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Abstract—Advances in next generation sequencing technologies 
has resulted in the generation of unprecedented volume of 
sequence data. DNA segments are combined into a 
reconstruction of the original genome using computer software 
called genome assemblers. Therefore, assembly now presents 
new challenges in terms of data management, query, and 
analysis due the huge number of read sequences and computing 
intensive CPU-memory algorithms. This restriction reduces the 
chances to uniformly cover space for exploring statistics, k-mer, 
software or eukaryotic genomes assembly. To address these 
issues, we present ArrOW, a cloud-based de novo Assembly 
clOud Workflow that explores the potential of provenance 
analytics and parallel computation provided by scientific 
workflow management systems as SciCumulus. We evaluate the 
overall performance of ArrOW using up to 256 cores in the 
Amazon AWS cloud. ArrOW reaches improvements up to 
88.3% executing 1,000 reads of genomics datasets. We also 
highlight how data provenance analytics improved the efficiency 
for recovering assembling features of genomes. 
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I.  INTRODUCTION 

The current genomic revolution was possible due to joint 
advances in Next Generation Sequencing (NGS) and genomics 
computational approaches. The close interaction of biology, 
chemistry, engineering, and computer science is perhaps most 
apparent in the development of sophisticated genomics 
computational software called assemblers. Assemblers aim to 
reconstruct genome sequences from the many small segments 
of DNA that can be read by modern DNA sequencing 
machines. Genome size is a factor associated with the 
complexity in assembly. Bacteriophages and viruses range 
from a few thousand base pairs (bp) to several hundred Kb, 
bacterial genomes range from 0.5 to 10 Megabase pairs (Mb), 
eukaryotic genomes are diverse, from 10 Mb in fungi to more 
than 100,000 Mb in plants. The human genome comprises 
more than 4 Gigabase pairs (Gb). However, even using 
complex mathematical optimizations [1], genome assembly is 
still computationally intractable.  

The strategy adopted by genome assemblers can be widely 
divided into comparative assembly and de novo assembly. 
Actually, de novo assemblers are most commonly used to 
assembling. Two common types of de novo assemblers are 
greedy algorithms [2] and based on Bruijn graph [1]. In terms 
of complexity and time requirements, de novo is order of 
magnitude slower and more memory intensive than mapping 
assemblies. This is mostly due to the fact that the assembly 
algorithm needs to compare every read with every other read 
(an operation that has a naive time complexity of O(n2).  

Although some scientists already develop automated 
experiments for assembling data analysis, they are not mature 
yet [3]–[5]. Assembly experiments are based on complex 
computer simulations that consume and produce large datasets 
and allocate huge amounts of computational resources. To 
help scientists in managing resources involved in large-scale 
simulations, scientific workflows are gaining much interest. A 
scientific workflow is an abstraction that structures steps of a 
scientific experiment as a graph of activities, in which nodes 
correspond to data processing activities and edges the dataflow 
between them [6]. Scientific Workflow Management Systems 
(SWfMS) allow for defining, executing, and monitoring 
workflow execution. These engines distribute several 
concurrent activity executions in a High Performance 
Computing (HPC) environment while capturing provenance 
data [7] i.e., historical information of the workflow execution.  

The complexity of designing an assembly workflow is also 
related as the task of choosing the set of programs and 
parameters, the most adequate to assembly process. The 
complexity of its implementation is related to the management 
of thousands of combinations of DNA fragments, parameters 
variability of k-mers, and results. SWfMS can be used to 
control DNA fragments and parameters combination 
automatically as a parameter sweep problem. Since assembly 
workflows may execute for weeks they require HPC resources 
and technologies. Clouds are becoming a viable alternative to 
traditional clusters and grids as they have demonstrated 
applicability to a wide-range of problems in several scientific 
domains [8]. Cloud environments like Amazon AWS [9] ease 
the deployment of experiments and data as services. 

