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Abstract—Rapid advances in sequencing technologies are pro-
ducing genomic data on an unprecedented scale. The first, and
often one of the most time consuming, step of genomic data
analysis is sequence alignment, where sequenced reads must be
aligned to a reference genome. Several years of research on
alignment algorithms has led to the development of several state-
of-the-art sequence aligners that can map tens of thousands of
reads per second.

In this work, we answer the question “How do sequence
aligners utilize modern processors?” We examine four state-of-
the-art aligners running on an Intel processor and identify that
all aligners leave the processor substantially underutilized. We
perform an in-depth microarchitectural analysis to explore the
interaction between aligner software and processor hardware.
We identify bottlenecks that lead to processor underutilization
and discuss the implications of our analysis on next-generation
sequence aligner design.

I. INTRODUCTION

The past few years have witnessed dramatic improvement

in both cost and throughput of DNA sequencing technologies.

Today, it is possible to sequence a single human genome

at 30-fold coverage for as little as $1,000. With sequencing

becoming more affordable, the amount of genomic data gen-

erated has been increasing at an alarming rate far outpacing

Moore’s law [20]. This data deluge has the potential to pave

way for the emerging field of personalized medicine and assist

in detecting when genomic mutations predispose humans to

certain diseases like cancer, autism, and aging.

However, to unlock the potential of genomic data, one

needs scalable, efficient data analytics platforms and tools. The

first and one of the most time-consuming steps in analyzing

such data is sequence alignment–the task of determining the

location in the reference genome that corresponds to each

sequenced read. In the last decade, researchers have designed

over 70 read mapping tools [8], each differing from another

with respect to accuracy, sensitivity, specificity, and speed.

Today, state-of-the-art read aligners can map tens of thousands

of reads per second to the reference genome.

While all prior research focuses on improving performance,

by reducing mapping time of individual reads, or scalability, by

mapping more reads per second, there is no study that analyzes

sequence aligners at the microarchitectural level. Such an

analysis is important for several reasons.

First, it answers the following question–Do state-of-the-art

aligners use modern processors efficiently? Microarchitectural

analysis in other applications areas, like relational databases

and data analytics platforms, showed that these applications

do not utilize modern processors efficiently [1], [6]. Such

analyses spurred research efforts to improve performance by

redesigning data structures, or energy efficiency by using low-

power processors that can match application requirements.

In this work, we perform a similar analysis for sequence

alignment.

Second, modern processors are complex pieces of hardware

that use a variety of techniques to execute instructions faster.

However, in order for such improvements to translate into

tangible performance benefit, software must be optimized to

avoid bottlenecks. Microarchitectural analysis reveals these

bottlenecks by exposing harmful interaction between applica-

tion software and processor hardware and helps in answering

the following question–Will current software automatically

benefit from microarchitectural improvements in the next-

generation of hardware?

Third, the past few years have witnessed a rise in adoption

of heterogeneous computing, as accelerators like General-

Purpose Graphics Processing Units (GPGPU) and Intel Xeon

Phi are being increasingly adopted in several data-intensive

application domains. Given that sequence alignment is a

complex, multi-stage process, several researchers have built

aligners that execute some, or all stages of sequence alignment,

on these accelerators [11], [18], [19], [21]. However, there has

been no systematic analysis that explores the interaction be-

tween alignment stages and CPU microarchitecture to clearly

identify which stages are more suited to the GPGPU than the

CPU.

In this work, we present, to our knowledge, the first

microarchitectural analysis of four state-of-the-art sequence

aligners. We show that despite a decade of research and

optimized implementations, modern aligners substantially un-

derutilize processor resources as the processor is stalled in

more than 50% of execution cycles without doing useful

work. We provide an in-depth breakdown of stall cycles to

identify hardware components in the processor pipeline and

algorithmic components in sequence alignment software that

contribute to these stalls. We discuss the implications of our

analysis on the design of next-generation of sequence aligners

and suggest directions for further research.
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The rest of this paper is organized as follows. In Section II,

we provide a brief overview of alignment techniques and

processor microarchitecture. In Section III, we describe the

hardware and software setup we use for this analysis. We

present a global microarchitectural analysis of aligners in

Section IV and a stage-by-stage analysis of one the aligners in

Section V. Finally, we present the implications of our analysis

in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we will provide a brief overview of sequence

alignment techniques and modern processor microarchitecture

to set the context for this work. We refer the reader to prior

work for an in-depth algorithmic survey of sequence alignment

algorithms and experimental analysis of aligners [5], [8]–[10].

