
ArrOW: Experiencing a Parallel Cloud-based
De Novo Assembler Workflow

Kary Ocaña1, Thaylon Guedes2, Daniel de Oliveira2
1National Laboratory of Scientific Computing - LNCC, Petrópolis Rio de Janeiro - Brazil

2Institute of Computing, Fluminense Federal University - UFF, Niterói - Rio de Janeiro - Brazil
karyann@lncc.br; thaylongs@id.uff.br; danielcmo@ic.uff.br

Abstract—Advances in next generation sequencing technologies
has resulted in the generation of unprecedented volume of
sequence data. DNA segments are combined into a
reconstruction of the original genome using computer software
called genome assemblers. Therefore, assembly now presents
new challenges in terms of data management, query, and
analysis due the huge number of read sequences and computing
intensive CPU-memory algorithms. This restriction reduces the
chances to uniformly cover space for exploring statistics, k-mer,
software or eukaryotic genomes assembly. To address these
issues, we present ArrOW, a cloud-based de novo Assembly
clOud Workflow that explores the potential of provenance
analytics and parallel computation provided by scientific
workflow management systems as SciCumulus. We evaluate the
overall performance of ArrOW using up to 256 cores in the
Amazon AWS cloud. ArrOW reaches improvements up to
88.3% executing 1,000 reads of genomics datasets. We also
highlight how data provenance analytics improved the efficiency
for recovering assembling features of genomes.

Keywords-component; workflow; cloud; assembly

I. INTRODUCTION

The current genomic revolution was possible due to joint
advances in Next Generation Sequencing (NGS) and genomics
computational approaches. The close interaction of biology,
chemistry, engineering, and computer science is perhaps most
apparent in the development of sophisticated genomics
computational software called assemblers. Assemblers aim to
reconstruct genome sequences from the many small segments
of DNA that can be read by modern DNA sequencing
machines. Genome size is a factor associated with the
complexity in assembly. Bacteriophages and viruses range
from a few thousand base pairs (bp) to several hundred Kb,
bacterial genomes range from 0.5 to 10 Megabase pairs (Mb),
eukaryotic genomes are diverse, from 10 Mb in fungi to more
than 100,000 Mb in plants. The human genome comprises
more than 4 Gigabase pairs (Gb). However, even using
complex mathematical optimizations [1], genome assembly is
still computationally intractable.

The strategy adopted by genome assemblers can be widely
divided into comparative assembly and de novo assembly.
Actually, de novo assemblers are most commonly used to
assembling. Two common types of de novo assemblers are
greedy algorithms [2] and based on Bruijn graph [1]. In terms
of complexity and time requirements, de novo is order of
magnitude slower and more memory intensive than mapping
assemblies. This is mostly due to the fact that the assembly
algorithm needs to compare every read with every other read
(an operation that has a naive time complexity of O(n2).

Although some scientists already develop automated
experiments for assembling data analysis, they are not mature
yet [3]–[5]. Assembly experiments are based on complex
computer simulations that consume and produce large datasets
and allocate huge amounts of computational resources. To
help scientists in managing resources involved in large-scale
simulations, scientific workflows are gaining much interest. A
scientific workflow is an abstraction that structures steps of a
scientific experiment as a graph of activities, in which nodes
correspond to data processing activities and edges the dataflow
between them [6]. Scientific Workflow Management Systems
(SWfMS) allow for defining, executing, and monitoring
workflow execution. These engines distribute several
concurrent activity executions in a High Performance
Computing (HPC) environment while capturing provenance
data [7] i.e., historical information of the workflow execution.

The complexity of designing an assembly workflow is also
related as the task of choosing the set of programs and
parameters, the most adequate to assembly process. The
complexity of its implementation is related to the management
of thousands of combinations of DNA fragments, parameters
variability of k-mers, and results. SWfMS can be used to
control DNA fragments and parameters combination
automatically as a parameter sweep problem. Since assembly
workflows may execute for weeks they require HPC resources
and technologies. Clouds are becoming a viable alternative to
traditional clusters and grids as they have demonstrated
applicability to a wide-range of problems in several scientific
domains [8]. Cloud environments like Amazon AWS [9] ease
the deployment of experiments and data as services.