As aforementioned, processing data in parallel is an open 
issue and only part of the solution at exploring large assembly 
datasets. There are assembly workflows that explore parallel 
processing with different approaches, but all of them limit the 
number of data or parameters in each execution [3], [10] and 
none of them vary the parameter and program for each read 
sequences input. Tracking these variations along results is very 
complex but needed in assembly analyses. For instance, for 
each assembler may be needed to perform several workflow 
executions using different k-mers.  

This paper addresses several problems of designing a HPC 
assembly workflow with provenance data analytics at large-
scale. We present the Assembly clOud Workflow (ArrOW) 
using SciCumulus [11] Cloud SWfMS. For genomics data, 
ArrOW invokes Ray, Velvet, and MetaVelvet. Otherwise, for 
metagenomics, it invokes only MetaVelvet. Finally, results of 
ArrOW are analyzed with the help of provenance database by 
submitting high level database analytical queries. We evaluate 
ArrOW with Illumina metagenomics data (human nares) and 
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present a performance analysis of ArrOW parallel executions 
using up to 256 cores in Amazon AWS. The results show that 
ArrOW is capable of processing up to 1,000 read sequences 
with significant performance improvements. The highest 
performance gain in ArrOW reduces execution time from 1.5 
days (8 cores) to 3.4 hours (256 cores). 

This paper is organized as follows. Section II discusses 
related work. Section III presents background on assembly. 
Section IV describes the specification of the ArrOW workflow 
and presents its implementation using SciCumulus SWfMS. 
Section V shows the experimental results and Section VI 
concludes the paper and points out future work. 

II.RELATED WORK 

Relevant works of computational challenges for whole-
genome sequencing, assembly, and annotation are surveyed by 
El-Metwally et al. [12] and Ekblom and Wolf [13]. The viral 
genome assembly pipeline VirAmp [14] connects several 
existing programs via the web-based platform Galaxy and is 
available in Amazon Elastic Cloud disk image. However, no 
computational performance analyses were performed. Several 
workflows, such as iMetAMOS [10] and A5 [3] were 
proposed to identify and select the best assembler; however, 
they focus on prokaryote genome assemblies, which demands 
manageable and easier computational resources. RAMPART 
[4] uses a configurable SWfMS for de novo genome assembly 
that executes combinations of third-party tools and settings 
with good results for eukaryotic genomes. RAMPART 
supports HPC technologies, shared memory systems, and 
Platform Load Sharing Facility and Portable Batch System 
schedulers with plans to support Sun Grid Engine in future. 
However, it does not provide workflow provenance-based 
analysis for fault tolerance or re-execution of failed activities. 

META-pipe [5] pipeline provides integration with identity 
provider services, distributed storage, Galaxy workflows, 
Stallo job scheduler, and interactive data visualizations. The 
scalability and performance have evaluated on distributed 
compute and storage resources. META-pipe 1.0 has several 
limitations as a scalable bioinformatics service. Their custom 
pipeline framework has no support for provenance data nor 
failure handling. The re-implemented META-pipe 2.0 uses 
Apache Spark and can take advantage of novel HPC features. 

III. BACKGROUND OF SEQUENCE ASSEMBLY  

Sequence assembly refers to aligning and merging many 
fragments of a much longer target DNA sequence in order to 
reconstruct the target sequence. Due to the randomness of the 
fragmentation process of the DNA, the individual fragments 
could be expected to overlap one another, and these overlaps 
could be recognized by comparing the DNA sequences of the 
corresponding fragments. This process is time consuming and 
labor intensive. However, that even with mathematical 
formulations [1], genome assembly can be shown to be 
computationally intractable due to the issue of repeats and the 
complexity they introduce in the assembly process.  

The simplicity of the shotgun sequencing process captured 
the interest of mathematicians and computer scientists and led 
to the rapid development of the theoretical foundations for 
genomics sequence assembly. Lander and Waterman [15] 

estimated the size and number of contiguous genomic 
segments that can be reconstructed from a set of sequence 
reads as a function of just three parameters: length of reads, 
coverage of genome, and minimum overlap between two reads 
that can be effectively detected by an assembler. 