A. Sequence alignment

Modern Next-Generation Sequencing (NGS) technologies

produce millions of short string sequences, referred to as reads,

with each sequence corresponding a portion of the DNA. The

first step in the analysis of this NGS data, referred to as

sequence alignment, is to determine the location in the genome

that corresponds to each of these short reads. Thus, sequence

alignment is essentially a string matching problem where given

a string G (reference genome), and a set of substrings R

(reads), the origin of each read r ε R must be identified in

G. However, due to sequencing errors or due to differences

between the reference genome and the sequenced organism,

a read might not exactly match its corresponding location

in the reference genome. Thus, an aligner has to perform

approximate string matching that is tolerant to mismatches,

insertions, and deletions.

Since a read could potentially align at each one of the 3

billion locations in the reference, brute force search of each

possible alignment is infeasible even for a single read. Thus,

all modern aligners build an index over the reference and

use the index to quickly narrow down the search space of

potential locations. Aligners can be broadly classified into two

types based on the indexing technique used, namely, seed-and-

extend (SE) aligners or Burrows-Wheeler-Transform (BWT)-

based aligners.

SE aligners typically use a hashtable to index the reference

genome and store the contents and the occurrence locations

of short string sequences, also referred to as seeds or k-mers,

in a hash table. Each read is processed in three steps. First,

seeds are extracted from the read and the hash table is used to

look up potential mapping locations in the reference genome.

Second, filtering techniques are used to reduce the number of

potential locations where further extension must be performed.

Third, the entire read is aligned at each of potential reference

location using an approximate string matching algorithm like

Needleman-Wunsch or Smith-Waterman.

BWT-based aligners align reads against a suffix array built

using the reference genome. As suffix arrays are memory

intensive, all of these aligners use a space-optimized data

structure called FM-index [7] that uses a compressed string
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Fig. 1: Simplified microarchitectural depiction of modern

processors.

representation called Burrows-Wheeler Transform [4] to index

the reference genome and enable fast exact string matching. As

the FM-Index itself does not allow approximate string match-

ing, BWT-based aligners use an algorithmic technique called

backtracking that tries to insert errors at various positions in

the read as it is matched while traversing the FM-Index. As

the cost of backtracking increases exponentially, BWT-based

aligners also use heuristics to prune the search space.

BWT-based alignment, introduced by Bowtie [12] and

BWA [16], has been the most popular technique for aligning

short reads. The low error rate of NGS technologies and a

low divergence between reference and sequenced organisms

allowed aligners like trie-based Bowtie and BWA to traverse

the search space for very short reads 10 to 100 times faster than

hash-based aligners. However, with read lengths increasing to

100-150 base pairs, backtracking emerged as the bottleneck

especially if one needs to tolerate a larger number of errors.

Thus, newer variants of these aligners, like Bowtie2 [2] and

BWA-MEM [15] have also reverted back to using the seed-

and-extend technique.

B. Modern processor microarchitecture

In order to understand how state-of-the-art sequence aligners

utilize modern processors, we need to examine how well are

the microarchitectural resources of a processor used by the

aligner software. Modern processors are typically multi-core

in nature and contain several of processing cores. State-of-

the-art aligners exploit the task parallelism offered by multi-

core processors to scale sequence alignment by using multiple

threads, one per core, where each thread aligns a disjoin set

of input reads. While recent studies have focused on software

issues that prevent scalability on multi-core processors [13],

[14], in this paper, our focus is on the utilization of a single

processing core. Thus, in the rest of this paper, we will use

the term processor and core interchangeably.

The microarchitectural pipeline of a modern high-

performance processor is quite complex. Figure 1 shows

a simplified view of the microarchitectural components of

a processing core. The pipeline of a processor is divided
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conceptually into two halves, the Front-end (FE) and the Back-

end (BE). The FE is responsible for fetching the program

code corresponding to the Instruction Set Architecture and

decoding them into one or more low-level hardware operations

called micro-operations (μOps). Once decoded, these μOps

are queued for execution by the BE. Before a μOp can be

executed, all necessary data operands must be fetched from

memory if necessary. The BE scheduler is responsible for

monitoring when a μOp’s data operands are available. Once

ready, the scheduler associates the μOp with a port depend-

ing on its intended execution purpose. For instance, a μOp

corresponding to an arithmetic operation would be associated

with a port between 0 and 2, while a μOp associated with

loading data from memory would be associated a port between

3 and 5 in Figure 1. When an execution unit is available, the

port dispatches the queued μOp and executes it. Execution

units, labelled as ALU, Divide, Mul, etcetera, in Figure 1, are

the work horses that perform various operations like memory

loads and stores, addition, multiplication, division, etcetera.