As aforementioned, processing data in parallel is an open
issue and only part of the solution at exploring large assembly
datasets. There are assembly workflows that explore parallel
processing with different approaches, but all of them limit the
number of data or parameters in each execution [3], [10] and
none of them vary the parameter and program for each read
sequences input. Tracking these variations along results is very
complex but needed in assembly analyses. For instance, for
each assembler may be needed to perform several workflow
executions using different k-mers.

This paper addresses several problems of designing a HPC
assembly workflow with provenance data analytics at large-
scale. We present the Assembly clOud Workflow (ArrOW)
using SciCumulus [11] Cloud SWfMS. For genomics data,
ArrOW invokes Ray, Velvet, and MetaVelvet. Otherwise, for
metagenomics, it invokes only MetaVelvet. Finally, results of
ArrOW are analyzed with the help of provenance database by
submitting high level database analytical queries. We evaluate
ArrOW with Illumina metagenomics data (human nares) and

185

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00039

present a performance analysis of ArrOW parallel executions
using up to 256 cores in Amazon AWS. The results show that
ArrOW is capable of processing up to 1,000 read sequences
with significant performance improvements. The highest
performance gain in ArrOW reduces execution time from 1.5
days (8 cores) to 3.4 hours (256 cores).

This paper is organized as follows. Section II discusses
related work. Section III presents background on assembly.
Section IV describes the specification of the ArrOW workflow
and presents its implementation using SciCumulus SWfMS.
Section V shows the experimental results and Section VI
concludes the paper and points out future work.

II.RELATED WORK

Relevant works of computational challenges for whole-
genome sequencing, assembly, and annotation are surveyed by
El-Metwally et al. [12] and Ekblom and Wolf [13]. The viral
genome assembly pipeline VirAmp [14] connects several
existing programs via the web-based platform Galaxy and is
available in Amazon Elastic Cloud disk image. However, no
computational performance analyses were performed. Several
workflows, such as iMetAMOS [10] and A5 [3] were
proposed to identify and select the best assembler; however,
they focus on prokaryote genome assemblies, which demands
manageable and easier computational resources. RAMPART
[4] uses a configurable SWfMS for de novo genome assembly
that executes combinations of third-party tools and settings
with good results for eukaryotic genomes. RAMPART
supports HPC technologies, shared memory systems, and
Platform Load Sharing Facility and Portable Batch System
schedulers with plans to support Sun Grid Engine in future.
However, it does not provide workflow provenance-based
analysis for fault tolerance or re-execution of failed activities.

META-pipe [5] pipeline provides integration with identity
provider services, distributed storage, Galaxy workflows,
Stallo job scheduler, and interactive data visualizations. The
scalability and performance have evaluated on distributed
compute and storage resources. META-pipe 1.0 has several
limitations as a scalable bioinformatics service. Their custom
pipeline framework has no support for provenance data nor
failure handling. The re-implemented META-pipe 2.0 uses
Apache Spark and can take advantage of novel HPC features.

III. BACKGROUND OF SEQUENCE ASSEMBLY

Sequence assembly refers to aligning and merging many
fragments of a much longer target DNA sequence in order to
reconstruct the target sequence. Due to the randomness of the
fragmentation process of the DNA, the individual fragments
could be expected to overlap one another, and these overlaps
could be recognized by comparing the DNA sequences of the
corresponding fragments. This process is time consuming and
labor intensive. However, that even with mathematical
formulations [1], genome assembly can be shown to be
computationally intractable due to the issue of repeats and the
complexity they introduce in the assembly process.

The simplicity of the shotgun sequencing process captured
the interest of mathematicians and computer scientists and led
to the rapid development of the theoretical foundations for
genomics sequence assembly. Lander and Waterman [15]

estimated the size and number of contiguous genomic
segments that can be reconstructed from a set of sequence
reads as a function of just three parameters: length of reads,
coverage of genome, and minimum overlap between two reads
that can be effectively detected by an assembler.

The computational complexity of the assembly problem is
formalized as an instance of the shortest common superstring
problem for finding the shortest string that encompasses all
reads as substrings. Since finding the correct solution may
require to explore an exponential number of possible solutions,
the genome sequence assembly can become computationally
intractable. The complexity of sequence assembly depends on
the ratio between the size of sequence reads and repeats; when
reads are longer than repeats, the assembly problem can be
solved, whereas when reads are shorter than repeats. Efforts to
formalize and understand genome sequence assembly have led
to increasingly complex explanations of the problem, which
fall into several broad paradigms, outlined in more detail
following.