The computational complexity of the assembly problem is 
formalized as an instance of the shortest common superstring 
problem for finding the shortest string that encompasses all 
reads as substrings. Since finding the correct solution may 
require to explore an exponential number of possible solutions, 
the genome sequence assembly can become computationally 
intractable. The complexity of sequence assembly depends on 
the ratio between the size of sequence reads and repeats; when 
reads are longer than repeats, the assembly problem can be 
solved, whereas when reads are shorter than repeats. Efforts to 
formalize and understand genome sequence assembly have led 
to increasingly complex explanations of the problem, which 
fall into several broad paradigms, outlined in more detail 
following. 

A. Greedy-Based Approaches 

Greedy algorithm is one of the simplest strategies for 
assembling genomes [2]. The process starts by joining the two 
reads that overlap the best; then repeats this process until a 
predefined minimum quality threshold is reached. As a result, 
nascent assembled sequences (contigs) grow through either the 
addition of new reads or a joining with previously constructed 
contigs. Many of the early genome sequence assemblers relied 
on such a greedy strategy: Phrap used by the Human Genome 
Project, TIGR Assembler, and CAP series of tools to 
reconstruct transcriptomes. Despite its tremendous early 
successes, the greedy strategy has a severe limitation since it 
cannot effectively handle repeated genomic regions. 

B. Graph-Based Approaches 

Graph-based assembly models represent sequence reads 
and their inferred relationships to one another as vertices and 
edges in the graph. Walks through the graph describe an 
ordering of reads that can be assembled together. The 
assembler tries to find a walk that best reconstructs the 
underlying genome while avoiding generating misassemblies 
by taking erroneous paths caused by repeats. 

a. OLCgraphs  
OLC genome assemblers follow three main stages, 

overlap, layout, and consensus. First, overlapping pairs of 
reads are detected. Second, the graph is constructed, and an 
appropriate ordering and orientation (layout) of the reads are 
found. Finally, a consensus sequence (contig) is computed 
from the ordered and oriented reads. This approach has been 
used successfully by Celera to assembly the human genome. 

Overlap requires significant compute time. Naively, one 
could simply compare all pairs of reads using dynamic 
programming to check whether each pair has a significant 
overlap. Such an algorithm requires O(n2) time, where n is the 
total number of sequenced bases. To accelerate overlap 
detection, an index is constructed to maps k-mers to the list of 
reads containing the k-mer (k in range of 16–24 bases). Layout 
tries to generate unitigs (collections of reads assembled) [16]. 
The assembler removes low-quality sequence reads and 
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overlaps that are likely to be sequencing artifacts and removes 
redundant edges. Finally, the layout algorithm finds 
unambiguous regions of the graph. After reads are ordered and 
oriented, an alignment is constructed from overlaps, and a 
consensus sequence is inferred. The overlap computation has a 
particular bottleneck. Naive methods that scaled quadratically 
were impractical when faced with datasets containing 
hundreds of Gb of sequences. For these reasons, most works 
on assembling high-throughput short-read sequence data have 
relied on the de Bruijn graph approach. 

b. de Bruijn graphs 
The foundation for de Bruijn graph-based assembly of 

whole-genome sequencing is presented in [1]. Each read is 
broken into a sequence of overlapping k-mers. The distinct k-
mers are added as vertices to the graph, and k-mers that 
originate from adjacent positions in a read are linked by an 
edge. The assembly problem can be formulated as finding a 
walk through the graph that visits each edge in the graph once 
– a Eulerian path problem. In most instances, the assembler 
attempts to construct contigs consisting of unambiguous, 
unbranching regions of the graph. 

The de Bruijn graph approach has a significant 
computational advantage when compared with overlap-based 
assembly strategies since it does not require finding overlaps 
between pairs of reads and, therefore, it does not require 
expensive dynamic programming procedures to identify such 
overlaps. Instead, the overlap between reads is implicit in the 
structure of the graph. The graph can easily be constructed as 
first f k-mers can be extracted from reads and added as vertices 
in the graph and second adjacent k-mers can be extracted from 
reads and added as edges. With suitable choices of data 
structures to represent the graph, this process can be completed 
nearly as fast as data can be read from disk. However, due to 
high memory costs of the de Bruijn assembly, it could be 
computationally infeasible for processing e.g., mammalian 
genomes. There is approximately one k-mer for ever y base in 
a genome; then, de Bruijn graph of mammalian genomes has 
billions of vertices. ABySS assembler introduced a 
representation of the graph that did not explicitly store edges 
and SOAP de novo assembler uses a similar technique 
improving the memory consumption. 