The FE and BE are also equipped with both on-chip and

off-chip cache memory, shown as L1/L2/L3 instruction/data

caches in Figure 1, to avoid long-latency DRAM accesses by

buffering data and instructions.

The completion of a μOp’s execution is called retirement.
When a μOp is retired, its results are committed back to the

architectural state by updating CPU registers or writing back

to memory. The Front-end of the pipeline on recent Intel

microarchitectures can allocate four μOps per clock cycle,

while the Back-end can retire four μOps per clock cycle. Thus,

in each clock cycle, modern Intel processors can potentially

execute four instructions simultaneously. During instruction

execution, most μOps pass completely through the pipeline

and retire. But sometimes, a μOp that is not be able to

complete immediately might delay, or stall, the pipeline.

Intel’s Top-Down Analysis Methodology [22] classifies

stalls into three major types, namely Front-end stalls, Spec-
ulation stalls, and Back-end stalls. During a cycle, if the BE

is ready to execute a μOp but the FE is unable to queue it

for execution, the stall is classified as a FE stall. A typical

reason for FE stalls is instruction cache misses caused by large

instruction footprint corresponding to a complex code base.

Disk-based relational database engines are known to suffer

from such stalls [1].

Modern processors use speculative execution to improve

instruction throughput. Conditional execution in programs,

like if–else blocks, get translated into branch instructions that

decide control flow depending on predicates in the conditional

statement. Before the processor has to execute a branch

instruction, the predicate value has to be determined. Instead

of waiting until a branch instruction’s predicate is resolved,

the Branch Predictor component in the FE implements an

algorithm that guesses the predicate and fetches the appro-

priate instruction stream. If the guess is correct, the execution

continues normally, and if it is wrong, the pipeline is flushed,

and the correct instruction stream is fetched and executed.

Such flushing creates pipeline stalls and these stalls caused by

incorrect branch prediction are classified as Speculation stalls.

In the case where the FE has a μOp ready but the BE is

not ready to handle it, the processor is stalled on the BE. BE

stalls can be further classified into Memory stalls and Core
stalls. As mentioned earlier, a μOp can be executed only if its

data operands are available. Memory stalls are caused by the

processor having to wait for such data operands to be fetched

from the cache or from memory. Core stalls, in contrast, are

caused by a less-than-optimal use of the available execution

units during each cycle. This can happen due to contention for

resources. For instance, if the code contains instructions that

result in several μOps being associated with a few ports, then

queue for those ports become full. Thus, the scheduler can no

longer associate any further μOps with those ports until the

queue shrinks. Similarly, if the code contains several divide

instructions in a row, they will compete for the few divide

execution units resulting in resource conflicts.

III. EXPERIMENTAL SETUP

In this section, we describe the hardware and software

setup we use in this analysis and outline the experimental

methodology.

A. Hardware–software setup

All experiments are conducted on a server running RHEL

7.2, equipped with a 12-core Intel Xeon E5-2650L v3 CPU

and 256GB RAM. We analyze four state-of-the-art sequence

aligners, namely, BWA-MEM [15] and Bowtie2 [2], Snap [23],

and FSVA [17]. We chose Bowtie2 and BWA-MEM as they are

the most popular short-read aligners that use a BWT-based

reference index. We chose Snap as a representative of a new

breed of hashtable-based aligners that exploit the increasing

read lengths to improve performance without sacrificing accu-

racy. We chose FSVA, as it is a state-of-the-art aligner built

for cohort studies that explicitly trades off accuracy for fast

single-threaded performance.

As described in Section II, all these aligners use the seed-

and-extend technique to perform fast alignment of reads.

