
GraphNER: Using Corpus Level Similarities and Graph Propagation
for Named Entity Recognition*

Golnar Sheikhshab1,2, Elizabeth Starks2, Aly Karsan2, Readman Chiu2, Anoop Sarkar1, and Inanc Birol1,2

Abstract— The rapidly growing amount of research papers
in computational biology makes it difficult for researchers to
keep up to date on new results. The motivation behind this
paper is to use natural language processing to automatically
understand relevant concepts from the large amount of text
data in published papers in computational biology. As a proof-
of-concept, we focus on the gene mention detection task, which
allows us to identify genes that are being discussed in papers,
making it possible to search for concepts like genes rather than
searching on words. In this paper we introduce GraphNER,
a semi-supervised machine learning model for named entity
recognition (NER). In particular, we use GraphNER to identify
gene mentions in natural language data such as biomedical
papers. It combines training data where the gene mentions
are identified by human experts and unlabelled data that
contains many other relevant gene mentions. The labeled and
unlabeled data are linked together using similarities between
n-grams that occur in the two data sources (an n-gram is
a contiguous sequence of n words in the text). GraphNER
uses the information gleaned from this graph, and combines
it with a conditional random field (CRF) model for NER. We
consider two different CRF-based NER systems on two different
datasets combined with our graph model for semi-supervised
learning for the task of gene mention detection. We show
that GraphNER consistently improves the overall quality of
gene mention detection due to its higher precision. GraphNER
is freely available at http://www.bcgsc.ca/platform/
bioinfo/software/graphner.

I. INTRODUCTION

Detecting the named entities in a document is often the

first step in many natural language processing (NLP) tasks,

such as relation extraction and knowledge discovery. Named

entities of interest in the biomedical domain include mentions

of genes, mutations, proteins, and diseases in text.

Current approaches formulate named entity recognition

(NER) as a sequence tagging problem, where the in-

put is a sentence represented as a sequence of words

x1, x2, ..., xl, and the output is a sequence of corresponding

tags t1, t2, ..., tl. The tag ti also marks if the term xi

represents the beginning, inside, or outside of a named entity

type, the first two corresponding to the first, and internal

terms of a mention, respectively, and the last one indicating

* This work has been partially supported by Genome Canada, Genome
British Columbia and British Columbia Cancer Foundation. The research
was also partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC RGPIN 262313 and RGPAS 446348)
to the fourth author.

1Golnar Sheikhshab(gsheikhs@sfu.ca), Anoop Sarkar, and Inanc
Birol are affiliated with School of Computing Science, Simon Fraser
University, 8888 University Dr, Burnaby, BC

2Golnar Sheikhshab, Elizabeth Starks, Readman Chiu, Aly Karsan, and
Inanc Birol are affiliated with Canada’s Michael Smith Genome Sciences
Centre, British Columbia Cancer Agency

that it is not part of a named entity mention. Hence, the tag-

set consists of two tag types for any of the desired entity

types (B and I), and a tag type for all other terms (O).

For example, if the task is to detect genes, mutations, and

diseases, the tag-set will be {B-Gene, I-Gene, B-Mutation,

I-Mutation, B-Disease, I-Disease, O}.
The following sentence shows a sample input/output for a

gene mention detection task:

Recently/O ,/O the/O mutation/O
of/O lymphocyte/B adaptor/I
protein/I (/O LNK/B or/O SH2B3/B
)/O was/O detected/O in/O MPN/O

where B, I, and O are used for B-Gene, I-Gene, and O,

since we are only considering gene mentions in this example.

Based on the output tags, we can conclude there are three

distinct gene mentions in this sentence: ”lymphocyte adaptor

protein”, ”LNK”, and ”SH2B3”.

Conditional random field (CRF) [12] is one of the most

successful supervised methods for sequence tagging prob-

lems. Many popular NER systems, including some popular

biomedical systems such as BANNER [15], Gimli [4], and

BANNER-ChemDNER [23], are based on CRF.

The CRF model is an undirected graphical model for the

conditional probability of the entire output sequence t given

the entire input sequence x. In contrast to CRF, Markov

Random Fields model the joint probability of both sequences.

CRFs can be defined on any factor graph. Chain CRFs,

where the factor graph is a chain, have useful properties for

NLP, as they are suitable for sequence modelling, and are

computationally tractable using dynamic programming. In a

chain CRF, ti (the ith element of the sequence t) depends

on x (the entire input sequence) and previous d labels, d
referring to the order of the CRF model. Therefore, in a

second order CRF, the probability of having tag sequence t
for sentence x is:

p(t|x) = exp(score(t|x))∑
t′ exp(score(t

′|x)))

where

score(t|x) =
m∑

j=1

n∑

i=1

λjfj(x, i, ti, ti−1)

and λj is the hyper-parameter corresponding to fj , the

jth of the m feature extractors that extract features from the

sequence, the position, and the previous labels.