A. Greedy-Based Approaches

Greedy algorithm is one of the simplest strategies for
assembling genomes [2]. The process starts by joining the two
reads that overlap the best; then repeats this process until a
predefined minimum quality threshold is reached. As a result,
nascent assembled sequences (contigs) grow through either the
addition of new reads or a joining with previously constructed
contigs. Many of the early genome sequence assemblers relied
on such a greedy strategy: Phrap used by the Human Genome
Project, TIGR Assembler, and CAP series of tools to
reconstruct transcriptomes. Despite its tremendous early
successes, the greedy strategy has a severe limitation since it
cannot effectively handle repeated genomic regions.

B. Graph-Based Approaches

Graph-based assembly models represent sequence reads
and their inferred relationships to one another as vertices and
edges in the graph. Walks through the graph describe an
ordering of reads that can be assembled together. The
assembler tries to find a walk that best reconstructs the
underlying genome while avoiding generating misassemblies
by taking erroneous paths caused by repeats.

a. OLCgraphs
OLC genome assemblers follow three main stages,

overlap, layout, and consensus. First, overlapping pairs of
reads are detected. Second, the graph is constructed, and an
appropriate ordering and orientation (layout) of the reads are
found. Finally, a consensus sequence (contig) is computed
from the ordered and oriented reads. This approach has been
used successfully by Celera to assembly the human genome.

Overlap requires significant compute time. Naively, one
could simply compare all pairs of reads using dynamic
programming to check whether each pair has a significant
overlap. Such an algorithm requires O(n2) time, where n is the
total number of sequenced bases. To accelerate overlap
detection, an index is constructed to maps k-mers to the list of
reads containing the k-mer (k in range of 16–24 bases). Layout
tries to generate unitigs (collections of reads assembled) [16].
The assembler removes low-quality sequence reads and

186

overlaps that are likely to be sequencing artifacts and removes
redundant edges. Finally, the layout algorithm finds
unambiguous regions of the graph. After reads are ordered and
oriented, an alignment is constructed from overlaps, and a
consensus sequence is inferred. The overlap computation has a
particular bottleneck. Naive methods that scaled quadratically
were impractical when faced with datasets containing
hundreds of Gb of sequences. For these reasons, most works
on assembling high-throughput short-read sequence data have
relied on the de Bruijn graph approach.

b. de Bruijn graphs
The foundation for de Bruijn graph-based assembly of

whole-genome sequencing is presented in [1]. Each read is
broken into a sequence of overlapping k-mers. The distinct k-
mers are added as vertices to the graph, and k-mers that
originate from adjacent positions in a read are linked by an
edge. The assembly problem can be formulated as finding a
walk through the graph that visits each edge in the graph once
– a Eulerian path problem. In most instances, the assembler
attempts to construct contigs consisting of unambiguous,
unbranching regions of the graph.

The de Bruijn graph approach has a significant
computational advantage when compared with overlap-based
assembly strategies since it does not require finding overlaps
between pairs of reads and, therefore, it does not require
expensive dynamic programming procedures to identify such
overlaps. Instead, the overlap between reads is implicit in the
structure of the graph. The graph can easily be constructed as
first f k-mers can be extracted from reads and added as vertices
in the graph and second adjacent k-mers can be extracted from
reads and added as edges. With suitable choices of data
structures to represent the graph, this process can be completed
nearly as fast as data can be read from disk. However, due to
high memory costs of the de Bruijn assembly, it could be
computationally infeasible for processing e.g., mammalian
genomes. There is approximately one k-mer for ever y base in
a genome; then, de Bruijn graph of mammalian genomes has
billions of vertices. ABySS assembler introduced a
representation of the graph that did not explicitly store edges
and SOAP de novo assembler uses a similar technique
improving the memory consumption.

c. String graphs.
The de Bruijn graph has the elegant property that repeats

get collapsed. All copies of a repeat are represented as a single
segment in the graph with multiple entries and exit points.
Myers [16] observed that a similar property could be obtained
for overlap-based assembly methods by performing two
transformations of an overlap graph. First, contained reads
(substrings of other reads) are removed. Second, transitive
edges are removed from the graph. The resulting string graph
shares many properties with the de Bruijn graph without the
need to break their ads into k-mers. The Edena assembler
applied the string graph with early short-read sequencing data.