However, these aligners differ dramatically with respect to

the actual methodology used for seed selection, filtration,

and extension. As a result, these aligners occupy different

points in the performance–accuracy dimensions. Our goal in

this analysis is to not to perform a side-by-side analysis of

execution time or accuracy of various aligners. The optimal

aligner choice is a complex analysis topic covered by prior

research [5], [8]–[10] as there is a delicate balance between

accuracy and performance that must be met depending on the

expected usage. As our focus in this paper is on microarchitec-

tural analysis of sequence aligners, we run each aligner only

in the single threaded mode. Thus, we report the execution

time and accuracy results only for completeness.

B. Experimental methodology

We use both synthetic and real datasets for evaluating each

system. The synthetic dataset is generated by using wgsim.

We generate two datasets with one million reads of length
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150 bp each, one with the default rate of indels and one

without any indels or substitutions. BWA-MEM, Bowtie2, and

Snap can be configured via command-line parameters to trade

off alignment accuracy for improved performance. Thus, we

use the two simulated datasets to perform a sensitivity analysis

to the presence of indels. More specifically, for the indel-free

case, we configure aligners for maximum performance by (i)

increasing the reseeding parameter (-r) of BWA-MEM from

1.5 (default) to 10 (no further improvement beyond this on our

hardware and dataset), (ii) using the “–very-fast” configuration

option of Bowtie2, and (iii) setting the MaxDist parameter (-

d) to zero for Snap. For the with-indel dataset, we run all

aligners using default configuration parameters, thus trading

off performance for accuracy. It is important to note that our

goal is not to systematically explore the entire parameter space,

but rather identify trends in CPU utilization at extreme points

in the performance–accuracy spectrum. For the real dataset, we

use a paired-end read (sample NA12878/09252015) obtained

from the public Genome-In-A-Bottle (GIAB) dataset [24].

Similar to the simulated with-indel case, we run all aligners

using default configuration parameters for the GIAB dataset.

We use Intel VTune for profiling each system. Before

profiling, each aligner is run once to warm up the file system

cache and ensure that the necessary indices and input data are

memory resident. Then, we profile each aligner by executing

it for 30 seconds, to warm up the instruction cache, and then

attaching VTune to the target thread for another 30 seconds.

We repeat the analysis three times and report only the median

values as the variation across runs was less than 10%.

IV. ANALYSIS RESULTS

In this section, we present our analysis of the four sequence

aligners with respect to processor utilization.

A. Indel-free dataset analysis

Modern processors use an array of techniques like pipelin-

ing, out-of-order execution, speculation, and instruction

prefetching to improve single-threaded performance. As a

result, modern processors can retire multiple instructions per

clock cycle as described in Section II. The efficiency of a

software is determined by the metric Instructions Per Cycle

(IPC), which determines the number of machine instructions

executed and retired by the processor in each clock cycle.

The Intel processor we use in this analysis can retire four

instructions per cycle. Thus, in the ideal case, the IPC value

of a sequence aligner should be four.

IPC analysis. Table I shows the single-threaded execution

time of aligners and Fig 2 shows the IPC values for the four

aligners under the indel-free simulated dataset. Clearly, the

processor remains substantially underutilized across aligners

as the worst-case IPC is lower than 25% (for BWA-MEM),

and the best-case IPC is around 50% (for Bowtie2), of the

theoretically achievable maximum.

Execution cycle breakdown. In order to further understand

why observed IPC values are lower than the theoretical maxi-

mum and explain differences in IPC across aligners, we need

to analyze the processor activity on a finer microarchitectural

level. Figure 3 shows the breakdown of execution cycles for

each aligner into retiring and stalled for the indel-free dataset.
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Aligner Simulated Indel-Free Simulated With-Indel GIAB
bowtie2 176 437 3126

bwa 127 458 2919
snap 57 112 717
fsva 55 80 288

TABLE I: Execution time in seconds of aligners under

different datasets

We see that the processor is stalled in nearly 60-80% of cycles.

These stalls result in the low IPC values observed earlier.

Stall-cycle breakdown. Given that a substantial fraction

of cycles are stall cycles, the next step is to identify the

root cause of these stall cycles. Figure 4 shows the stall

cycle breakdown for each aligner under the indel-free dataset.

Clearly, the dominating source of stalls is the Back-end which

accounts for 60% to 80% of all stall cycles. Figure 5 breaks

down the Back-end stalls further into memory or core bound.

Memory stalls account for a 60% to 80% of Back-end stalls

across all aligners. This indicates that the processor is stalled

waiting for data.

