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Abstract—Motivation: Clustering genomic data, including
those generated via high-throughput sequencing, is an important
preliminary step for assembly and analysis. However, clustering
a large number of sequences is time-consuming. Methods: In
this paper, we discuss algorithmic performance improvements
to our existing clustering system called PEACE via the following
two new approaches: � using Approximate Spanning Tree (AST)
that is computed much faster than the currently used Minimum
Spanning Tree (MST) approach, and � a novel Prime Numbers
based Heuristic (PNH) for generating features and comparing
them to further reduce comparison overheads. Results: Exper-
iments conducted using a variety of data sets show that the
proposed method significantly improves performance for datasets
with large clusters with only minimal degradation in clustering
quality. We also compare our methods against wcd-kaboom, a
state-of-the-art clustering software. Our experiments show that
with AST and PNH underperform wcd-kaboom for datasets that
have many small clusters. However, they significantly outperform
wcd-kaboom for datasets with large clusters by a conspicuous
~550×with comparable clustering quality. The results indicate
that the proposed methods hold considerable promise for accel-
erating clustering of genomic data with large clusters.

Index Terms—Clustering, Minimum Spanning Tree, d2

I. INTRODUCTION

Clustering nucleotide sequence data has many applications

ranging from identification of gene expressions [9], reducing

the runtime of sequencing reads to the genomes [18], [8], and

inferring phylogenetic relationships of organisms [5], [22],

[28]. Clustering approaches are being widely used to group

or “bin” the reads belonging to a taxonomic group together

in metagenomics analyses [20]. Clustering approaches can

be used to reduce sequencing errors by pre-clustering reads

in the initial stages of data analysis [13]. Clustering whole

large sets of chromosome, genomes and other larger nucleotide

sequences using alignment-free methods enable rapid identi-

fication of phylogenetic relationships between organisms. An

example of such an application would be the clustering of

large sets of viral and other microbial genomes [6], [22],

[28]. Clustering such microbial data enables understanding

the microbial phylogenetic distribution in large datasets and

potentially identifying novel microbial taxa [28].

A. Current state-of-the-art

Classical sequence clustering approaches were based on

sequence alignments using dynamic programming [15], [21],

[25]. The major drawback of alignment-based methods is

runtime and memory consumption – i.e., they tend to be
very slow and consume a lot of memory [31]. Hence they

are not preferred when clustering large datasets. Moreover,

even though alignment-based approaches are considered to be

highly accurate, the quality of the results could be questionable

due to several deficiencies as discussed by Zielezinski et al
(they specifically discuss five cases) [31].

Alignment-free approaches are more practical alternatives

to dynamic programming-based methods. Instead of dynamic

programming, alignment-free approaches rely on partial com-

parisons and pseudo-metrics for clustering. For example, our

preliminary clustering software called PEACE used a well es-

tablished alignment-free, pseudo-metric called d2 to estimate
similarity or “distance” between pairs of reads. PEACE uses

the d2 score (more details in Section II) to build a Minimum
Spanning Tree (MST) and then cuts the MST to form clusters.

d2 is also used by wcd [8]. Recently, Hazelhurst et al [9]
further enhanced wcd with a suffix array based approach

called kaboom, to significantly improve the performance of
wcd. wcd-kaboom has shown to outperform (both in runtime
and cluster-quality) several mainstream clustering software,

including ESTate, xsact, PaCE, CAP3, and TGICL [9]. Con-

sequently, we use wcd-kaboom as the reference for perfor-
mance comparisons.

B. Motivation for this research

The primary advantage of alignment-free methods is that

they run much faster and often have a small memory footprint
but at the cost of some degradation in clustering quality.

Consequently, alignment-free methods are widely used for

clustering large datasets [31], [27]. However, the ongoing

exponential growth in data volumes, continue to pose chal-

lenges in accomplishing fast and effective clustering. Even

with just 1% pairwise comparisons [9], wcd-kaboom takes
~149 minutes (on an Intel Xeon® Gold 6126 CPU @ 2.6

GHz) to cluster ~65K Haemagglutinin (HA) reads. Such a

long runtime of ~3.5 hours for a relatively small data set,

with a state-of-the-art tool, highlights the ongoing challenges,

thereby motivating the need for high-performance clustering

solutions.
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C. Proposed solution: An overview

This research proposes a high-performance clustering so-

lution to effectively cluster large datasets of both short and

long genomic data. The objective is to reduce runtime with-

out significantly degrading clustering-quality. We propose to

improve performance using two approaches: � first we focus

on improving performance by changing the Minimum Span-

ning Tree (MST) clustering approach used in PEACE with an

Approximate Spanning Tree (AST), and � adding a Prime-

Number based Heuristic (PNH) based on the previously pro-

posed prime number based scoring system for inverted repeats

detection [23]. We discuss the conceptual underpinnings and

algorithmic details of these two approaches in Section V and

Section VI.

