processes (CPUs)

Sp
ee

du
p

(Q
ue

ry
)

Ideal
18M
30M
41M

49.45M

Fig. 8. The speedup results for distributed querying using cyclic partitioning
show linear scalability. The results for 1 MPI process could not be computed
since partition size per MPI process was restricted to 10.5 million spectra.

0 4 8 12 16 20
0

100

200

300

400

500

600

700

Number of MPI processes (CPUs)

E
xe

cu
tio

n
T

im
e

(s
)

18M
30M
41M

49.45M

Fig. 9. This plots shows the execution time results (cyclic policy) with
increasing number of MPI processes (CPUs) with increasing index size.

0 4 8 12 16 20

4

8

12

16

20

Number of MPI processes (CPUs)

Sp
ee

du
p

(E
xe

cu
tio

n)
Ideal
18M
30M
41M

49.45M

Fig. 10. The speedup results for execution time (cyclic policy) are bounded
by Amdahl’s law. The scalability improves as in the index size increases since
the query time portion increases in total execution time.

VI. DISCUSSION

The memory footprint results show that the distributed
SLM-Index does not impose any significant memory footprint
overhead which allows the distributed SLM-Index to maintain
its ∼ 3.5× memory footprint advantage over MSFragger
[5] index, as also discussed in [6]. The temporary footprint
incurred while index construction can be eliminated by en-
abling partitioning at each MPI process. The load imbalance
results have significant importance in determining the system
efficiency since it indicates the time when one or more
compute resources are (idling) waiting for the stalling compute
nodes to finish their task. Assume that there are 𝑁 CPUs in
the distributed system, with Load Imbalance 𝐿𝐼 = 𝑥 over
the balanced system compute time 𝑇𝑎𝑣𝑔, then the approximate

196

total CPU time 𝑇𝑤𝑠𝑡 wasted by the system is given as:

𝑇𝑤𝑠𝑡 = 𝑥𝑁𝑇𝑎𝑣𝑔

Using Eq. 1, we have:

𝑇𝑤𝑠𝑡 = 𝑁Δ𝑇𝑚𝑎𝑥

This implies that for a system with 16 CPUs 𝑁 = 16,
affected by Δ𝑇𝑚𝑎𝑥 = 80𝑠 over 𝑇𝑎𝑣𝑔 = 100𝑠 i.e. 𝑥 = 0.8 will
result in wasted CPU time 𝑇𝑤𝑠𝑡 = 1280𝑠 or 12.8× perfor-
mance degradation. This implies that even a small percentage
of load imbalance can be amplified to huge performance
degradation if there are large number of machines in the
system. Note that in this example, the apparent wall clock
time based performance degradation would appear to be 80𝑠
or 0.8× which is not true in parallel systems. Fig. 11 shows
the CPU time speedup results achieved by LBE based data
partitioning for experiments discussed in Section V-C over
conventional (chunk) based partitioning.

0 10 20 30 40 50
0
1

3

6

9

12

15

18

Index Size (Million peptides & spectra)

Sp
ee

du
p

by
L

oa
d

B
al

an
ce

Chunk
Cyclic

Random

Fig. 11. The LBE cyclic and random partitioning enable orders of magnitude
speedup (average: ∼ 8.6× and ∼ 7.5× respectively) over conventional chunk
based data partitioning with 16 CPUs (16 partitions).

VII. CONCLUSION

In this paper, we presented a computational load balancing
algorithm, called LBE, for efficient distribution of theoretical
spectra data across a distributed system to allow distributed
shared-peak based data filtration. The LBE algorithm clusters
the similar spectra into groups. The spectra groups are then
distributed among system machines to achieve a near similar
data distribution across the system. The results show that
the load imbalance across the system is ≤ 20% when the
data is partitioned using LBE based data distribution method.
Balancing the load across the system allows a speedup of order
of magnitudes over conventional partitioning method. The
results also show that there is no significant memory footprint
overhead imposed by distributed implementation over SLM-
Index shared memory implementation. Further, the scalability

results show a near ideal linear speedup for query time
results. Peptide identification by comparing MS/MS spectral
data obtained from a mass-spectrometer against a database
of reference spectra is an extremely compute and memory
intensive task. The scalability and performance of existing
shared memory system based peptide identification algorithms
is mostly limited by the computation, memory and I/O band-
width bottlenecks. We propose employing distributed systems
to alleviate these bottlenecks. Finally, since the parallel and
distributed peptide search algorithms are in early stages of
development, this work will horizon several future research
problems that are pertinent to mitigate the difference between
the rate of MS/MS data generation and identification.