c. String graphs. 
The de Bruijn graph has the elegant property that repeats 

get collapsed. All copies of a repeat are represented as a single 
segment in the graph with multiple entries and exit points. 
Myers [16] observed that a similar property could be obtained 
for overlap-based assembly methods by performing two 
transformations of an overlap graph. First, contained reads 
(substrings of other reads) are removed. Second, transitive 
edges are removed from the graph. The resulting string graph 
shares many properties with the de Bruijn graph without the 
need to break their ads into k-mers. The Edena assembler 
applied the string graph with early short-read sequencing data. 

C. Modeling Mate-Pairs 

Mate-pair information provides valuable constraints on the 
relative placement of sequence reads in an assembly. These 
constraints have been used to check the correctness of the 
assembly. Mate-pair information can also be used to link 

independent contigs into scaffolds-groups of contigs whose 
relative order and orientation are known and that are separated 
by gaps of approximately known size. The gaps between 
contigs represent sections of the genome that could not be 
reconstructed by the assembler owing to either missing data as 
the systematic bias of DNA sequencing or repeats. Mate-pair 
information can also be used to resolve certain repeats, 
potentially leading to longer and more accurate contigs. 
ALLPATHS assembler attempts to enumerate all paths 
connecting endpoints of a mate pair; to modify the de Bruijn 
graph to encode the mate-pair information; thereby resolving 
segments of graph consistent with the mate-pair information.  

IV. DESIGNING ARROW  

A. The ArrOW Conceptual Specification  

Assembly experiments can be divided into three main 
macro-activities (Figure 1), each one decomposed into one or 
more activities of ArrOW. (I) Macro-Activity Trimming 
Quality of Reads executes the activity (1) Sickle. (II) Macro-
Activity Assembling Reads executes activities (2) shuffle, (3) 
velveth, (4) velvetg (from Velvet), (5) MetaVelvet, and (6) 
Ray. (III) Macro-Activity Calculating Length Distribution of 
Assemblies executes activities (7) assemstat1, (8) assemstat2, 
and (9) assemstat3 (from assemstat).  

 
Figure 1. The conceptual view of the workflow ArrOW  

The first activity executes the library sickle, which trims 
Illumina paired-end reads from 3’ to 5’ end using a sliding 
window technique (drops below 20 value) and generates as 
results two trimmed files for forward and reverse reads. After 
the execution of sickle, ArrOW invokes in parallel the 
assemblers Velvet (activities 2, 3, 4), MetaVelvet (activity 5), 
and Ray (activity 6) that use as inputs the trimmed files and 
generate assembled reads and contigs into a file. 

Velvet is a de Bruijn assembler. It executes three steps: 
shuffleSequences_fastq.pl script converts reads to interleaved 
format file; velveth uses the information of each interleaved 
reads to construct the dataset (hashes reads) for velvetg; which 
builds the de Bruijn graph from k-mers (k=21), runs 
simplification and error correction over the graph, extracts 
contigs, and creates an output directory “out_21_velvet”. 
MetaVelvet is a modification and extension of the single-
genome and de Bruijn-graph based assembler (Velvet), for 
short reads to metagenome assembly. It is executed on 
directory “out_21_velvet”. Ray improves on the standard de 
Bruijn graph by employing greedy heuristics; it executes the 
activity 6. Finally, the activities 7, 8, and 9 execute the in-
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house script assemstats.py, for the three assemblers, and 
calculates the length distributions of the resulting assemblies. 