The paper presents results from experiments conducted us-

ing a broad spectrum of data sets in Section VII. We also com-

pare performance of the proposed method with wcd-kaboom
to highlight the effectiveness of AST and PNH. For example,

with AST, the runtime for clustering the HA dataset is just 16

seconds, instead of 8,940 seconds for wcd-kaboom, a 550×
performance improvement. This is a very substantial perfor-

mance improvement with clustering quality slightly better than

wcd-kaboom. This study establishes the potential of the AST
approach in providing a high-performance clustering tool well

suited for clustering datasets with large clusters. The PNH is

a promising approach for further increasing the speed of large

sets of viral genomic data.

II. BACKGROUND: PEACE AND D2

PEACE (Parallel Environment for Assembly and Clustering

of Gene Expression) is a user-friendly nucleotide sequence

clustering tool which is designed to cluster transcript reads ob-

tained by Sanger and NGS sequencing technologies [18], [17].

PEACE clusters nucleotide sequences based on a Minimum

Spanning Tree (MST) method as summarized in Figure 1.

An MST is generated (via Prim’s algorithm) using pairwise

sequence comparison between the reads in alignment-free

manner using the d2 algorithm – i.e., the MST edges are
weighted using d2 pseudo-metric.

Reads to be clustered 

Clusters MST 

Fig. 1. Overivew of clustering in PEACE

The d2 algorithm works by comparing the frequency of

words (strings of a fixed length) appearing in a limited region

of each read. PEACE uses a default word size of 6 base

pairs. Fragments overlapping by a sufficient length will share

neighborhoods of enough similarity to ensure a small distance

(close to zero) even in the presence of a moderate number of

base errors. Specifically, PEACE uses a sliding window of fixed

size r (defaults to 100 in PEACE) to generate d2 score for two
sequences x and y (|x| ≥ r, |y| ≥ r) via:

d2(x, y) = min
{
d2(u, v) : u � x, v � y, |u| = |v| = r

}

where u � x denotes that u is a substring of x. Defined as
such, d2 is, in a mathematical sense, a pseudo-metric – i.e.,
d2(x, y) = 0 does not imply x = y. However, as d2(x, y)→ 0,
x is more similar to y and vice versa. Sufficiently similar reads,
based on a user-defined threshold, are clustered together.

Computing d2 distance is expensive requiring a few mil-

liseconds for 1 kilobase sequence. Consequently, to minimize

unsuccessful d2 comparisons, PEACE uses u/v and t/v filtering
heuristics that run in microseconds. As indicated in Figure 1,

the heuristics minimize the number of d2 comparisons by

eliminating comparisons of sufficiently differing sequences –

i.e., sequences that would result in a very high d2 distance. A
more detailed discussion on the heuristics is available in the

literature [18].

Using MST and d2, PEACE has shown to cluster transcript

reads with high accuracy and sensitivity. It can be run both

sequentially and in parallel, though in this study we are not

exploring parallelization. The ability to run PEACE using a

Graphical User Interface and a robust set of default/out-of-the-

box parameters make it a very easy to use tool for biologists.

PEACE is a highly modularized framework developed in C++

and heavily relies on the language’s object-oriented features.

The framework consists of loosely coupled core subsystems.

The subsystems are further modularized into loosely coupled

components. Though its modular design the framework pro-

vides the user with a wide choice of filters, heuristics and

clustering methods. In this study, we have used these features

to implement our proposed Approximate Spanning Tree (AST)

and Prime Number-based Filter (PNF).

III. ASSESSMENT METRICS

This study primarily focuses on reducing runtime for clus-

tering. However, the quality of clustering is important [9].