Chain CRF’s are considered efficient models, where train-

ing is done by maximizing the conditional log likelihood of

labelled data. Then, given the model parameters, the optimal

229

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00047

tag sequence can be ”decoded” using the Viterbi dynamic-

programming algorithm [33].

One weakness of a CRF model is that it is fully supervised,

and it ignores information outside the sentence. To mitigate,

CRF models can be extended to include unlabelled data

using graph-based semi-supervised learning (SSL) methods,

as demonstrated in many NLP applications [35], [29], [1],

[20], [27], [32], [31], [7], including a sequence tagging

problem for part of speech tagging [30].

In graph-based SSL, a graph connects labelled and unla-

belled data points in a large partially labelled dataset, and

pushes similar data-points towards similar labels. This lever-

ages unlabelled data, which is usually more readily available

than labelled data, and takes corpus-level similarities into

account.

Motivated by the success of Graph-based SSL in other

sequence tagging tasks, we extended the algorithm of [30]

from part of speech tagging to named entity recognition,

and implemented GraphNER, a biomedical named entity

recognition tool. GraphNER inputs the probabilistic output

of CRF-based systems such as BANNER or BANNER-

ChemDNER, and improves their label assignments using a

graph constructed over a given partially labelled corpus.

We compared our work to the best-performing methods

in the BioCreative II gene mention (BC2GM) shared task,

as well as more recent methods reporting results on the

corpus of that shared task. The best performing method

in the BC2GM shared task was a semi-supervised method

from IBM Watson Research Center [2] reporting a F-score

of 87.21%. A more recent semi-supervised tool, BANNER-

ChemDNER [23], takes advantage of abundant unlabelled

data by using Brown clustering [3] and word-to-vector

(word2vec) embeddings [22], leveraging these embeddings

as features in its otherwise supervised machine learning

core (CRF). Brown clustering and word2vec embeddings

both capture the syntactic and semantic similarity of words.

Brown clustering constructs a cluster hierarchy over the

words by maximizing the mutual information of bi-grams,

whereas word2vec embeddings are the hidden layer of a

neural network, trained to predict each word by using the

words in its context.

We also evaluated a strong neural network method for

named entity recognition, based on a bi-directional long

short-term memory with a CFR layer, LSTM-CRF [13], and

benchmarked it on the BC2GM corpus. LSTM-CRF has been

shown to outperform bi-directional LSTM and simplified

LSTM (S-LSTM) [13]. It achieves comparable results with

LSTM with a convolutional neural network layer (LSTM-

CNN) [5] on the same benchmark corpus in the absence of

lexicons.

While we have previously shown the efficacy of graph

propagation in improving BANNER on BC2GM corpus [28],

the contributions of this paper are as follows.

1) We introduce GraphNER as a gene mention detection

tool for use on biomedical literature (abstract or full

text).

2) We show that GraphNER improves both CRF-based

BANNER and BANNER-ChemDNER, providing sta-

tistically significant gains in performance.

3) We demonstrate that GraphNER’s competitive perfor-

mance on the BC2GM corpus can be replicated on an

orthogonal dataset.

4) We show that this performance was reached incurring

only modest execution time and memory use compared

to resources used for training and testing the CRF

models.

II. APPROACH

We developed GraphNER, a graph-based SSL for named

entity recognition, specifically for gene mention detection.

Following the practice introduced by Subramanya et al. [30],

we first construct a graph where the vertices are 3-grams,

and edge-weights encode corpus-level similarity of these 3-

grams. We use this graph to push similar 3-grams towards

taking similar labels. This is a semi-supervised method,

because the graph is constructed on labelled and unlabelled

data. While this method is theoretically capable of using

abundant unlabelled data, we chose a transductive approach:

the only unlabelled data we use in graph construction is

the test data. The rationale behind this decision is the time

complexity of graph construction, as the scalability of graph

construction for large datasets remains an open problem.

Algorithm 1 shows the train and test procedure of Graph-

NER. The training stage of the algorithm comprises an

expansion of a base CRF model, where we scan the labelled

data (Dl) and compute an average label distribution Xref(v)
for any 3-grams v that appear in Dl (we call the set of such

3-grams Vl).

The testing procedure is more complex than the training

stage. First, we run the CRF to extract the posteriors and

transition probabilities. Then, we compute the average of

these posteriors for each possible 3-gram v to form the

initial belief about label distribution of v, which we will

call X(v). These distributions are then propagated on the

graph to ensure similar 3-grams get similar distributions, as

described in further detail in the Graph propagation section.