Memory stalls analysis. Given that memory stalls dominate

the Back-end across all aligners, it is important to know

if these stalls are due to cache-resident data or DRAM-

resident data. The Intel processor we use in this study has a

three-level caching hierarchy, with a 32KB L1 cache, 256KB

L2 cache, and 30MB Last-level cache. In general, software

optimizations attempt to move data closer to the processor

so that critical data structures are L1-cache resident. Thus,

a memory stall at a lower cache level typically indicates an

optimization opportunity where data structure redesign can

improve utilization. However, if memory stalls are due to

DRAM-resident data, this is typically due to cache-unfriendly

random data access pattern which is harder to optimize.

Figure 6 breaks down memory stalls into load and store

stalls. Load stalls are further decomposed based on the location

that contributes to the stall (L1, L2, L3 cache, or DRAM).

Clearly, between 70–90% of memory stalls are DRAM stalls

indicating that the processor is waiting for long-latency mem-

ory accesses from DRAM.

Insights. All aligners substantially underutilize the proces-
sor, as over 50% of execution cycles are spent on stalls. The
processor is stalled as the Back-end is blocked on long-latency
DRAM accesses waiting for data.

B. Analysis of dataset with indels

Having analyzed the microarchitectural behavior of aligners

under the indel-free dataset, we now present our results using

the with-indel dataset. Our goal is to understand if the presence

of indels, and the associated changes in aligner parameters

to improve accuracy, results in a different microarchitectural

behavior compared to the indel-free case where aligners were

configured for peak performance.

IPC analysis. Table I shows the single-threaded execution

time of aligners under the with-indel simulated dataset. Com-

paring the execution times between indel-free and with-indel

datasets in Table I, we see that the execution time of all

aligners increases in the presence of indels. This is expected

given that the indels trigger expensive approximate alignment
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algorithms. Figure 12 shows the ROC curve generated by

wgsim eval. The figure plots the number of correct align-

ments against the number of incorrect alignments as mapping

quality decreases from left to right. Clearly, BWA-MEM, and

Bowtie2 provide the most accurate alignment for this dataset

followed by Snap and FSVA. While our goal is not to provide

a side-by-side comparison of aligners, these results clearly

indicate that these aligners occupy different points in the

performance–accuracy spectrum.
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Figure 7 shows the IPC values under the with-indel dataset.

Comparing Figures 2, 7, we see that the IPC value of

aligners under the with-indel dataset is higher than the indel-

free dataset.
Execution cycle breakdown. Figure 8 shows the break-

down of execution cycles for each aligner into retiring and

stalled for the with-indel datasets. Similar to the indel-free

dataset (Figure 3), we see that even in the best case, the

processor is still stalled in nearly 50% of cycles. However, the

processor retires more instructions when the dataset has indels

compared to a dataset without indels. This directly translates

into corresponding difference in IPC observed earlier between

the two datasets.
Stall cycle breakdown. Figure 9 shows the stall cycle

breakdown for each aligner under the with-indel dataset. We

can make two important observations. First, under Bowtie2,

BWA-MEM, and FSVA, the dominating source of stalls is

still the Back-end which accounts for 60% to 70% of all

stall cycles. However, comparing this with the indel-free case

(Figure 4), we see that the contribution of speculation stalls

increases in the presence of indels. Second, unlike the marginal

increase in speculation stalls under BWA-MEM, Bowtie2, and

FSVA, we see that speculation emerges as the dominating

source of stalls under Snap accounting for nearly 45% of stall

cycles. The Back-end contributes to 35% of stalls with Snap.
Figure 10 breaks down the Back-end stalls further into

memory or core bound for Bowtie2, BWA-MEM, and FSVA.

We see that while memory stalls still account for over 40%

of Back-end stalls, they are no longer the only dominating

source, as core stalls account for as much as 60% of stalls

under some aligners. This contrasts sharply with the indel-free

case (Figure 5), where memory stalls overshadow core stalls.

These results show that aligners choose different code paths

for dealing with indel-free and with-indel cases as expected.

Further, the code path executed under the with-indel dataset

stresses the microarchitecture in a different way compared to

the code path executed under the indel-free case.

Memory stalls analysis. Given that memory stalls still

account for atleast 40% across aligners, Figure 11 breaks

down memory stalls across various cache levels and DRAM

under the with-indel dataset. Comparing Figures 6, 11, we

see that under BWA-MEM and FSVA, long-latency DRAM

stalls continue to dominate and contribute to over 80% of all

memory stalls in both indel-free and with-indel datasets.