In this study we have used two widely used metrics for

assessing the quality of clustering, namely Normalized Mutual

Information (NMI) and Purity. NMI is a popular measure of

clustering quality based on Information Theory [24]. Values

of NMI range from 0 to 1. High NMI values indicate good

clustering. In this work, NMI is the primary measure of

clustering quality.

In addition to NMI, purity has also been used as a measure

to further validate clustering quality. Purity values range from

0 to 1.0. Higher purity values indicate that a cluster does not

have reads from other clusters mixed into it. The R packages

aricode (https://cran.r-project.org/web/packages/aricode/index.

html) and IntNMF [4] have been used to calculate NMI and

purity, respectively.

The NMI and purity values have been calculated using

the clustering output from PEACE as the reference. Using

the output from PEACE is motivated by two reasons. First,

PEACE has been tested by multiple authors and has shown
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to produce good quality clustering [18], [9]. Second, our

objective is to improve the performance of PEACE without

impacting clustering quality. Consequently, we have used the

output of PEACE as the reference to assess clustering quality.

IV. RELATED WORKS

Many alignment-free sequence clustering tool have been

proposed to cluster large sets biological sequences. CD-

Hit [14], WCD [8], PEACE [18], and MeShClust [11] are

some good examples for alignment-free clustering tools. The

popular clustering tool CD-Hit has the ability to cluster large

sets of nucleotide sequences, while WCD and PEACE are less

fast but more accurate sequence clustering alternatives. CD-

Hit clusters sequences using a distance measure based on the

minimum number of shared short strings (words) between

two sequences. WCD and PEACE use a similar word-based

sequence comparison approach but differ from CD-Hit in the

distance measure used to compare two sequences. Both WCD

and PEACE utilize the d2 distance measure. PEACE differs from

WCD by using a novel Minimum Spanning Tree (MST) based

clustering approach where the tree branches are weighted

by d2 distances. It has been shown that the speed of WCD

can be improved by the use of a filter-based preprocessing

approach. The proposed suffix array-based filter for WCD

named Kaboom was shown to make WCD much faster than

PEACE [9]. Essentially, the Kaboom filter significantly reduces

the number of d2 comparisons to be performed, to < 1%

in many cases. The filter processing runtime is amortized by

reducing the comparatively slower d2 comparison. However,

the Kaboom filter requires generation of suffix trees using

a separate utility called mkesa. MeShClust is a recently
proposed tool which claims to cluster nucleotide sequences

with high accuracy and considerable speed [11].

The popular tools CD-Hit and WCD are primarily made to

cluster expression data such generated by sequencing methods

as expressed sequence tags and DNA sequence reads. They

are shown to be well suited for clustering next-generation

sequencing data and other similar data consisting of short

length sequences. The utility of CD-Hit and WCD in clustering

whole chromosomes and genomes (which are larger in length

than typical sequencing reads) is questionable and has not

been extensively tested. Even though MeShClust claims to be

efficient in clustering short sequencing reads and relatively

larger whole genomes, it was not tested extensively for its

whole chromosome/genome and long read clustering ability.

Minimum Spanning Tree (MST) is a widely used method

in clustering nucleotide sequences and inferring phylogenetic

relationships between the sequences. Examples of such uses

of MST include clustering nucleotide sequences to aid in

sequence domain searching [7], performing intraspecific phy-

logenetic analysis [19] and inferring phylogeographic relation-

ships [1]. A major issue associated with the MST is the time

complexity of the tree generation. The MST generation has the

time complexity of O(n2) (where n is the number of reads
to be clustered) [30]. Several approximate MST models ap-

proaches have been proposed to reduce the time complexity us-

ing heuristics approaches. An example of an approximate MST

approach is minimizing the comparison overhead by building

MSTs on K-Means partition of the considered dataset [30].

Another example is the use of a novel centroid-based nearest

neighbor rule for the fast approximate MST generation (with

the time complexity of O(n
3
2 log n) [12]. Employing such

heuristic approaches can aid in the development of efficient

MST-based nucleotide clustering and phylogenetic tools [19].