Finally, we assign labels to all words w that appear in the

context of (w−1, w, w1) in an input sentence S, using a

mixture of graph and CRF results. That is, we combine

the graph’s belief, Ps(S, i) (i indicating the index that

corresponds to a given word w in the sentence S), and

the CRF’s belief, X(w−1, w, w1), about a label of w by

computing αPs(S, i) + (1 − α)X(w−1, w, w1), and get a

final Viterbi decoding on the sequence of these values and

transition probabilities of CRF. For an illustration of these

procedures, see Figure 1.

Our algorithm differs from [30] in that we have a trans-

ductive setting where we train and test once, whereas they

have an inductive setting: they expand the labelled data-set

by treating the output of Viterbi decoding (line 9) as correct

and iterating over the train and test procedures, overwriting

these labels until convergence or the 10th iteration. Note that

we follow the same iterative graph propagation algorithm

(elaborated in the Graph propagation section) as they do

230

labelled data:
drug/O response/O was/O significant/O in/O wilms/B tumor/I -/I 1/I positive/O patients/O ./O
we/O observed/O the/O following/O mutations/O in/O wilms/B tumor/I -/I 1/I ./O
we/O did/O not/O observe/O this/O mutation/O in/O the/O patient/O ’/O s/O tumor/O -/O 1/O subclone/O ./O

unlabelled data:
wilm ’ s tumor - 1 (wt1) gene was highly expressed .
we did not observe this mutation in the patient ’ s tumor - 2 subclone .

Input: labelled and unlabelled data that includes the sentences shown above and a graph constructed over the whole partially labelled corpus. Part of
the input graph is shown in (a).

Output: BIO labels for every word in all unlabelled sentences. We focus on ”-” in the two unlabelled sentences shown above.

After training: Reference labels, the average label distributions based on the labelled data are associated with some vertices in the graph as shown in
(b).

After line 5 in Algorithm 1: The following posterior probability distributions are extracted from CRF. For ”-” in the first sentence we get
(B,I,O)=(0,0.45,0.55) and for ”-” in the second sentence we get (B,I,O)=(0,0.15,0.85). Label O is preferred for both instances of ”-”. In the second case
this preference is correct and much more enunciated. In the first case however, O is not the right label. One reason that the CRF could make such a
mistake is that it has seen the sequence ¡’ s tumor - 1¿ before in the labelled data with annotation O for ”-”.

After line 6: The average of extracted posterior probabilities are put on the graph as illustrated in (c).

After line 7: As a result of graph propagation, the vertex [tumor - 1] has a label distribution that peaks at I (note the label distributions in (d)). The
reason is that this vertex will have many neighbor vertices where I is preferred. Examples of such neighbors are [wilms tumor -] that is shown in the
figure and [wilms tumour 1], [wilms ’ tumor], and [wilms tumor ,] that are not shown due to lack of space.

After line 8: The posteriors extracted from CRF and the distributions on the graph after propagation are linearly combined with coefficients α and
1−α respectively. Let us pick the coefficient α to be 0.1 since smaller α values were consistently preferred in our cross validations. This will give us
new distributions for ”-” in the first and second sentences: (B,I,O)=(0,0.77,0.23) for the first ”-” and (B,I,O)=(0,0.24,0.76) for the second ”-”.

After line 9: Labels of both instances of ”-” are correct after Viterbi algorithm chooses the most probable tag sequence for the unlabelled sentences.

Fig. 1. Illustration of Algorithm 1 with an example.

and the hyper-parameter #iterations (line 7) refers to this

iterative algorithm.

Algorithm 1 GraphNER

1: procedure TRAIN

2: CRF train(Dl)

3: Xref, Vl ← Set ReferenceDistributions(Dl)

4: procedure TEST

5: Ps, Ts ← CRF Posteriors And Transitions(Dl∪Du)
6: X ← Average(Ps,V)

7: X ← Propagate(X,Xref, μ, ν,#iterations)

8: P ′s ← Combine (Ps, X, V, α)

9: finalLabels ← Viterbi(P ′s, Ts)

A. Graph propagation

The intuition behind graph propagation is that similar text

elements should have similar labels, and we use representa-

tions of text elements on a graph to infer similarities. Using

the topology of the graph, we push the label distribution of

a vertex towards the label distributions of its neighbours. We

would also want the label distribution of Vl to be similar to

their reference distributions (Xref). Finally, when available,

we would want to incorporate prior knowledge as well. In

general, it would be desirable to prefer one label over others

only if there is strong evidence. In our implementation, we

achieve this by enforcing a preference for staying close to a

uniform distribution.

The following loss function combines the mentioned intu-

itions.