Insights. While processor utilization improves in the pres-
ence of indels across all aligners, the processor still spends
majority of its cycles in the stalled state. However, memory
stalls are no longer the majority contributor, as aligners also
suffer from speculation and core stalls.

C. GIAB dataset analysis

So far, we have presented our analysis based on the sim-

ulated datasets. The microarchitectural behavior of aligners

under the GIAB dataset is very similar to the simulated, with-

indel dataset.

Table I shows the single-threaded execution time of aligners

under the GIAB dataset. Figures 13, 14 show the IPC and

execution cycle breakdown. Comparing this with Figure 8, we

see similar trends between the with-indel simulated dataset

and the GIAB dataset as the processor is stalled in 50-70% of

execution cycles.

Figure 15 breaks down the stall cycles into various compo-

nents. Similar to the simulated dataset (Figure 8), Back-end

stalls account for 60–70% of stall cycles under Bowtie2, BWA-
MEM, and FSVA. Speculation stalls are the dominating source

of stall cycles under Snap.

Among aligners bottlenecked on Back-end stalls, Figure 16

shows that memory stalls are the dominating factor. Figure 17

shows that long-latency DRAM stalls are the main contributors

for memory stalls.

V. PER-STAGE ANALYSIS

The analysis presented so far answers some questions–how

do aligners utilize the processor? what causes processors to

be stalled? But, it also raises other questions–why does the

presence of indels change the microarchitectural behavior? To

answer this question, we need to perform a stage-by-stage

analysis of sequence alignment.

All aligners we have considered in this study work by

considering one read at a time. Each aligner processes each

read using three distinct steps. In the first stage, seeds are

extracted from each read and used to lookup the index to

retrieve candidate locations. The second stage is the filtration

stage where heuristics and theoretical lower bounds are used

to reduce the number of candidate locations that must be

examined. The third stage is the extension stage where the

entire read is aligned with each candidate location to identify

the best match. Once a read has been processed by all the
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three stages, the aligner writes the alignment information to

the output file and moves to the next read.

The analysis results we have presented so far are from an

inter-stage analysis that spans across all stages. In this section,

we present intra-stage analysis where we explore processor

utilization within each stage to identify which stages account

for stall cycles so that we can answer the aforementioned

question. In order to perform the intra-stage analysis, we

modified FSVA so that data is processed in a stage-at-a-time

fashion. We chose FSVA as it was the fastest aligner in our

study and has a simpler code base due to its focus on single-

threaded performance.

In our modified FSVA, which we henceforth refer to as

staged-FSVA, all reads are first broken down into seeds and a

hashtable lookup is performed to identify candidate locations.

All such locations are saved in intermediate data structures

together with metadata to keep track of the mapping between

locations and reads. Once all reads are processed by the

first stage, the output from the first stage is passed to the

second stage. In this stage, the candidate locations are sorted

and filtered using the seed-and-vote filtration approach used

by FSVA [17]. The output of this stage are two candidate

locations that are the two most voted locations for each read.

Once these location pairs are identified for all reads, staged-

FSVA proceeds to the third stage where Smith-Waterman

alignment is used to perform approximate alignment.

By using a stage-at-a-time execution approach, staged-

FSVA makes it possible for us to accurately measure and

profile each stage independently.

A. IPC and execution cycle breakdown

Table II shows a breakdown of execution time of each

stage of staged-FSVA under the with-indel simulated dataset.

As expected, the Smith-Waterman extension stage dominates

overall execution time. Figure 18 shows the IPC values for

each phase of staged-FSVA. While the filtration and extension

stages have IPC values of 2.5 and 2.9, the seeding and

hashtable lookup stage has only an IPC value of 0.5. This

highlights that the main bottleneck leading to low IPC count,

and hence poor processor utilization, is the first stage.