C. Modeling Mate-Pairs

Mate-pair information provides valuable constraints on the
relative placement of sequence reads in an assembly. These
constraints have been used to check the correctness of the
assembly. Mate-pair information can also be used to link

independent contigs into scaffolds-groups of contigs whose
relative order and orientation are known and that are separated
by gaps of approximately known size. The gaps between
contigs represent sections of the genome that could not be
reconstructed by the assembler owing to either missing data as
the systematic bias of DNA sequencing or repeats. Mate-pair
information can also be used to resolve certain repeats,
potentially leading to longer and more accurate contigs.
ALLPATHS assembler attempts to enumerate all paths
connecting endpoints of a mate pair; to modify the de Bruijn
graph to encode the mate-pair information; thereby resolving
segments of graph consistent with the mate-pair information.

IV. DESIGNING ARROW

A. The ArrOW Conceptual Specification

Assembly experiments can be divided into three main
macro-activities (Figure 1), each one decomposed into one or
more activities of ArrOW. (I) Macro-Activity Trimming
Quality of Reads executes the activity (1) Sickle. (II) Macro-
Activity Assembling Reads executes activities (2) shuffle, (3)
velveth, (4) velvetg (from Velvet), (5) MetaVelvet, and (6)
Ray. (III) Macro-Activity Calculating Length Distribution of
Assemblies executes activities (7) assemstat1, (8) assemstat2,
and (9) assemstat3 (from assemstat).

Figure 1. The conceptual view of the workflow ArrOW

The first activity executes the library sickle, which trims
Illumina paired-end reads from 3’ to 5’ end using a sliding
window technique (drops below 20 value) and generates as
results two trimmed files for forward and reverse reads. After
the execution of sickle, ArrOW invokes in parallel the
assemblers Velvet (activities 2, 3, 4), MetaVelvet (activity 5),
and Ray (activity 6) that use as inputs the trimmed files and
generate assembled reads and contigs into a file.

Velvet is a de Bruijn assembler. It executes three steps:
shuffleSequences_fastq.pl script converts reads to interleaved
format file; velveth uses the information of each interleaved
reads to construct the dataset (hashes reads) for velvetg; which
builds the de Bruijn graph from k-mers (k=21), runs
simplification and error correction over the graph, extracts
contigs, and creates an output directory “out_21_velvet”.
MetaVelvet is a modification and extension of the single-
genome and de Bruijn-graph based assembler (Velvet), for
short reads to metagenome assembly. It is executed on
directory “out_21_velvet”. Ray improves on the standard de
Bruijn graph by employing greedy heuristics; it executes the
activity 6. Finally, the activities 7, 8, and 9 execute the in-

1

2

3

4

5

6

7-9

2

3

4

187

house script assemstats.py, for the three assemblers, and
calculates the length distributions of the resulting assemblies.

B. Modeling ArrOW using SciCumulus

ArrOW could be executed by any parallel SWfMS.
SciCumulus was our choice since it supports HPC and
provenance features, as have been demonstrated in
bioinformatics [17]. ArrOW activities are instrumented using
the scripts of configuration (template “xml”) and execution
(extractor “sh”) of SciCumulus. Instrumentation allows
capturing and storing workflow metadata in the provenance
database. The metadata and records information from
assembly experiments – length distribution, total number of
contigs or N50 contig length – can be used with performance
results of the workflow. There are several advantages to using
SciCumulus that are not available in other SWfMSs. Scientists
can query the provenance database at runtime to help in
workflow configuration, reuse previously related workflows or
model a new one. These queries can be as simple as “Obtain
statistics of ArrOW executions” as presented in Query 1 and
Figure 2(A) or “Retrieve names, sizes and locations of ArrOW
data files with the extension ‘.unpaired.fastq’” as presented in
Query 2; or more complex by mixing these simple ones e.g.,
extraction of domain-specific data stored in data files.

The second benefit is related to the scheduling cost model
of SciCumulus. Since ArrOW activities have heterogeneous
execution time distribution, SciCumulus can schedule short-
term activities to less powerful virtual machines (VMs) and
long-term activities to more powerful VMs and to scale the
amount of VMs up and down according to performance
behavior. For example, Ray is computing intensive and
demands more capacity power (CPU, memory) than other
assemblers. By querying Ray execution history in the
provenance database, SciCumulus scales up the amount of
VMs to improve the performance. The third benefit is related
to the fault tolerance. Each execution of ArrOW has about
6.1% of activity execution failures. These faulty executions
have to be aborted and SciCumulus has to restart each activity.
Since it has all the information stored in the provenance
repository it does not need to restart the entire workflow. It is
easy to find and re-execute only failed activities.