C(X) =
∑

u∈Vl

||X(u)−Xref(u)||22

+μ
∑

u∈V

∑

k∈N(u)

wu,k||X(u)−X(k)||22

+ν
∑

u∈V
||X(u)− U ||22. (1)

where N(u) refers to the set of neighbours of a vertex u in

the graph, wu,k stands for the weight of the edge between

vertices u and k, and U denotes the uniform distribution. All

other terms are as they were defined above.

Now, since this is a loss function, we would want to

minimize it by setting its derivative to zero. Taking Euclidean

distance as the distance function, we can calculate the

231

derivative of C with respect to X(i)y (the probability of

label y in vertex i) as follows.

∂C

∂X(i)y
= 2{δ(i ∈ Vl))(X(i)y −Xref(i)y)

+μ
∑

k∈N(i)

wi,k(X(i)y −X(k)y)

+ν[(X(i)y)− 1

Y
]}.

where Y is the number of labels and δ is the identification

function: δ(P) = 1 if and only if P is true.

Setting this derivative to zero, we will get the update rule

for X(i)y in graph propagation (line 7 in Algorithm 1):

X(i)new
y =

γi(y)

ki
γi(y) =Xref(i)yδ(i ∈ Vl)

+ μ
∑

k∈N(i)

wi,kX(k)y + ν
1

Y

ki =δ(i ∈ Vl) + ν + μ
∑

k∈N(i)

wi,k.

(2)

Graph propagation is performed by iteratively updating

label distributions using equation 2 and involves three hyper-

parameters:μ, ν, and number of iterations. These hyper-

parameters can be tuned by cross-validation.

B. CRF Models used by GraphNER

We used two different CRF-based NER systems as the

base model that is extended by the GraphNER model; that

is in Algorithm 1, we used these tools in lieu of CRF. In

order to extract posterior and transition probabilities, we

have modified the source code of these tools. The modified

version of these tools is included in our publicly available

implementation.
1) BANNER: BANNER [15] is a popular biomedical

named entity recognition system that is frequently cited [6],

[11], [21], [8], [10], and is used for gene mention tag-

ging [19], [9], [16], [25], [19], [17], [14]. The features used

in our graph construction were extracted from BANNER.
2) BANNER-ChemDNER: BANNER-ChemDNER [23] is

a tool built on BANNER, and uses features extracted from

large unlabelled datasets. As such, it is considered a semi-

supervised version of BANNER.

C. Graph construction

The central idea in GraphNER is to have a graph that

tells us what data points are similar, so that we can assign

similar labels to them. We followed a popular approach in

graph-based semi-supervised learning for NLP applications

(specifically, the ones that can be formulated as tagging

problems), putting 3-grams as vertices, and representing

them with a vector of feature values. That is, a vertex is

represented as a vector of pointwise mutual information

between the 3-gram associated with it and possible feature

instances such as surrounding words.

The edge weight between two vertices is the cosine

similarity of their vector representations. The graph is usually

kept sparse by keeping only k nearest neighbors for each

vertex, which means the final graph is a directed one.

Different choices of feature sets change the vector rep-

resentations, and consequently the edge weights and struc-

ture of the graph, leading to a different performance in

GraphNER. We considered using all features extracted by

BANNER (All-features), only lemmas of the words in a

window of length 5 (Lexical-features), and features that have

high mutual information with the tag assigned by BANNER

(MI greater than some fixed threshold).

D. Datasets

1) BC2GM corpus: This dataset, introduced for the

BioCreative II shared task in 2006, contains 15,000 training

and 5,000 test sentences from published abstracts. Annota-

tions are given by the starting and finishing character indices

of genes in sentences. The space characters are ignored.

Some sentences have alternative annotations presented in a

separate file. This dataset is publicly available, and many

studies have reported results on it, including the leading

studies we compared against in this work [4], [2], [26].

2) AML corpus: This is a collection of 80 full text articles

related to acute myeloid leukemia (AML) clinical variant

interpretation. The annotations are provided in the same

format as the BC2GM corpus.

We divided the corpus into train and test sets by randomly

selecting 22 full text articles for the test set, and we placed

the rest in the train set. The training set contains 10,504

sentences and the test set contains 3,952.

E. A note on time complexity

We can discuss the time complexity of GraphNER in

three different phases: graph construction, model training,

and model testing.

1) Time complexity of graph construction: Graph con-

struction consists of a. constructing the feature vectors for

vertices and b. computing the cosine similarity of every pair

and keeping only K nearest neighbours for each vertex.