Stage Time (secs)
Seeding and lookup 14
Filtration and voting 11

Extension 35
Misc. 22

TABLE II: Execution time in seconds of the three main

alignment stages and rest (loading reference, I/O, writing out

SAM file, etcetera) of FSVA

Figure 19 shows the breakdown of execution cycles per

stage for staged-FSVA. These results mirror the IPC values

in Figure 18. In the first stage, the processor spends 87% of

execution cycles in the stalled state, while retiring instructions

only in 13% of cycles. In the second and third stages, this

trend is reversed, as the processor spends 63% to 72% of

cycles retiring instructions.
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B. Stall cycle breakdown
Figure 20 shows the breakdown of stall cycles for each

stage. Clearly, there is a dramatic difference between stages. In

the seeding and lookup stage, Back-end stalls account for 90%

of stall cycles. Figure 21 shows the breakdown of Back-end

stalls and as can be seen, memory stalls contribute to over 90%

of the Back-end stalls in the seeding stage. Figure 22 shows the

memory stall breakdown. Clearly, long-latency DRAM access

dominate this category and account for 93% of all memory

stalls in the seeding stage.
During this first stage of alignment, seeds of length 31 bp

are extracted from each read, hashed, and used to probe the

hashtable to determine coordinates in the reference. As each

seed potentially hashes to a completely random value in a 4GB

range, there is little spatial locality in this workload. Thus,

hashtable lookups do not benefit from processor caches, the

corresponding memory load instructions result in long-latency

DRAM accesses. As instructions that follow these memory

loads are dependent on the load, the pipeline is stalled and

the processor idles waiting for data to arrive from memory.
Unlike the seeding stage, the filtration stage is not entirely

bottlenecked on the backend. During filtration, Front-end,

speculation, and Back-end stalls contribute equally to stall

cycles as shown in Figure 21. FSVA uses a seed-and-vote-

based filtration scheme where all coordinates gathered are

used to vote for candidate locations where the read must be

aligned. This voting is accomplished by sorting the coordinates

determined in the seeding stage, eliminating duplicates and

low-frequency locations, and identifying the top two locations

with most votes. The branching logic in the sorting algorithm

results in speculation stalls. Mispredicted branches add delay

to the Front-End as it has to fetch operations from corrected

path, resulting in Front-end stalls. The Back-end stall break-

down shown in Figure 21 shows that core stalls are the major

(71%) contributor to Back-end stalls. Figure 22 shows that

the remaining 29% contribution from memory stalls is due

to L1 cache accesses and not due to DRAM access. Thus,

computation rather than memory access is the bottleneck in

the filtration stage.

The extension stages is similar to the filtration stage mi-

croarchitecturally. As we already mentioned, the processor

is stalled in only 30% of cycles (Figure 19). As shown in

Figure 20, Back-end stalls account for 40% of execution

cycles while Front-end and speculation account evenly for the

other 60%. While Back-end stalls are relatively higher in the

extension stage compared to the filtration stage, these stalls

are once again due to core stalls, which contribute to nearly

90% of Back-end stalls, rather than memory stalls as shown

in Figure 21. During the extension stage, FSVA uses the Smith

Waterman dynamic programming algorithm for aligning reads

to the reference. As the amount of data that the algorithm

operates on fits easily in the processor cache, there are very

few data misses. However, the complex control flow and

branching logic in the dynamic programming algorithm creates

speculation and core stalls.

Insights summary. There is a clear dichotomy between
various stages of sequence alignment with respect to mi-
croarchitectural utilization. The seeding stage exhibits very
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low processor utilization with memory stalls in the Back-end
contributing to majority of processor stall cycles. The filtration
and extension stage, in contrast, have much better utilization,
and are bottlenecked on Front-end speculation stalls and Back-
end core stalls.

VI. IMPLICATIONS

In this section, we will discuss the implications of our

findings on the design of next-generation of sequence aligners.

We will consider three dimensions, namely, performance,

scalability, and energy efficiency.

A. Performance implications

Even though modern sequence aligners are able to map

reads to reference at a very high throughput, our analysis

reveals that they still substantially underutilize the processor.

Irrespective of the aligner used, the processor remains stalled

over 50% of time suggesting that there is room for further

improvement. Our analysis also showed that different stages

of sequence alignment behave differently with respect to pro-

cessor utilization. The seeding stage has the worst utilization

of all stages as memory stalls caused by hashtable lookups

dominate execution cycles. The filtration and extension stages,

in contrast, utilize the processor better and do not experience

such memory stalls.

Given this dichotomy between stages, it is clear that the

two stages should be optimized differently. Given that the

filtration and extension stages are bottlenecked on resource

conflicts (core stalls), using “beefier” processors with more

execution units, or using software techniques like vectorization

to feed more data to existing units, should both assist in

improving performance of these two stages. However, given

that the seeding stage is bottlenecked on memory stalls, simply

using faster processors will only result in an increase in stall

cycles instead of improved performance. The solution is to

use latency-hiding techniques for masking the overhead of

memory accesses. Thus, techniques like software prefetching,

simultaneous multithreading, can be explored further to ensure

that the processor continues to retire instructions correspond-

ing to one read while waiting for data to arrive from memory

for another read.