V. EXPERIMENTAL EVALUATION

A. Environment Setup

SciCumulus is based on an algebraic approach where each
activity receives a relation (table of several independent
tuples) as input and independently processes each tuple. By
storing the provenance data of workflow executions, powerful
domain-specific queries can be defined. For example, for each
parameter, SciCumulus records all steps and files associated
with executed activities with this parameter in the provenance
database. Records are queried for systematic analysess of the
experiment in partial, or as a whole, after its completion. We
have deployed SciCumulus on top of Amazon AWS. Amazon
AWS is one of the most popular cloud providers, and many
scientific and commercial applications are being deployed on
it. It provides several different types of VMs with unique
characteristics (CPU, RAM, storage capacity). In this paper,

Amazon’s C5 types have just considered: c5.9xlarge (36 cores,
72GB RAM), c5.4xlarge (16 cores, 32GB RAM), and
c5.xlarge (4 cores, 8GB RAM). Each VM uses Linux Cent OS
(64-bit) and was configured with necessary software and
libraries. VMs can be accessed using SSH without password
checking (although this is not recommended due to security
issues). In terms of software, all VMs, no matter its type,
execute the same programs and configurations. According to
Amazon AWS, all VMs were instantiated in the US East-N.
Virginia location and follow the pricing rules of that locality.

B. Experiment Setup

The 1,000 metagenomics raw datasets were downloaded
from the NCBI Assembly, which are composed of different
sizes of sequence reads. For instance the human metagenome
anterior nares assembly data sequenced by Illumina (paired-
end reads) has a GenBank entry (ID) with Assembly Name
SRS018585 and Assembly Accession GCA_900218245. Other
biological metadata are project definition, accession reference,
the link of the FASTA sequence, etc. The dataset SRS018585
is composed of three files (SRS018585.trimmed.)*1.fastq,
*.2.fastq, and *.singleton.fastq.

To evidence the advantages of the SciCumulus adaptation
with respect to size of sequence files, we fixed the assembly
program i.e., independently of sequence size we processed the
entire dataset with the three assemblers. The assembly
software were configured with default parameters: Sickle 1.3,
Velvet 1.2.08, MetaVelvet 1.2.02, Ray 2.2.0, and assemstat
script. According to Khan et al., [22], there is a clear
association between assembly constructions of Ray, Velvet,
and MetaVelvet, which was observed by our results. The
comparative study of seven assemblers (ABySS, Velvet,
Edena, SGA, Ray, SSAKE, Perga) were used datasets from the
Illumina platform. Results showed that Velvet and ABySS
outperformed in all assemblers with low assembling time and
high accuracy values (number of contigs, high N50 length).
Velvet consumed the least amount of memory and Ray was
extremely high time computing. This type of study provides
assistance to the scientists for selecting the suitable assembler
according to the data and computational environmental.

C. Performance Evaluation of ArrOW

Before discussing the overall performance of ArrOW, we
analyze the execute time of each workflow activity. By
querying the provenance repository of SciCumulus, the
statistics related to the execution time of all ArrOW activities
are extracted as shown in Figure 2. Figure 2(A) presents the
statistics values of ArrOW’s activity executions of average
execution time (770.16 sec.), median (14.0 sec.), and
maximum (2,660.0 sec.). The main advantage of such
distribution is to demonstrate that SciCumulus is able to
distribute compute-intensive (i.e., long-term) executions to
more powerful VMs. On the other hand, SciCumulus
dispatches less intensive (short-term) executions to less power
VMs. It is worth mentioning that most activities of ArrOW are
short-term ones. The activities that present the long-term
executions are associated with MetaVelvet and Ray. Figure
2(B) presents the distribution of the total execution time (i.e.,
TET) per activity considering a 16 cores execution.

188

Figure 2. (A) The distribution of the execution time statistics of ArrOW. (B)
The execution time histogram of ArrOW per

We first measure the performance of all programs (
3) on a single VM to analyze the local optimization before
adding more VMs to the execution pool. We measured the
scalability of ArrOW using a combination of
c5.4xlarge, and c5.xlarge VMs up to 256 virtual cores. As the
number of VMs increases (number of virtual cores), the
of ArrOW executions decreases, as expected
performance gains are very encouraging,
processes 1,000 assembly reads, the TET was reduced from
1.2 days (using 8 cores) to 3.4 hours (using 256 cores).