In the first step, constructing feature vectors, we need to

go through all 3-gram tokens in the corpus and try to extract

all relevant features. The time complexity of this step is a

linear function of the number of 3-gram tokens in the corpus

(N). The constant in the linear function depends on not only

the number of features (f) that we need to extract for each

3-gram token, but also the difficulty of that feature extraction.

In the second step, we will get the cosine similarity of

all possible pairs of vertices (unique 3-grams). Therefore,

the time complexity depends on the number of vertices (V)

and the size of the feature vector(F). The feature vector can

be large, because there are as many elements in the feature

vector as there are feature instances, which can be as many

as Nf . The worst case scenario of size Nf would happen

if all the feature instances for any 3-gram token are unique.

Computing the cosine similarity between all pairs of vertices

would have a time complexity of O(V 2F). Keeping only K

232

nearest neighbours adds another K or (log(K) if we use a

heap data structure) factor to the time complexity.

Overall, the time complexity of graph construction can be

summarized as O(Nf + V 2FK).
2) Added time complexity to train and test: As Algo-

rithm 1 shows, the train and test contain training and testing

CRF as well as other steps. The question is how much

GraphNER adds to the time complexity of CRF.

In training, GraphNER needs to set the reference dis-

tributions (line 3 of Algorithm 1), which involves going

through all 3-grams of training set, keeping the number

of occurrences and the number of any tag for all vertices

(unique 3-grams), and finally loop over all vertices and divide

the number of tags by the number of occurrences to get the

distributions. The time complexity that this procedure adds

is of O(Nl+Vl) where Nl and Vl are the numbers of 3-gram

tokens and unique 3-grams in the training set.

In testing, we do a similar averaging over all the pos-

teriors (line 6 of Algorithm 1), adding a time complexity

of O(N + V) where N and V are the numbers of 3-gram

tokens and unique 3-grams in both training and test sets.

Then, graph propagation happens that consists of repeating

over equation 2 for V.#Iterations times. Equation 2

itself is of O(K), then the graph-propagation overall is of

O(V K#Iterations). The next line (line 8 of Algorithm 1)

involves going through all 3-gram tokens and doing a

weighted sum, so the complexity of that is O(N) and finally

the complexity of the last line, the Viterbi, is going to be

also O(N) because Viterbi has the complexity of O(LQ2)
where L is the length of the sentence and Q is the number

of tags which is only 3 in our case.

So, overall, the added time complexity of GraphNER is

only O(Nl +Vl) for training and O(N +V K#Iterations)
for testing.

III. RESULTS

We report the precision, recall, and F-Score obtained from

the evaluation script of the Biocreative II gene mention

task. The script compares detections with primary gene

mentions and their alternatives, and counts exact matches

as true positives. Alternative annotations were present in the

BC2GM corpus, but not in the AML corpus. The number of

false negatives will be the number of primary gene mentions

minus the number of true positives; and the number of false

positives will be the number of detections minus the number

of true positives.

As shown in Table I, GraphNER improves both baselines

on the BC2GM Corpus. A significance test with the sigf

tool [24] (discussed in further detail in section III-A) re-

vealed that these F-Score improvements were statistically

significant.

Table I also shows that we were not able to exactly repli-

cate the published BANNER-ChemDNER’s performance

on this task. While the authors have reported an F-score

of 87.04%, we obtained a slightly lower performance, at

86.49%. Regardless, plugging BANNER-ChemDNER into

GraphNER led to an F-score (87.34%) that is greater than

published F-score of BANNER-ChemDNER on BC2GM.

It is also worth mentioning that when applying the two

leading neural-net based methods [13], [26] in the literature

on BC2GM, we had to train them on a subset of train set

as they both need a dev-set. We divided the train set into

a 12000-sentence train subset and a 3000-sentence dev-set.

The fact that we did not have access to the exact train/dev

sets that Rei et al. [26] used explains the difference in our

F-Scores.

Performance of GraphNER on the AML corpus is reported

in Table II. Performance of the baseline CRF based super-

vised learning systems and GraphNER were substantially

higher for the AML corpus relative to the BC2GM corpus.

These performance differences were expected, because there

were multiple differences in the article curation and manual

annotation procedures for the two corpora. The BC2GM

corpus was curated broadly from articles in the field of

biology, whereas the AML corpus was restricted to human

clinical genetics articles. In the general field of biology, gene

names may be used inconsistently with a variety of notation

styles. Clinical genetics articles have a more standardized

discourse about genes, and articles in this field preferentially

use a gene nomenclature maintained by HGNC for human

genes. This standardized nomenclature would simplify the

manual annotation task for the annotators, and would likely

improve the performance of the named entity recognition

tools as well. BC2GM annotations were performed by un-

dergraduate students with limited training and limited subject

knowledge, whereas the AML corpus was curated and edited

TABLE I

RESULTS ON THE BC2GM CORPUS. BOLD NUMBERS INDICATE THE BEST PERFORMANCE IN EACH METRIC. F-SCORE IS OFTEN USED TO MEASURE

THE TRADE OFF BETWEEN THE PRECISION AND RECALL, AND IS THE HARMONIC MEAN OF THESE METRICS.