B. Modeling ArrOW using SciCumulus 

ArrOW could be executed by any parallel SWfMS. 
SciCumulus was our choice since it supports HPC and 
provenance features, as have been demonstrated in 
bioinformatics [17]. ArrOW activities are instrumented using 
the scripts of configuration (template “xml”) and execution 
(extractor “sh”) of SciCumulus. Instrumentation allows 
capturing and storing workflow metadata in the provenance 
database. The metadata and records information from 
assembly experiments – length distribution, total number of 
contigs or N50 contig length – can be used with performance 
results of the workflow. There are several advantages to using 
SciCumulus that are not available in other SWfMSs. Scientists 
can query the provenance database at runtime to help in 
workflow configuration, reuse previously related workflows or 
model a new one. These queries can be as simple as “Obtain 
statistics of ArrOW executions” as presented in Query 1 and 
Figure 2(A) or “Retrieve names, sizes and locations of ArrOW 
data files with the extension ‘.unpaired.fastq’” as presented in 
Query 2; or more complex by mixing these simple ones e.g., 
extraction of domain-specific data stored in data files.  

The second benefit is related to the scheduling cost model 
of SciCumulus. Since ArrOW activities have heterogeneous 
execution time distribution, SciCumulus can schedule short-
term activities to less powerful virtual machines (VMs) and 
long-term activities to more powerful VMs and to scale the 
amount of VMs up and down according to performance 
behavior. For example, Ray is computing intensive and 
demands more capacity power (CPU, memory) than other 
assemblers. By querying Ray execution history in the 
provenance database, SciCumulus scales up the amount of 
VMs to improve the performance. The third benefit is related 
to the fault tolerance. Each execution of ArrOW has about 
6.1% of activity execution failures. These faulty executions 
have to be aborted and SciCumulus has to restart each activity. 
Since it has all the information stored in the provenance 
repository it does not need to restart the entire workflow. It is 
easy to find and re-execute only failed activities. 

V. EXPERIMENTAL EVALUATION 

A. Environment Setup 

SciCumulus is based on an algebraic approach where each 
activity receives a relation (table of several independent 
tuples) as input and independently processes each tuple. By 
storing the provenance data of workflow executions, powerful 
domain-specific queries can be defined. For example, for each 
parameter, SciCumulus records all steps and files associated 
with executed activities with this parameter in the provenance 
database. Records are queried for systematic analysess of the 
experiment in partial, or as a whole, after its completion. We 
have deployed SciCumulus on top of Amazon AWS. Amazon 
AWS is one of the most popular cloud providers, and many 
scientific and commercial applications are being deployed on 
it. It provides several different types of VMs with unique 
characteristics (CPU, RAM, storage capacity). In this paper, 

Amazon’s C5 types have just considered: c5.9xlarge (36 cores, 
72GB RAM), c5.4xlarge (16 cores, 32GB RAM), and 
c5.xlarge (4 cores, 8GB RAM). Each VM uses Linux Cent OS 
(64-bit) and was configured with necessary software and 
libraries. VMs can be accessed using SSH without password 
checking (although this is not recommended due to security 
issues). In terms of software, all VMs, no matter its type, 
execute the same programs and configurations. According to 
Amazon AWS, all VMs were instantiated in the US East-N. 
Virginia location and follow the pricing rules of that locality. 

B. Experiment Setup 

The 1,000 metagenomics raw datasets were downloaded 
from the NCBI Assembly, which are composed of different 
sizes of sequence reads. For instance the human metagenome 
anterior nares assembly data sequenced by Illumina (paired-
end reads) has a GenBank entry (ID) with Assembly Name 
SRS018585 and Assembly Accession GCA_900218245. Other 
biological metadata are project definition, accession reference, 
the link of the FASTA sequence, etc. The dataset SRS018585 
is composed of three files (SRS018585.trimmed.)*1.fastq, 
*.2.fastq, and *.singleton.fastq.  