Figure 3. The total execution time of ArrOW

Even with cloud performance fluctuations, when using 16
cores ArrOW is approximately 14.55 times faster than the
best-performing workflow execution on a single core.
always a gain by adding more cores to the execution, from 8
up to 256 cores, but the efficiency (Figure
degradation in all executions since VMs are heterogeneous and
load balancing becomes more complex, thus introducing
overhead in activity distributions by SciCumulus.
indicate that acquiring more than 16 cores may not bring the
expected benefit, particularly if financial costs are involved.

Figure 4. The efficiency of ArrOW

(A)

(A) The distribution of the execution time statistics of ArrOW. (B)

The execution time histogram of ArrOW per activity

We first measure the performance of all programs (Figure
) on a single VM to analyze the local optimization before

. We measured the
scalability of ArrOW using a combination of c5.9xlarge,

VMs up to 256 virtual cores. As the
number of VMs increases (number of virtual cores), the TET

, as expected (Figure 3). The
, e.g., when ArrOW

processes 1,000 assembly reads, the TET was reduced from
3.4 hours (using 256 cores).

ArrOW

with cloud performance fluctuations, when using 16
cores ArrOW is approximately 14.55 times faster than the

performing workflow execution on a single core. There is
by adding more cores to the execution, from 8

Figure 4) presents a
degradation in all executions since VMs are heterogeneous and
load balancing becomes more complex, thus introducing

by SciCumulus. Results
indicate that acquiring more than 16 cores may not bring the
expected benefit, particularly if financial costs are involved.

ArrOW

Overall, our performance analyses were
information obtained by querying SciCumulus provenance
repository after the workflow termination. The provenance
repository of SciCumulus is based on the W3C PROV and
PROV-Wf models. Due to that, the foll
executed to extract the desired information

Query 1: “Obtain TET, statistical averages and biological
information related to ArrOW
provenance repository allows extracting
all executions of ArrOW activities
useful in large-scale experiments, as
workflows are running, or if any execution fails. It is possible
that errors are related with size
or metagenomes), or high k-mer
cannot be processed by assembl

SELECT a.tag,
min(extract ('epoch' from (t.endtime
max(extract ('epoch' from (t.endtime
sum(extract ('epoch' from (t.endtime
avg(extract ('epoch' from (t.endtime

FROM hworkflow w, hactivity a, hactivation
WHERE w.wkfid = a.wkfid
AND a.actid = t.actid
AND w.wkfid =382
GROUP BY a.tag

Figure 2(B) shows results
required for the assembly processing for each read dataset
analyzing the influence in assembling execution time
sizes, assemblers, and parameters.
and efficiency (Figure 4) can be calcula

D. Biological Analysis

Table 1 shows statistics
ArrOW with Velvet, MetaVelvet
assemblers were decomposed into contigs files
analyses of accuracy of assembler
based on total number of contigs and N50 contig length
were collected with the Python script
analysis, k-mer was defined as 21

TABLE 1. THE RESULTS OF ASSEMBLY

Statistics /
cut-off

100

Velvet MVelvet Ray

sum base 2892975 2889138 404510
ncontig 30886 30884 2830
cut_off 17913 17889 2830

min 100 100 100
med 147 147 128

mean 161 161 142
max 1420 1420 667
n50 6339 6330 1083

n50_len 165 165 139

In an ideal condition, the minimum number of contigs that
matches the whole genome sequence could be generated from
each assembly procedure. Scientists try to
of the stats represents by varying the cut
1,000, etc. At 1,450 of cut-off, all assemblers did not find
sequences longer than the threshold
paired-end datasets, Ray assembled short reads into
relatively low number of contigs at 100 of cut
Ray did not find sequences longer than the threshold.
paired-end datasets, Velvet produced high N50 contig length,
whereas Ray produced low N50 contig length.
often used statistics in assembly length distribution

(B) Overall, our performance analyses were eased by the
information obtained by querying SciCumulus provenance
repository after the workflow termination. The provenance
repository of SciCumulus is based on the W3C PROV and

Wf models. Due to that, the following query was
executed to extract the desired information.