Category Method Precision (%) Recall (%) F-Score (%)

Published in the literature
Ando (2007) 88.48 85.97 87.21
Gimli (2013) 90.22 84.32 87.17

BANNER-ChemDNER (2015) 88.02 86.08 87.04
Rei et al. (2016) - - 87.99

Obtained from existing methods
LSTM-CRF 88.80 84.28 86.48

Rei et al. (2016) 87.04 88.72 87.77
BANNER 86.88 82.02 84.38

BANNER-ChemDNER 87.51 85.49 86.49

GraphNER
CRF=BANNER 90.21 81.85 85.83*

CRF=BANNER-ChemDNER 89.18 85.57 87.34*

233

TABLE II

RESULTS ON THE AML CORPUS.

Category Method Precision (%) Recall (%) F-Score (%)

Baselines
BANNER 96.56 94.56 95.55

BANNER-ChemDNER 97.29 96.00 96.64

GraphNER
CRF=BANNER 97.56* 94.46 95.98

CRF=BANNER-ChemDNER 97.68* 96.08 96.87

by subject experts in the clinical genetics domain. Due to

the difference in expertise in the annotators for the two

projects, we expected a higher error rate in the BC2GM

manual annotations.

Nonetheless, GraphNER has improved both baselines on

AML corpus by showing higher precision. As discussed in

detail in section III-A, the improvements in precision were

statistically significant.

We also applied the neural-net-based state of the art on

BC2GM (character-based bi-directional LSTM with attention

mechanism [26]) on AML data set. Since it needs a dev set,

we partitioned AML train set to train/dev subsets (82%/18%

in sentences). We also re-trained BANNER-ChemDNER

and GraphNER with BANNER-ChemDNER on the new

smaller train subset to have a fair comparison. Their sys-

tem achieved an F-Score of 93.62 which was lower than

both BANNER-ChemDNER (F-Score=94.32) and Graph-

NER with BANNER-ChemDNER (F-Score=94.54) when

trained on the smaller train subset. Note that GraphNER with

semi-supervised learning improved over supervised learning.

The hyper-parameters used to generate reported results for

GraphNER were all chosen by cross-validation over different

train:test splits. Table IV shows the parameters used for each

of the systems.

Finally it is worth mentioning that all results reported in

Table I and Table II were obtained with second order CRF’s

and using java version 1.7. However, while we obtained

different numbers for different CRF orders (1 or 2) or java

versions (1.7 or 1.8), GraphNER always improved both

baselines, and this improvement was consistently due to

higher precision.

TABLE IV

HYPERPARAMETERS OF GRAPHNER CHOSEN BY CROSS-VALIDATION.

Corpus CRF Model GraphNER hyperparameters
(α, μ, ν,#iterations)

AML
BANNER (0.02, 10−6, 10−6, 2)

BANNER-ChemDNER (0.02, 10−6, 10−6, 2)

BC2GM
BANNER (0.02, 10−6, 10−4, 2)

BANNER-ChemDNER (0.02, 10−6, 10−6, 3)

A. Significance testing of the results

We used sigf [24] to test for significant changes to preci-

sion, recall and F-scores with the addition of GraphNER. sigf
is an implementation of an assumption-free significance test

based on randomization [34]. When testing the significance

of difference in performance of two models m1 and m2,

sigf repeatedly constructs statistically identical models m3

and m4 by taking the predictions that are produced by m1

or m2 but not both of them, and randomly assigning those

predictions to either m3 or m4. How often m3 and m4

produce results that are at least as different as results of

m1 and m2 is interpreted as the p-value in the significance

test.

We used sigf with 10,000 repetitions to test the null

hypotheses presented in Table V. Bonferroni correction for

multiple testing changes the first α = 0.05 to α = 0.006.

The F-score improvement of GraphNER over both baselines

(BANNER and BANNER ChemDNER) is statistically sig-

nificant while working with the BC2GM corpus. Although

the F-score and recall improvements of GraphNER over

BANNER and BANNER ChemDNER were not statistically

significant for the AML corpus, the improvements in preci-

sion were significant.

TABLE III

EFFECT OF CHOICE OF FEATURE SETS USED IN GRAPH CONSTRUCTION. THE BOLD FIGURES INDICATE BEST PERFORMANCE FOR GRAPHNER USING

BANNER AND BANNER-CHEMDNER MODELS.