VIII. FUTURE WORK

Our preliminary results have shown that the existing shared-
peak count based query algorithms are bounded by the I/O
bandwidth for many parallel cores. On the other hand, since
the multicore systems are symmetrical and shared memory
is accessible, the load in shared memory system can be
efficiently balanced. Therefore, to exploit both machine and
core level parallelism, we are investigating a hybrid OpenMP
and MPI based approach to maximize the system throughput.
We are also working towards a load-predicting model for
heterogeneous memory-distributed architectures. We expect to
report excellent scalability results on large supercomputing
machines for our load-balancing strategy.

FUNDING

This research was supported by National Institute of General
Medical Sciences (NIGMS) of the National Institutes of Health
(NIH), United States under Award Number R15GM120820,
and National Science Foundations (NSF) under Award Num-
bers NSF CRII CCF-1855441, and NSF CAREER ACI-
1651724. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the
National Institutes of Health or that of National Science
Foundation.

REFERENCES

[1] A. I. Nesvizhskii, F. F. Roos, J. Grossmann, M. Vogelzang, J. S.
Eddes, W. Gruissem, S. Baginsky, and R. Aebersold, “Dynamic spectrum
quality assessment and iterative computational analysis of shotgun
proteomic data toward more efficient identification of post-translational
modifications, sequence polymorphisms, and novel peptides,” Molecular
& Cellular Proteomics, vol. 5, no. 4, pp. 652–670, 2006.

[2] R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,”
Nature, vol. 422, no. 6928, p. 198, 2003.

[3] J. K. Eng, B. C. Searle, K. R. Clauser, and D. L. Tabb, “A face in
the crowd: recognizing peptides through database search,” Molecular &
Cellular Proteomics, pp. mcp–R111, 2011.

[4] F. M. White, “The potential cost of high-throughput proteomics,” Sci.
Signal., vol. 4, no. 160, pp. pe8–pe8, 2011.

[5] A. T. Kong, F. V. Leprevost, D. M. Avtonomov, D. Mellacheruvu,
and A. I. Nesvizhskii, “Msfragger: ultrafast and comprehensive peptide
identification in mass spectrometry–based proteomics,” Nature methods,
vol. 14, no. 5, p. 513, 2017.

[6] M. Haseeb, M. G. Awan, A. Cadigan, and F. Saeed, “Slm-transform: A
method for memory-efficient indexing of spectra for database search in
lc-ms/ms proteomics,” bioRxiv, 2019.

197

[7] H. Chi, C. Liu, H. Yang, W.-F. Zeng, L. Wu, W.-J. Zhou, X.-N. Niu,
Y.-H. Ding, Y. Zhang, R.-M. Wang, et al., “Open-pfind enables precise,
comprehensive and rapid peptide identification in shotgun proteomics,”
bioRxiv, p. 285395, 2018.

[8] B. J. Diament and W. S. Noble, “Faster sequest searching for peptide
identification from tandem mass spectra,” Journal of proteome research,
vol. 10, no. 9, pp. 3871–3879, 2011.

[9] W. Bittremieux, P. Meysman, W. S. Noble, and K. Laukens, “Fast
open modification spectral library searching through approximate nearest
neighbor indexing,” Journal of proteome research, vol. 17, no. 10,
pp. 3463–3474, 2018.

[10] O. S. Skinner and N. L. Kelleher, “Illuminating the dark matter of
shotgun proteomics,” Nature biotechnology, vol. 33, no. 7, p. 717, 2015.

[11] J. M. Chick, D. Kolippakkam, D. P. Nusinow, B. Zhai, R. Rad, E. L.
Huttlin, and S. P. Gygi, “A mass-tolerant database search identifies a
large proportion of unassigned spectra in shotgun proteomics as modified
peptides,” Nature biotechnology, vol. 33, no. 7, p. 743, 2015.

[12] J. Griss, Y. Perez-Riverol, S. Lewis, D. L. Tabb, J. A. Dianes, N. del
Toro, M. Rurik, M. Walzer, O. Kohlbacher, H. Hermjakob, et al., “Rec-
ognizing millions of consistently unidentified spectra across hundreds
of shotgun proteomics datasets,” Nature methods, vol. 13, no. 8, p. 651,
2016.

[13] S. Tanner, P. A. Pevzner, and V. Bafna, “Unrestrictive identification
of post-translational modifications through peptide mass spectrometry,”
Nature protocols, vol. 1, no. 1, p. 67, 2006.

[14] D. L. Tabb, A. Saraf, and J. R. Yates, “Gutentag: high-throughput
sequence tagging via an empirically derived fragmentation model,”
Analytical chemistry, vol. 75, no. 23, pp. 6415–6421, 2003.