: “Obtain TET, statistical averages and biological
ArrOW executions”. Querying

extracting the execution time for
activities. This information is very

scale experiments, as it is possible to know how
workflows are running, or if any execution fails. It is possible

related with size and origin of reads (genomes
mer values used in programs that

assembler.

min(extract ('epoch' from (t.endtime-t.starttime))),
max(extract ('epoch' from (t.endtime-t.starttime))),
sum(extract ('epoch' from (t.endtime-t.starttime))),

('epoch' from (t.endtime-t.starttime)))
hactivation t

 of Query 1 to evaluate the time
processing for each read dataset,

in assembling execution time of input
parameters. Moreover, TET (Figure 3)
) can be calculated by using Query 1.

statistics of assembly processes using
MetaVelvet, and Ray. Outputs from

decomposed into contigs files used for
of assemblers. The accuracy evaluation is

total number of contigs and N50 contig length, which
Python script assemstats. In this

as defined as 21.
SSEMBLY PROCESSES FOR ARROW

500 1,000

Velvet MVelvet Ray Velvet MVelvet Ray
 63344 62287 2372 3802 4676 0
30883 30884 2830 30883 30884 0

100 96 4 3 4 0
500 500 515 1133 1026 0
565 579 564 1249 1088 0
633 648 593 1267 1169 0

1420 1420 667 1420 1420 0
41 39 2 2 2 0
618 646 626 1249 1142 0

In an ideal condition, the minimum number of contigs that
matches the whole genome sequence could be generated from
each assembly procedure. Scientists try to find out what each

by varying the cut-off at 100, 500,
off, all assemblers did not find

threshold. Results showed that on
assembled short reads into a

low number of contigs at 100 of cut-off. But at 1,000
Ray did not find sequences longer than the threshold. On

end datasets, Velvet produced high N50 contig length,
N50 contig length. One of the most

n assembly length distribution

189

comparisons is N50 length, a weighted median, where we
weight each contig by the length. Fifty percent of bases in the
assembly is contained in contigs shorter or equal to N50
length. Fifty percent of all bases in assembly is contained in
contigs shorter or equal to N50 length. N50 is a statistical
measure of average length of a set of sequences used widely in
genomics.

Our results reinforce a previous comparative assembly
study of Khan et al., [18] about a clear association of statistics
obtained from assemblers as well as that Ray presents high
CPU-memory requirements. It was also observed that Velvet
is more scalable than Ray at running larger read datasets. In
practice, an assembler which produces the fewer number of
contigs with high N50 is considered as the ideal. We highlight
that only our study in assembly experiments was designed for
HPC and SWfMS based on provenance.

Query 2 extracts some biological results contained in the
assembling outputs files ‘*ontigs.fa*’. Query 2: “Retrieve
names, sizes, and locations of files with extension
‘*ontigs.fa*’ produced by ArrOW and which workflow and
activities produced those files”. Query 2 is crucial for runtime
monitoring of ArrOW workflow execution. It helps biological
analysis at runtimeand to verify resulting length distributions
obtained after the assembly (contained in ‘*ontigs.fa*’ files).

Without querying the provenance database with Query 2,
scientists would need to browse all directories manually and
search which pairs were assembled successfully. Then they
would need to separate and open these files to extract the
information of the assembly process. The provenance
database stores all this data and its relationships on a
structured model. Thus it simplifies the querying process and
allows for long-term analyses over experimental data.

VI. FINAL REMARKS AND FUTURE WORK

Assembly workflows executed by SWfMS can manage
comparisons of a large volume of datasets and parameters
variability as the k-mer values, reducing the long processing
time for assembly analyses. In this paper, we proposed the
ArrOW workflow to execute and manage assembly data-
intensive experiments aiming the evaluation of three de novo
sequence assemblers in terms of time execution, efficiency,
and accuracy. ArrOW was executed with SciCumulus in
Amazon AWS using parallel processing.

Our experiment evaluated 1,000 read sequence datasets.
We found that each assembler is capable of assembling the
whole genome but Ray assembler is the most time-expensive.
Khan et al., [18] reported that Ray is not capable of
assembling a eukaryotic genome with an environment about 4
GB of RAM or less. Velvet produced generally the best results
among all three assemblers with comparatively low
assembling time. The hybrid approach, Ray, also showed high
N50 value, considered being ideal; however, the extremely
high assembling time used by the Ray might make it
prohibitively slow on large datasets.