V. APPROXIMATE SPANNING TREE

PEACE uses a Minimum Spanning Tree (MST) based method

for clustering [18]. In this method, each read in a dataset

is deemed as a node in the MST. The MST is constructed

using Prims’s algorithm, with d2 scores serving as the edge

weights. Recollect that, as discussed in Section II, d2 scores

tend to zero for highly similar reads – i.e., similar reads will
be adjacent or nearby branches in the MST. Once an MST

is constructed, clustering is accomplished by cutting the MST

at branches that are significantly distant, based on a given

clustering-threshold, currently set to 1.0 in PEACE. Note that

this 1.0 is not a normalized value but a putative d2 score
(with 10.0 corresponding to infinity) that indicates sufficiently

different reads.

The most time-consuming operation is the construction of

MST. The most dominant issue is that MST construction

is an O(n2) algorithm (where n is the number of reads),

which is prohibitive for large datasets [9]. MST construction

results in n2 calls to d2-score computation, which in itself,

is expensive and requires few milliseconds. Here, heuristics

(than run in microseconds) help by eliminating over 80% of

d2 comparisons. The proposed Prime Number based Heuristic

(PNH) aims to help in this area and is discussed in Section VI.

Nevertheless, the remaining 20% of d2 comparisons take

substantial runtime.

The Approximate Spanning Tree (AST) aims to address the

O(n2) time complexity by rapidly adding nodes to the tree,
thereby reducing the time constants. Note the AST does not

change the asymptotic time complexity of O(n2) but rather
aims to rapidly reduce n. An overview of the AST construction
method is summarized in Algorithm 1. The algorithm begins

with a list of reads (estList) and an arbitrarily chosen
root read. Next, given a root, sufficiently similar reads are
obtained via call to the getReads method. This method has
an O(n) time complexity and uses heuristics to reduce the
number of calls to the heavyweight d2 computation method.
Only reads that are below the specified ASTthresh threshold
are returned.

Unlike MST construction that adds only the most similar

read, the AST adds all of the similar reads, thereby rapidly

reducing the number of pending reads (i.e., n). Reads are
considered similar if their d2 distance is below a given

AST-threshold value. Similar to d2 scores, the AST-threshold

value is not normalized and this value cannot exceed the

clustering-threshold, which is currently set to 1.0. The AST-

threshold value is a critical factor that influences the overall

performance. The chart in Figure 2 illustrates the impact of
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Algorithm 1: Approximate Spanning Tree (AST)
1 begin AST(estList, root, ASTthresh)
2 ast.add(root, 0) // d2 distance is 0

3 while ! estList.empty() do
// Get reads with d2 score < ASTthresh

4 nearList = getReads(estList, root, ASTthresh)

// Add all similar reads to AST

5 foreach <est, d2score> ∈ nearList do
6 ast.add(root, est, d2score)

7 estList.remove(est)

8 end foreach
9 root = nearList.last().est

10 end while
11 return ast
12 end AST
13 begin getReads(estList, root, ASTthresh)
14 nearList = {}
15 foreach est ∈ estList do
16 if heuristicChain.shouldAnalyze(root, est) then
17 d2score = d2(root, est)

18 if d2score < ASTthresh then
19 nearList.add(<est, d2score>)
20 end if
21 end if
22 end foreach
23 return nearList
24 end getReads
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Fig. 2. Impact of AST threshold

changing the threshold on a Haemagglutinin (HA) dataset with

~65K reads. Larger AST-thresholds allow more reads to be

added to the AST, thereby rapidly reducing n. This results in
fast runtime but the resulting spanning tree drifts further away

from the MST. In contrast, smaller threshold values result in

a tree closer to an MST – i.e., AST-threshold of 0.0 produces
an MST. However, smaller thresholds increase runtime with

an O(n2) time complexity as illustrated by the inset chart in
Figure 2.

A comparison of MST and its corresponding AST is shown

in Figure 3. The MST has been generated using 500 (for read-

ability) randomly chosen reads. The AST has been generated

with an AST-threshold of 1.0 (i.e., AST=1.0 in Figure 2). The
nodes in the tree have been color-coded based on the clusters

they were assigned. The key feature of interest is the structure

of the two trees. The MST has many deeper branches because

nodes are added one at a time. On the other hand, the AST

has a much shallower structure with some nodes having a very

high degree. The high degree nodes are the key in improving

performance as they enable many reads to be added to the

AST thereby rapidly reducing n as illustrated by the curve for
AST=1.0 in Figure 2.