To evidence the advantages of the SciCumulus adaptation 
with respect to size of sequence files, we fixed the assembly 
program i.e., independently of sequence size we processed the 
entire dataset with the three assemblers. The assembly 
software were configured with default parameters: Sickle 1.3, 
Velvet 1.2.08, MetaVelvet 1.2.02, Ray 2.2.0, and assemstat 
script. According to Khan et al., [22], there is a clear 
association between assembly constructions of Ray, Velvet, 
and MetaVelvet, which was observed by our results. The 
comparative study of seven assemblers (ABySS, Velvet, 
Edena, SGA, Ray, SSAKE, Perga) were used datasets from the 
Illumina platform. Results showed that Velvet and ABySS 
outperformed in all assemblers with low assembling time and 
high accuracy values (number of contigs, high N50 length). 
Velvet consumed the least amount of memory and Ray was 
extremely high time computing. This type of study provides 
assistance to the scientists for selecting the suitable assembler 
according to the data and computational environmental. 

C. Performance Evaluation of ArrOW 

Before discussing the overall performance of ArrOW, we 
analyze the execute time of each workflow activity. By 
querying the provenance repository of SciCumulus, the 
statistics related to the execution time of all ArrOW activities 
are extracted as shown in Figure 2. Figure 2(A) presents the 
statistics values of ArrOW’s activity executions of average 
execution time (770.16 sec.), median (14.0 sec.), and 
maximum (2,660.0 sec.). The main advantage of such 
distribution is to demonstrate that SciCumulus is able to 
distribute compute-intensive (i.e., long-term) executions to 
more powerful VMs. On the other hand, SciCumulus 
dispatches less intensive (short-term) executions to less power 
VMs. It is worth mentioning that most activities of ArrOW are 
short-term ones. The activities that present the long-term 
executions are associated with MetaVelvet and Ray. Figure 
2(B) presents the distribution of the total execution time (i.e., 
TET) per activity considering a 16 cores execution. 
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Figure 2. (A) The distribution of the execution time statistics of ArrOW. (B) 
The execution time histogram of ArrOW per 

We first measure the performance of all programs (
3) on a single VM to analyze the local optimization before 
adding more VMs to the execution pool. We measured the 
scalability of ArrOW using a combination of 
c5.4xlarge, and c5.xlarge VMs up to 256 virtual cores. As the 
number of VMs increases (number of virtual cores), the
of ArrOW executions decreases, as expected
performance gains are very encouraging, 
processes 1,000 assembly reads, the TET was reduced from 
1.2 days (using 8 cores) to 3.4 hours (using 256 cores).

Figure 3. The total execution time of ArrOW

Even with cloud performance fluctuations, when using 16 
cores ArrOW is approximately 14.55 times faster than the 
best-performing workflow execution on a single core.
always a gain by adding more cores to the execution, from 8 
up to 256 cores, but the efficiency (Figure 
degradation in all executions since VMs are heterogeneous and 
load balancing becomes more complex, thus introducing 
overhead in activity distributions by SciCumulus. 
indicate that acquiring more than 16 cores may not bring the 
expected benefit, particularly if financial costs are involved.

Figure 4. The efficiency of ArrOW

(A)

 
(A) The distribution of the execution time statistics of ArrOW. (B) 

The execution time histogram of ArrOW per activity 

We first measure the performance of all programs (Figure 
) on a single VM to analyze the local optimization before 

. We measured the 
scalability of ArrOW using a combination of c5.9xlarge, 

VMs up to 256 virtual cores. As the 
number of VMs increases (number of virtual cores), the TET 

, as expected (Figure 3). The 
, e.g., when ArrOW 

processes 1,000 assembly reads, the TET was reduced from 
3.4 hours (using 256 cores).  

 
ArrOW 

with cloud performance fluctuations, when using 16 
cores ArrOW is approximately 14.55 times faster than the 

performing workflow execution on a single core. There is 
by adding more cores to the execution, from 8 

Figure 4) presents a 
degradation in all executions since VMs are heterogeneous and 
load balancing becomes more complex, thus introducing 

by SciCumulus. Results 
indicate that acquiring more than 16 cores may not bring the 
expected benefit, particularly if financial costs are involved. 