ArrOW generated 9,000 workflow activity executions
(1,000 executions for each of the 9 activities), producing 350
Gigabytes of data for the workflow execution. By analyzing

the overall performance, through the provenance database, we
state that ArrOW obtained significant gains with Velvet,
MetaVelvet, and Ray. For example, executions with 256 cores
reach performance improvements up to 88.3% for ArrOW.
Based on the TET, speedup, efficiency, total assembly time
(activities of assemblers Velvet, MetaVelvet, and Ray), total
number of contig, and N50 contig length values, we observe
that ArrOW with Velvet outperforms the others assemblers.
Overall, the overhead imposed by the executions of ArrOW
with SciCumulus is compensated by the advantages of data
parallelism without too much effort from bioinformaticians.
ArrOW results provide evidence that large computations
involving assembly experiments can benefit from SciCumulus
in clouds. Finally, the results presented in this paper can be
extrapolated to the development of workflows in other areas
that also require the exploration of large amounts of NGS data.
As future work, we plan to explore complete human
metagenomes of actual interest and to search for new
candidate drug target enzymes.

ACKNOWLEDGMENT

The funding was provided by Brazilian agencies with the
projects CNPq/Universal (Grant no. 429328/2016-8) and
FAPERJ/JCNE (Grant no. 232985/2017-03). We are also
grateful to the comments made by the anonymous referees.

REFERENCES
[1] P. Compeau, P. Pevzner, and G. Tesler, “How to apply de Bruijn graphs to

genome assembly,” Nat Biotech, vol. 29, no. 11, 987–991 2011.
[2] J. Bang-Jensen, G. Gutin, and A. Yeo, “When the greedy algorithm fails,”

Disc Opt, vol. 1, no. 2, 121–127 2004.
[3] A. Tritt, “An Integrated Pipeline for de Novo Assembly of Microbial

Genomes,” PLoS ONE, vol. 7, no. 9, p. e42304. 2012.
[4] D. Mapleson, N. Drou, and D. Swarbreck, “RAMPART: a workflow

management system for de novo genome assembly,” Bioinformatics, vol. 31,
no. 11, 1824–1826. 2015.

[5] E. M. Robertsen et al., “META-pipe - Pipeline Annotation, Analysis and
Visualization of Marine Metagenomic Data,” arXiv:1604. 2016.

[6] D. Oliveira, F. A. Baião, and M. Mattoso, “Towards a Taxonomy for Cloud
Computing from an e-Science Perspective,” in Cloud Comp, N. Antonopoulos
and L. Gillam, Eds. London: Springer, 2010, 47–62.

[7] J. Freire, “Provenance for Computational Tasks: A Survey,” Computing in
Science Engineering, vol. 10, no. 3, 11–21, 2008.

[8] M. Abouelhoda, S. Issa, and M. Ghanem, “Tavaxy: Integrating Taverna and
Galaxy workflows with cloud computing,” BMC Bioinf., vol. 13, p. 77, 2012.

[9] “Amazon Elastic Compute Cloud,” http://aws.amazon.com/ec2/.
[10] S. Koren, “Automated ensemble assembly and validation of microbial

genomes,” BMC Bioinformatics, vol. 15, p. 1262014.
[11] D. Oliveira, “SciCumulus: A Lightweight Cloud Middleware to Explore

Many Task Computing Paradigm in Scientific Workflows,” in Int Conf Cloud
Comp, Washington, USA, 2010, 378–385.

[12] S. El-Metwally, “Next-Generation Sequence Assembly: Four Stages of Data
Processing and Computational Challenges,” PLoS Comp Biol, vol. 9, no. 12,
p. e5. 2013.

[13] R. Ekblom and J. Wolf, “A field guide to whole-genome sequencing,
assembly and annotation,” Evol App, vol. 7, no. 9, 1026–1042. 2014.

[14] Y. Wan, “VirAmp: a galaxy-based viral genome assembly pipeline,”
GigaScience, vol. 4, no. 1. 2015.

[15] E. S. Lander and M Waterman, “Genomic mapping by fingerprinting random
clones: a mathematical analysis,” Genomics, vol. 2, no. 3, 231–239. 1988.

[16] E. Myers, “The fragment assembly string graph,” vol. 21 Sup 2, 79–85. 2005.
[17] K. Ocaña and D. Oliveira, “Parallel computing in genomic research: advances

and applications,” Adv App Chem, p. 23. 2015.
[18] A. R. Khan, “A Comprehensive Study of De Novo Genome Assemblers:

Current Challenges and Future Prospective,” Evol. Bioinform. Online, vol. 14,
p. 50, 2018.

190