(a) MST

(b) AST

Fig. 3. Comparison of MST and AST

The impact of varying the AST-threshold on the clustering

quality is illustrated by the charts in Figure 4. As illustrated by

the NMI curve (see Section III for details on NMI), the quality

of clustering degrades as the AST-threshold is increased. NMI

degrades as the number of clusters increases with increase in

AST-threshold. This is because in the AST potentially shorter

links are not captured. This results in additional edges to be cut

causing more clusters to be generated. However, as indicated

by the chart, the purity of clustering does not degrade – i.e.,
the AST does not incorrectly cluster disparate reads together.

The observation suggests that a cluster-merging operation can
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optionally be used to reduce the number of clusters, if needed.
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VI. PRIME NUMBER-BASED HEURISTIC (PNH)

A prime-numbers based heuristic is proposed to further

reduce filtering overheads. The PNH is based on the previously

proposed prime-numbers based scoring system for perfect

inverted repeats detection [23]. In PNH, each nucleotide is

represented by a prime number (or its negative value) and

a nucleotide sequence is represented as a vector of prime

numbers (corresponding to nucleotides). The prime number

score or feature for a nucleotide is calculated by summing the

corresponding vector of prime numbers. A given number of

features, say p, is extracted from a given nucleotide sequence
by breaking the sequences into p non-overlapping fragments
as shown in Figure 5 (here, p = 3). For each of the p sub-
sequences, a prime number score is computed via:

Sl =
L∑

i=1

pi,where pi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PA if i = A
−PA if i = T
PG if i = G
−PG if i = C
0 otherwise

In the example shown in Figure 5, PA = 71 and PG = 113.

The prime values have been empirically chosen to provide

a balance between sensitivity and specificity. The above ap-

proach results in a p dimensional, primes-based feature vector
to be generated for a given nucleotide sequence.

Two nucleotide sequences are compared based on the Eu-

clidean distance between the p dimensional primes features
generated for each sequence. A given pair of sequences

are candidates for pairwise comparison via d2 only if the

Euclidean distance is below a given threshold.

A. Choice of primes for PNH

The PNH provides a computationally light approach to

extract features from a nucleotide sequence. Each of the p
dimensional features embody nucleotide frequencies which is

sensitive to biologically meaningful features such as: direct

repeats, inverted repeats, and skew patterns [26] but is insen-

sitive to inversions. This is the intuition behind the usage of

PNH.

GCCTAA GTAGTA AAATTA

GCCTAA AAATTAGTAGTA

[113  -113  -113   -71    71    71] [71   71    71   -71   -71    71][113   -71    71   113   -71    71]

[-42   226   142]

Sequence

Fragments  

Prime Number Vector  

Feature Vector  

Breaking the sequence into 3 equal-sized fragments

Creating the prime number vector by substituting bases with prime numbers

Creating the feature vector by summing the prime number vectors 

Fig. 5. Example of feature extraction in the PNH

The choice of prime numbers to encode nucleotide is a

balance. Small prime numbers (such as 3, 17, 23, etc.) were

avoided in an attempt to increase the uniqueness of the feature

values [29]. Conversely, very large values are not used to

ensure that a few differences do not skew the features. The

default values of PA = 113 and PG = 71 were identified via

preliminary analysis on HIV sequences [6] and were also used

as guidance for the prime number choices, but was not highly

optimized for any particular organisms’ genome. Moreover,

smaller values permit the use of faster, primitive datatypes

without concerns about numeric overflows (within reason)

during summations (see Figure 5).

B. Impact of hyperparameters

The Prime Numbers-based Heuristic (PNH) involves two

key hyperparameters, namely – � the number of features
p

used for comparing two reads, and � τprime: the threshold

Euclidean distance used to decide if two reads are sufficiently

similar. Currently, the value of τprime for a given reference

sequence is computed as the average Euclidean distance from

a given reference strain minus the standard deviation.

The number of p features has been set to a default value
of 4 based on experimental results summarized in Figure

6.
Overall, the number of features p does not have a significant
impact on the clustering quality – i.e., NMI and purity do not
vary much. However, as the number of features p is increased
the number of clusters increase due to too many false-negatives

as the reads are broken into too short fragments. Moreover, the

memory usage also increases due to the overhead of storing

the large features. Consequently, in this study, we have set the

value of p to be 4.