 
ArrOW 

Overall, our performance analyses were 
information obtained by querying SciCumulus provenance 
repository after the workflow termination. The provenance 
repository of SciCumulus is based on the W3C PROV and 
PROV-Wf models. Due to that, the foll
executed to extract the desired information

Query 1: “Obtain TET, statistical averages and biological 
information related to ArrOW
provenance repository allows extracting
all executions of ArrOW activities
useful in large-scale experiments, as 
workflows are running, or if any execution fails. It is possible 
that errors are related with size 
or metagenomes), or high k-mer
cannot be processed by assembl

SELECT a.tag,  
min(extract ('epoch' from (t.endtime
max(extract ('epoch' from (t.endtime
sum(extract ('epoch' from (t.endtime
avg(extract ('epoch' from (t.endtime

FROM hworkflow w, hactivity a, hactivation
WHERE w.wkfid = a.wkfid 
AND a.actid = t.actid 
AND w.wkfid =382 
GROUP BY a.tag 

Figure 2(B) shows results 
required for the assembly processing for each read dataset
analyzing the influence in assembling execution time 
sizes, assemblers, and parameters. 
and efficiency (Figure 4) can be calcula

D. Biological Analysis 

Table 1 shows statistics 
ArrOW with Velvet, MetaVelvet
assemblers were decomposed into contigs files
analyses of accuracy of assembler
based on total number of contigs and N50 contig length
were collected with the Python script 
analysis, k-mer was defined as 21

TABLE 1. THE RESULTS OF ASSEMBLY

Statistics / 
cut-off 

100 

Velvet MVelvet Ray 

sum base 2892975 2889138 404510 
ncontig 30886 30884 2830 
cut_off 17913 17889 2830 

min 100 100 100 
med 147 147 128 

mean 161 161 142 
max 1420 1420 667 
n50 6339 6330 1083 

n50_len 165 165 139 

In an ideal condition, the minimum number of contigs that 
matches the whole genome sequence could be generated from 
each assembly procedure. Scientists try to 
of the stats represents by varying the cut
1,000, etc. At 1,450 of cut-off, all assemblers did not find 
sequences longer than the threshold
paired-end datasets, Ray assembled short reads into 
relatively low number of contigs at 100 of cut
Ray did not find sequences longer than the threshold.
paired-end datasets, Velvet produced high N50 contig length, 
whereas Ray produced low N50 contig length. 
often used statistics in assembly length distribution 

(B) Overall, our performance analyses were eased by the 
information obtained by querying SciCumulus provenance 
repository after the workflow termination. The provenance 
repository of SciCumulus is based on the W3C PROV and 

Wf models. Due to that, the following query was 
executed to extract the desired information. 

: “Obtain TET, statistical averages and biological 
ArrOW executions”. Querying 

extracting the execution time for 
activities. This information is very 

scale experiments, as it is possible to know how 
workflows are running, or if any execution fails. It is possible 

related with size and origin of reads (genomes 
mer values used in programs that 

assembler. 

min(extract ('epoch' from (t.endtime-t.starttime))), 
max(extract ('epoch' from (t.endtime-t.starttime))), 
sum(extract ('epoch' from (t.endtime-t.starttime))), 

('epoch' from (t.endtime-t.starttime))) 
hactivation t 

 of Query 1 to evaluate the time 
processing for each read dataset, 

in assembling execution time of input 
parameters. Moreover, TET (Figure 3) 
) can be calculated by using Query 1. 

statistics of assembly processes using 
MetaVelvet, and Ray. Outputs from 

decomposed into contigs files used for 
of assemblers. The accuracy evaluation is 

total number of contigs and N50 contig length, which 
Python script assemstats. In this 

as defined as 21. 
SSEMBLY PROCESSES FOR ARROW 

500 1,000 

Velvet MVelvet Ray Velvet MVelvet Ray 
 63344 62287 2372 3802 4676 0 
30883 30884 2830 30883 30884 0 

100 96 4 3 4 0 
500 500 515 1133 1026 0 
565 579 564 1249 1088 0 
633 648 593 1267 1169 0 

1420 1420 667 1420 1420 0 
41 39 2 2 2 0 
618 646 626 1249 1142 0 

In an ideal condition, the minimum number of contigs that 
matches the whole genome sequence could be generated from 
each assembly procedure. Scientists try to find out what each 

by varying the cut-off at 100, 500, 
off, all assemblers did not find 

threshold. Results showed that on 
assembled short reads into a 

low number of contigs at 100 of cut-off. But at 1,000 
Ray did not find sequences longer than the threshold. On 

end datasets, Velvet produced high N50 contig length, 
N50 contig length. One of the most 

n assembly length distribution 
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comparisons is N50 length, a weighted median, where we 
weight each contig by the length. Fifty percent of bases in the 
assembly is contained in contigs shorter or equal to N50 
length. Fifty percent of all bases in assembly is contained in 
contigs shorter or equal to N50 length. N50 is a statistical 
measure of average length of a set of sequences used widely in 
genomics. 