B. Scalability implications

Modern sequencing technologies produce millions of reads

in a single run. Given that each read is independent of other

reads, scaling sequence alignment is an embarrassingly parallel

problem as each read can be assigned to a different processing

thread. Given that modern servers are equipped with multicore

processors, state-of-the-art aligners have started exploiting the

thread-level parallelism of these processors to scale alignment.

However, given that a single processor is stalled 50% of

cycles, and given that various stages of alignment differ in

their usage of processor resources, such an approach of using

homogeneous multiprocessing where processors are identical

to one another will only aggravate underutilization.

A promising alternative is to consider the use of heteroge-

neous parallelism using accelerators like Xeon Phi or GPG-

PUs. However, although GPGPUs provide massive thread-

level parallelism with thousands of CUDA cores, research

has shown that current GPGPU-based aligners provide only

around 2–3× improvement compared to CPU-based align-

ers [19], [21]. Unlike CPUs which excel at task parallelism,

GPGPUs excel at data parallelism. Sequence alignment, how-

ever, lends itself naturally to task parallelism rather than

data parallelism due to the complex branching logic used

in dynamic programming-based extension algorithms. Thus,

current GPGPU-based aligners that attempt to execute the

extension stage on GPGPUs suffer from scalability limitations

due to warp divergence caused by branching logic.

Our analysis suggests a natural division between CPUs

and GPGPUs. CPUs are underutilized substantially during the

seeding phase due to long-latency data misses. GPGPUs, in

contrast, are capable of hiding long-latency accesses using

hardware-assisted multithreading. Thus, GPGPUs are a natural

fit for the seeding phase of sequence alignment. Similarly,

filtration phase of sequence alignment uses sorting, duplicate

removal, and candidate selection. As these operations are data

parallel, they also likely to benefit by execution on GPGPUs.

However, given that the extension stage uses complex branch-

ing logic, and given that CPU utilization is already high during

this stage, it might be better to schedule it on CPUs instead

of GPGPUs. Thus, further research is necessary to understand

the pros and cons of such a design as opposed to a CPU-only

or GPU-only aligner.

C. Energy efficiency implications

With the advent of cloud computing, it has become in-

creasingly more important for data analytics platforms to be

energy proportional [3], meaning that they consume power

proportional to the amount of work performed. Any program

that results in the processor stalling for a substantial portion

of time adversely impacts energy proportionality as the power

consumed by the processor is not used for performing useful

work. Given that the processor is stalled for over 50% of the

execution cycles under sequence aligners, we believe that there

is much work to be done in improving the energy efficiency

of these tools.

One promising research direction would be to use the

dichotomy between stages to implement sequence alignment

on heterogeneous big-LITTLE processor architectures like

ARM. As processors are equipped with both “beefy” cores

and “wimpy” cores, a sequence aligner that uses the latter

for the first stage and former for the latter two stages would

consume much less power than one built for contemporary

server-grade processors.

VII. CONCLUSION

Sequence alignment is the first stage of genomic data

analysis and a very well-studied problem. Decades of research

on scalable, high-performance approximate string matching

algorithms have led to the development of fast sequence
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aligners that can map thousands of reads per second. However,

there is no work that analyzes the efficiency of sequence

aligners with respect to processor utilization.
In this study, we presented the first microarchitectural anal-

ysis of four state-of-the-art aligners. Our analysis on simulated

datasets as well GIAB data revealed that all aligners result in

substantial underutilization as the processor remains stalled

for 50%-70% of execution cycles. We identified Back-end

memory stalls and speculation stalls as leading sources of

inefficiency. To understand the source of these stalls, we also

presented a stage-by-stage analysis which mapped memory

stalls to the seeding stage and speculation stalls to the filtration

and extension stages. This microarchitectural study shows an

in-depth view of processor usage for one of the many steps

in genomic data analysis pipeline and opens up new oppor-

tunities for extending this analysis to other phases as well.

Given the growing popularity of heterogeneous parallelism,

such microarchitectural studies will play an important role in

determining the ideal processor type for each phase of the

genomic data analysis pipeline.
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