VII. EXPERIMENTS & DISCUSSIONS

The effectiveness of the proposed Approximate Spanning

Tree (AST) and the Prime Number based Heuristic (PNH) has

been empirically assessed using two different types of datasets.

The first dataset was Expressed Sequence Tags (ESTs) from

different species as summarized in Table I. This dataset con-

sists of characteristic short reads (about 300 – 500 nucleotides)

that have been used by several investigators in the past.

S8 is a synthetic data set from James et al [11]. The C08
is

a synthetically generated test dataset generated using ESTsim

(see [9] for details). The A076941 dataset contains a subset
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TABLE I
SUMMARY OF EST DATASET USED IN EXPERIMENTS

Name #Reads Avg Length Size Description
(mean± SD) (MB)

S8 150,295 300.9±58 48 Synthetic dataset from
[11]

C08 100,585 468.2±74 48 Synthetic ESTs from
[9]

A076941 76,941 427.2±128 42 Arabidopsis ESTs
from [9]

of Arabidopsis Thaliana ESTs downloaded from Genbank.

The C08 and A076941 datasets were primary used because
they have been used by Hazelhurst et al [9] for assessment of
wcd-kaboom.

The second dataset was viral genome fragments summarized

in Table II. This datasets consists of much longer reads (1000s
of nucleotides) when compared to the EST dataset. The HA
dataset consists of Haemagglutinin (HA) segments from multi-

ple Influenza serotypes (H1 – H19) and should ideally result in

20 clusters. This dataset has been downloaded from Influenza

Research Database [2]. The Dengue dataset consists of the
full genome of all 4 serotypes of dengue. These long genomes

are analogous to the long reads (~10,000 bases) produced

by the RSII platform from Pacific bioscience. It has been

downloaded from Virus Variation Resource [3], specifically

from the Virus Pathogen Database [16]. Ideally, this dataset

should generate 4 clusters but due to high homology between

the serotypes, most clustering software yield just 1 cluster.

TABLE II
SUMMARY OF VIRUS DATASET USED IN EXPERIMENTS

Name #Reads Avg Length Size Description
(mean± SD) (MB)

HA 65,069 1698.8±7 117 Influenza
Haemmaglutinin
(HA)

Dengue 5,286 10,588±181 55 Degune strains (4
serotypes)

A. Experimental Platform

The experiments reported in this paper have been conducted

on a contemporary compute cluster running PBS. Each com-

pute node on the cluster consists of two (dual socket) Intel

Xeon® CPUs (Gold 6126 @ 2.60 GHz) with hyperthreading

disabled. Each CPU has 14 cores and 19 MiB of shared L3

cache. The cluster runs CentOS 7.5 (Linux kernel version 3.10.

All of the software compiled using GNU Compiler Collection

(GCC) version 6.3.0 at -O2 optimization level. The timings
and memory usage as been recorded using /usr/bin/time
utility.

B. Design of Experiments

Prior to conducting experiments, the reads in each of the

datasets were randomly shuffled to eliminate any potential

patterns that may be inherently present when the datasets

were downloaded. Each tool configuration was run as an

independent PBS job with 1 core and 12 GB of memory

reserved for it. The experimental observations for the EST

data and Virus data are shown in Table III and Table IV.

In these two tables, the row wcd-kbm corresponds to wcd
with kaboom filter configuration. The run time data for

wcd-kaboom includes the time taken to generate suffix arrays
as discussed by Hazelhurst et al [9]. The row with name MST
shows results for base case PEACE run using its default MST.

The rows labeled AST=1 and AST=0.8 show results for AST
with AST-thresholds set to 1.0 and 0.8 respectively. The rows

with PNH prefix show results from using the heuristic along

with the default u/v and t/v heuristics in PEACE.

C. Discussions

The results from various experiments conducted using the

EST datasets from Table I are summarized in Table III.

Similarly, the results for the virus datasets from Table II are

summarized in Table IV. The NMI and purity values have

been computed using the clustering generated by PEACE-MST

as the reference as discussed in Section III.