[15] S. Tanner, H. Shu, A. Frank, L.-C. Wang, E. Zandi, M. Mumby, P. A.
Pevzner, and V. Bafna, “Inspect: identification of posttranslationally
modified peptides from tandem mass spectra,” Analytical chemistry,
vol. 77, no. 14, pp. 4626–4639, 2005.

[16] M. Mann and M. Wilm, “Error-tolerant identification of peptides in
sequence databases by peptide sequence tags,” Analytical chemistry,
vol. 66, no. 24, pp. 4390–4399, 1994.

[17] S. Dasari, M. C. Chambers, R. J. Slebos, L. J. Zimmerman, A.-J. L. Ham,
and D. L. Tabb, “Tagrecon: high-throughput mutation identification
through sequence tagging,” Journal of proteome research, vol. 9, no. 4,
pp. 1716–1726, 2010.

[18] D. Beyter, M. S. Lin, Y. Yu, R. Pieper, and V. Bafna, “Proteostorm:
An ultrafast metaproteomics database search framework,” Cell systems,
vol. 7, no. 4, pp. 463–467, 2018.

[19] M. David, G. Fertin, H. Rogniaux, and D. Tessier, “Specoms: a full open
modification search method performing all-to-all spectra comparisons
within minutes,” Journal of proteome research, vol. 16, no. 8, pp. 3030–
3038, 2017.

[20] M. Bern, Y. Cai, and D. Goldberg, “Lookup peaks: a hybrid of de novo
sequencing and database search for protein identification by tandem
mass spectrometry,” Analytical chemistry, vol. 79, no. 4, pp. 1393–1400,
2007.

[21] H. Chi, K. He, B. Yang, Z. Chen, R.-X. Sun, S.-B. Fan, K. Zhang,
C. Liu, Z.-F. Yuan, Q.-H. Wang, et al., “pfind–alioth: A novel unre-
stricted database search algorithm to improve the interpretation of high-
resolution ms/ms data,” Journal of proteomics, vol. 125, pp. 89–97,
2015.

[22] Y. Li, H. Chi, L.-H. Wang, H.-P. Wang, Y. Fu, Z.-F. Yuan, S.-J. Li, Y.-S.
Liu, R.-X. Sun, R. Zeng, et al., “Speeding up tandem mass spectrometry
based database searching by peptide and spectrum indexing,” Rapid
Communications in Mass Spectrometry, vol. 24, no. 6, pp. 807–814,
2010.

[23] R. C. Edgar, “Search and clustering orders of magnitude faster than
blast,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 2010.

[24] C. Mercier, F. Boyer, A. Bonin, and E. Coissac, “Sumatra and sumaclust:
fast and exact comparison and clustering of sequences,” in Programs and
Abstracts of the SeqBio 2013 workshop. Abstract, pp. 27–29, Citeseer,
2013.

[25] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “Cd-hit: accelerated for
clustering the next-generation sequencing data,” Bioinformatics, vol. 28,
no. 23, pp. 3150–3152, 2012.

[26] W. Li and A. Godzik, “Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences,” Bioinformatics,
vol. 22, no. 13, pp. 1658–1659, 2006.

[27] M. Andreatta, B. Alvarez, and M. Nielsen, “Gibbscluster: unsupervised
clustering and alignment of peptide sequences,” Nucleic acids research,
vol. 45, no. W1, pp. W458–W463, 2017.

[28] F. Saeed, J. D. Hoffert, and M. A. Knepper, “Cams-rs: clustering
algorithm for large-scale mass spectrometry data using restricted search
space and intelligent random sampling,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), vol. 11, no. 1,
pp. 128–141, 2014.

[29] A. M. Frank, N. Bandeira, Z. Shen, S. Tanner, S. P. Briggs, R. D. Smith,
and P. A. Pevzner, “Clustering millions of tandem mass spectra,” Journal
of proteome research, vol. 7, no. 01, pp. 113–122, 2007.

[30] I. Beer, E. Barnea, T. Ziv, and A. Admon, “Improving large-scale
proteomics by clustering of mass spectrometry data,” Proteomics, vol. 4,
no. 4, pp. 950–960, 2004.

[31] D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, “Prote-
owizard: open source software for rapid proteomics tools development,”
Bioinformatics, vol. 24, no. 21, pp. 2534–2536, 2008.

[32] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange,
N. Pfeifer, O. Schulz-Trieglaff, A. Zerck, K. Reinert, et al., “Openms–an
open-source software framework for mass spectrometry,” BMC bioinfor-
matics, vol. 9, no. 1, p. 163, 2008.

[33] L. Martens, J. Vandekerckhove, and K. Gevaert, “Dbtoolkit: process-
ing protein databases for peptide-centric proteomics,” Bioinformatics,
vol. 21, no. 17, pp. 3584–3585, 2005.

198