Method CRF Model Vector-Representation K F-Score (%)
BANNER - - 10 84.38

BANNER-ChemDNER - - 10 86.49

GraphNER

BANNER All-features 10 85.83
BANNER Lexical-features 10 85.43
BANNER MI > 0.005 10 85.01
BANNER MI > 0.01 10 85.00

BANNER-ChemDNER All-features 10 87.34
BANNER-ChemDNER Lexical-features 10 87.23
BANNER-ChemDNER MI > 0.005 10 87.09
BANNER-ChemDNER MI > 0.01 10 87.12
BANNER-ChemDNER All-features 5 87.32

234

Fig. 2. Time cost to train and test BANNER and GraphNER on the BC2GM dataset. The ratio indicates the relative sizes of train:test partitions.

B. Effect of different vertex representations

Table III shows how GraphNER improves upon the per-

formance of purely supervised models such as BANNER

and BANNER-ChemDNER on the BC2GM corpus by using

semi-supervised graph-propagation using different feature

sets. The hyper-parameters used are shown in Table IV.

It is interesting that while using all features led to the

best results with both BANNER and BANNER-ChemDNER,

GraphNER consistently improved the baselines even when

only 40 (MI > 0.01) and 85 (MI > 0.005) features were

used in graph construction.

Another variable in graph construction is K, the degree

of the graph. While K = 10 was default, we changed K
to be 5 for one of the graphs (all features used for vector

representation) and saw a small degradation in F-score (going

from 87.34 to 87.32).

C. Added time and memory cost over supervised CRFs

In our tests, GraphNER has consistently improved both

BANNER and BANNER-ChemDNER supervised CRF mod-

els, and this improvement is achieved with a small additional

run time cost over the purely supervised models. Figure 2

shows the extra time GraphNER needs to train and test over

BANNER, using different ratios of train:test splits of the

BC2GM corpus. All experiments were done in a GNU/Linux

environment on a Dell Precision Tower 7910 with 16 Intel(R)

Xeon(R) CPU E5-2620 v3 @ 2.40GHz cores and 64GB of

RAM.

We observed similar patterns when we experimented with

the BANNER-ChemDNER as the supervised model and with

the AML dataset. In all our experiments we used the all-

features graph constructed over the relevant corpus, and

ran the train and test procedures over 10 instances of each

train:test ratio.

During graph propagation GraphNER loads the entire

graph into memory, which represents the peak memory usage

for the algorithm. Thus, the memory footprint of GraphNER

can be estimated by the size of the graph description files.

This is about 90 MB and 105 MB for the all-feature graphs

constructed over AML and BC2GM corpora, respectively.

D. Statistics of all-feature graphs

In the all-feature graphs, which led to the best results for

both corpora, we note that the number of vertices (406,179

for BC2GM, and 348,683 for AML) are comparable. The

percentage of labelled vertices is high in both graphs (77.2%

for BC2GM, and 51.7% for AML). This is due to the

fact that we are experimenting in a transductive setting,

where the only unlabelled data is the test data. However, the

percentage of labelled vertices, and especially the percentage

of positively labelled vertices (vertices that appeared as

beginning or inside of a gene in the train set) show marked

differences, though they are quite low in both graphs (8.5%

in BC2GM, and 1.75% for AML). The low percentage of

positively labelled vertices in both graphs explains the higher

precision of GraphNER.

Both graphs are weakly connected, and by construction

TABLE V

NULL HYPOTHESES TESTED USING SIGF [24] AND THE CORRESPONDING P-VALUES.

null hypothesis p-value
BANNER and GraphNER with BANNER has the same F-score on BC2GM corpus < 10−4

BANNER ChemDNER and GraphNER with BANNER ChemDNER has the same F-score on BC2GM corpus < 10−4

BANNER and GraphNER with BANNER has the same F-score on AML corpus 0.018
BANNER and GraphNER with BANNER has the same Recall on AML corpus 0.72
BANNER and GraphNER with BANNER has the same Precision on AML corpus 0.0003
BANNER ChemDNER and GraphNER with BANNER ChemDNER has the same F-score on AML corpus 0.035
BANNER ChemDNER and GraphNER with BANNER ChemDNER has the same Recall on AML corpus 0.74
BANNER ChemDNER and GraphNER with BANNER ChemDNER has the same Precision on AML corpus 0.003

235

Fig. 3. Histogram of influence and number of influencees for BC2GM all-features graphs.

(because K = 10), the outgoing degree is 10 for all vertices.

It follows that the number of edges are exactly 10 times the

number of vertices in both graphs. The fact that any given

vertex has exactly 10 nearest neighbors, however, does not

mean that each vertex is the nearest neighbor to exactly 10

vertices.