For the EST datasets, wcd-kaboom consistently outper-
formed PEACE-MST as reported by Hazelhurst et al [9].
However, as shown by the results, the proposed AST ap-

proach was considerably faster than PEACE-MST without much

compromise in the quality in most of the cases. However,

wcd-kaboom outperformed the AST approach for two out
of the three datasets. In these datasets, the performance gains

of the AST approach was muted due to the large number

of small clusters – i.e., only a few reads were similar and
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TABLE III
RESULTS FOR EST DATASETS

Tool info Time RAM #Clu- NMI Pur-
(mm:ss) (MB) sters ity

Dataset: S8 (~150K seq)

wcd-kbm 1:01 787 2224 0.998 1

P
E
A
C
E

MST 33:05 143 2000 1 1

AST=1.0 0:46 163 2002 0.999 1.0

AST=0.8 01:00 163 2002 0.999 1.0

PNH,AST=1.0 01:14 178 2002 0.999 1.0

PNH,AST=0.8 01:08 179 2001 0.999 1.0

Dataset: C08 (~100K seq)

wcd-kbm 2:00 811 5746 0.847 0.999

P
E
A
C
E

MST 18:10 12587 4552 1.0 1.0

AST=1.0 2:31 2724 7350 0.837 0.999

AST=0.8 3:31 5346 6952 0.886 0.999

PNH,AST=1.0 1:14 2723 39983 0.69 0.999

PNH,AST=0.8 8:41 5356 39601 0.685 0.999

Dataset: A076941 (~76.9K seq)

wcd-kbm 0:45 568 18817 0.965 0.998

P
E
A
C
E

MST 9:57 10576 17422 1.0 1.0

AST=1.0 1:54 2711 18903 0.949 0.999

AST=0.8 3:08 2712 18759 0.953 0.999

PNH,AST=1.0 05:16 2719 39222 0.854 1.0

PNH,AST=0.8 05:58 2718 39025 0.858 1.0

hence reads could not be rapidly added to the AST (see

discussion in Section V). In other words, Kaboom filter was

more successful at eliminating redundant calls to heuristics

and the heavyweight d2-score generation when compared to

AST. In the case of the A076941 dataset, a dominant portion
of the runtime was consumed for running the u/v and t/v
heuristics. Analysis of the runtime behaviors suggests that

a threshold based on number of successful reads would be

beneficial here – i.e., once some s reads below the AST-

threshold have been found, stop checking further reads. We

plan to pursue this optimization in the near future to assess

its efficacy. Some degradation was observed in the C08 case,
with the AST approach generating more clusters. This results

in some degradation of NMI with respect to PEACE-MST, but

the NMI of 0.837 is comparable to wcd’s 0.847.

The most conspicuous performance improvement was ob-

served in the HA dataset, where the AST method finished

clustering in ~16 seconds, while wcd-kaboom and PEACE-
MST took 149 mins and 930 mins respectively. This corre-

sponds to a remarkable > 550× and > 3400× performance

improvements! In the case of the Dengue dataset, the perfor-

mance improvement of AST over wcd-kaboom was ~90×.
The results suggest that the AST method will yield good

performance improvements for datasets with large clusters.

An unforeseen benefit: Our experiments revealed an in-
teresting unforeseen benefit of the AST method for the HA

dataset. The dataset has 19 different serotypes and a few

unclassified reads. However, the serotypes are highly homol-

ogous and hence, the more accurate MST-based approach

results in just 8 clusters. However, with the AST approach

results in detection of these serotypes as shown in Table IV.

TABLE IV
RESTULS FOR VIRUS DATASETS

Tool info Time RAM #Clu- NMI Pur-
(mm:ss) (MB) sters ity

Dataset: HA (~65K seq)

wcd-kbm 149:55 1820 28 0.566 1.0

P
E
A
C
E

MST 930:06 4198 8 1.0 1.0

AST=1 0:16 178 26 0.63 1.0

AST=0.8 0:27 180 13 0.743 1.0

PNH,AST=1 0:13 185 53 0.583 1.0

PNH,AST=0.8 0:17.5 185 45 0.591 1.0

Dataset: Dengue (~5.2K seq)

wcd-kbm 31:45 945 1 1.0 1.0

P
E
A
C
E

MST 858:17 407 1 1.0 1.0

AST=1 0:21 78 2 0 1.0

AST=0.8 0:27 180 13 0.743 1.0

PNH,AST=1 0:11 79 44 0 1.0

PNH,AST=0.8 0:12 79 45 0 1.0

For example, with a threshold of 0.95, the AST method

generates 20 clusters separating out the serotypes which could

be a desirable result. This behavior will require further inves-

tigation.