Our results reinforce a previous comparative assembly 
study of Khan et al., [18] about a clear association of statistics 
obtained from assemblers as well as that Ray presents high 
CPU-memory requirements. It was also observed that Velvet 
is more scalable than Ray at running larger read datasets. In 
practice, an assembler which produces the fewer number of 
contigs with high N50 is considered as the ideal. We highlight 
that only our study in assembly experiments was designed for 
HPC and SWfMS based on provenance. 

Query 2 extracts some biological results contained in the 
assembling outputs files ‘*ontigs.fa*’. Query 2: “Retrieve 
names, sizes, and locations of files with extension 
‘*ontigs.fa*’ produced by ArrOW and which workflow and 
activities produced those files”. Query 2 is crucial for runtime 
monitoring of ArrOW workflow execution. It helps biological 
analysis at runtimeand to verify resulting length distributions 
obtained after the assembly (contained in ‘*ontigs.fa*’ files).  

Without querying the provenance database with Query 2, 
scientists would need to browse all directories manually and 
search which pairs were assembled successfully. Then they 
would need to separate and open these files to extract the 
information of the assembly process. The provenance 
database stores all this data and its relationships on a 
structured model. Thus it simplifies the querying process and 
allows for long-term analyses over experimental data.  

VI. FINAL REMARKS AND FUTURE WORK 

Assembly workflows executed by SWfMS can manage 
comparisons of a large volume of datasets and parameters 
variability as the k-mer values, reducing the long processing 
time for assembly analyses. In this paper, we proposed the 
ArrOW workflow to execute and manage assembly data-
intensive experiments aiming the evaluation of three de novo 
sequence assemblers in terms of time execution, efficiency, 
and accuracy. ArrOW was executed with SciCumulus in 
Amazon AWS using parallel processing. 

Our experiment evaluated 1,000 read sequence datasets. 
We found that each assembler is capable of assembling the 
whole genome but Ray assembler is the most time-expensive. 
Khan et al., [18] reported that Ray is not capable of 
assembling a eukaryotic genome with an environment about 4 
GB of RAM or less. Velvet produced generally the best results 
among all three assemblers with comparatively low 
assembling time. The hybrid approach, Ray, also showed high 
N50 value, considered being ideal; however, the extremely 
high assembling time used by the Ray might make it 
prohibitively slow on large datasets. 

ArrOW generated 9,000 workflow activity executions 
(1,000 executions for each of the 9 activities), producing 350 
Gigabytes of data for the workflow execution. By analyzing 

the overall performance, through the provenance database, we 
state that ArrOW obtained significant gains with Velvet, 
MetaVelvet, and Ray. For example, executions with 256 cores 
reach performance improvements up to 88.3% for ArrOW. 
Based on the TET, speedup, efficiency, total assembly time 
(activities of assemblers Velvet, MetaVelvet, and Ray), total 
number of contig, and N50 contig length values, we observe 
that ArrOW with Velvet outperforms the others assemblers. 
Overall, the overhead imposed by the executions of ArrOW 
with SciCumulus is compensated by the advantages of data 
parallelism without too much effort from bioinformaticians. 
ArrOW results provide evidence that large computations 
involving assembly experiments can benefit from SciCumulus 
in clouds. Finally, the results presented in this paper can be 
extrapolated to the development of workflows in other areas 
that also require the exploration of large amounts of NGS data. 
As future work, we plan to explore complete human 
metagenomes of actual interest and to search for new 
candidate drug target enzymes. 
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