The Prime Numbers based Heuristic (PNH) was able to

further boost runtime performance in the HA dataset, but at
the cost of reduction in NMI. For this dataset prime heuristics

was able to provide another 18% improvement (see Table IV. It

also increased performance in the Dengue dataset by another
50% with NMI comparable to AST. For the datasets having

relatively shorter sequences and a large number of clusters

(i.e., S8, C08, and A076941) the PNH was slower. This is
attributed to the additional computational overhead of the PNH

and this overhead is not effectively amortized. Overall, prime

heuristics provided clustering with lower NMIs, except in the

case of S8 dataset. These results suggested that the PNH is
effective in clustering viral genomic data possessing highly

similar, large nucleotide sequences. This type of clustering

has a several biological applications including analysis of mi-

crobial genome variations, Influenza A subtype identification,

and identifying novel viral strains.

D. Memory consumption

A drawback inherited from PEACE is the increased memory

usage for clustering. For example, in the case of the C08
dataset, the default MST-based clustering in PEACE consumes

over 12 GB of RAM while the AST approach consumes

about 5 GB. In contrast, wcd-kaboom consumes only 26 MB
(even when the raw dataset size if 48 MB). The low memory

footprint of wcd-kaboom is attributed to the fact that it only
maintains the suffix array in memory while processing 1 read

at a time.

The increased memory footprint of PEACE arises from 2

factors. First, PEACE experiments were conducted by holding

all the reads in memory. It does have an option to load reads

on-demand, but this option has not been used to minimize

runtime. The largest fraction of memory usage arises from the

caches maintained by PEACE. The cache has been implemented

172



using a standard binary heap. It serves as a priority queue to

identify the next read to be added to the MST/AST. This cache

is pruned, but not aggressively, to reduce runtime. Performing

a periodic, deep pruning of this cache will reduce memory

footprint, but at the cost of some increase in runtime. In

addition, alternative data structures such as 3-tier heap [10]

can be utilized to enable efficient pruning. We are planning to

explore such enhancements to PEACE in the near future.

VIII. CONCLUSIONS

Clustering is a vital processing step for analysis of genomic

data. Several software tools have been proposed to enable fast

clustering. Nevertheless, continued advancement in clustering

methods is necessary to keep pace with the ongoing exponen-

tial growth of genomic data. This study proposed two novel

enhancements to an existing clustering software system called

PEACE. The first enhancement was the use of Approximate

Spanning Tree (AST) which enables much faster clustering
than the current Minimum Spanning Tree (MST) approach.

In addition, a novel Prime Numbers based Heuristic (PNH) is

also proposed. The paper discussed these two enhancements

in detail and presented an empirical analysis of their effec-

tiveness. The empirical data was collected from experiments

conducted using two different types of data sets. Moreover,

the paper also presented comparison against wcd-kaboom, a
fast, state-of-the-art clustering software.
The outcomes of this study show that the AST approach

effectively increase the performance of PEACE only for datasets

with large clusters (viral genomic sequences). In the case of

Influenza data set, a dramatic 550× performance improve-

ment was observed. In general, the AST approach did not

significantly compromise the quality of the clustering. In most

cases, the AST method generates additional clusters, but did

not impact purity. These additional clusters can be merged, if

necessary.

The outcomes also indicate that the Prime Number based

Heuristic (PNH) is a promising approach for further increasing

the speed, but only for clustering long genomic sequences. A

detailed investigation of the effects of hyperparameter choices

for PNH is underway to increase its broader applicability.

Furthermore, we are planning enhancements to reduce memory

footprint by using multi-tier heaps [10]. Importantly, we plan

to explore parallel clustering capabilities of PEACE in conjunc-

tion with AST and the PNH.

Rapid clustering of viral and bacterial genomes forming

large clusters will provide insight into the genetic diversity.

Viral genotypes such as Influenza A subtypes can be identified

by clustering unidentified genomic sequences with known

genotypes. This type of cluster-based identification approaches

has the potential to detect novel viral strains by separating

them into new clusters which does not consist any known

types. The improved performance of PEACE with AST, with its

default parameter settings and without the need for additional

external tools (such as mkesa for wcd), makes it an ideal tool
for use by biologists for clustering large datasets.
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