The nearest neighbors of a vertex influence its label

distribution in graph propagation. To formalize this, we can

define Influencees(v) as the set of vertices that v influences,

that is the set of vertices to which v is a nearest neighbor.

Then we can define Influence(v) to be the sum of edge

weights that connect v to Influencees(v):

Influence(v) =
∑

k∈Influencees(v)

wk,v

Using these definitions, we can use |Influnecees(v)| and

Influence(v) as measures of a vertex’s influence. Figure 3

shows the histogram of these measures over all vertices in the

all-features BC2GM graph. As expected, the plots indicate

that most vertices have low influences. We obtained similar

histograms for AML all-features graph.

E. Qualitative performance differences

GraphNER consistently improved precision of the purely

supervised CRF models, both BANNER and BANNER-

ChemDNER, when trained on either the BC2GM corpus

or AML corpus. To evaluate this outcome qualitatively, we

performed a manual review of the false positive and false

negative calls when using the corpus as the gold standard.

To reduce the time of this task, we randomly sampled 280

errors from the 5000 BC2GM corpus errors. Due to the small

number of total errors in the AML corpus, we reviewed all

of the 454 AML corpus errors.

We categorized each false positive or false negative entity

into one of two categories, either gene-related or spurious.

Gene-related entities included actual genes, gene families,

or specific protein domains. For example, ”E3 ubiquitin”, a

gene family, was a gene-related false positive in BANNER

that was corrected by GraphNER. Spurious entities were

entirely erroneous annotations that did not thematically relate

to genes or proteins. For example, ”Ann Arbor” was a

spurious false positive in BANNER that was also corrected

by GraphNER.

Figure 4 shows an UpSet plot [18] of the intersections

of false positive calls in GraphNER versus the BANNER-

ChemDNER in the AML corpus. UpSet plots visualize com-

binatorial set intersections with a bar plot. The intersecting

set for each bar is represented by the ball and stick model

on the x axis. A chi-square two-sample test for equality of

proportions with continuity correction found no significant

difference in the relative proportion of false positives in gene-

related entities in the supervised CRF model and the semi-

supervised GraphNER model when trained and tested with

the AML corpus (p=0.56). The difference in AML corpus

precision noted in Table II was due to a quantitative differ-

ence in total annotations, rather than a difference in quality of

annotations. Conversely, a chi-square test of relative propor-

tion of gene-related entities was significant when both tools

were trained and tested on the BC2GM corpus (p=0.029).

Figure 5 shows substantial quantitative and proportional

decreases in the number of spurious false positive calls

when using GraphNER compared to BANNER-ChemDNER.

GraphNER corrected several spurious annotations from the

supervised BANNER and BANNER-ChemDNER CRF mod-

els, resulting in proportionally fewer spurious entities when

trained on the BC2GM data.

In comparison to the AML corpus training results, a signif-

icantly higher proportion of false positive and false negative

annotations from the BC2GM corpus training were in fact

caused by a higher proportion of incorrect annotations in

the gold standard corpus. For example, GraphNER correctly

tagged ”GRK6” as a gene, but our testing protocol counted

this as a false positive due to the lack of an annotation in

the BC2GM gold standard. The discrepancy in proportion

of false corpus annotations between the AML and BC2GM

corpora was highly significant based on a chi-square test of

236

proportions (p < 2.2 × 10−16). These results support the

conclusion that GraphNER is more robust to training on

sets with a higher rate of annotator errors, and GraphNER

corrected spurious BC2GM annotations in BANNER and

BANNER-ChemDNER. This advantage was less apparent

when training on the AML corpus, which had fewer actual

errors in its ground truth annotations.

IV. CONCLUSION

We presented a new method, called GraphNER, for the

semi-supervised learning of named entities, specifically, gene

mentions in biomedical literature. Our tool uses a novel

combination of conditional random fields (CRFs) for struc-

tured prediction of gene mentions, and graph propagation to

combine labeled (for supervised learning) and unlabeled data

(which, combined with the labeled data, leads to our semi-

supervised learning approach). BANNER and BANNER-

ChemDNER are the state of the art CRF models for su-

pervised gene mention detection. We show that our semi-

supervised learning approach improves upon their results.

We benchmark this approach on two different biomedical

text corpora: annotated abstracts of the BioCreative II gene

mention shared task corpus, and annotated full text articles

related to acute myeloid leukemia.

GraphNER outperformed the baselines regardless of the

features used from the CRF models in the graph construction

phase of our approach. The higher F-score produced by

GraphNER was consistently (in many experiments) due to

higher precision over the base model. This is expected given

the low percentage of positively labelled vertices.

We used GraphNER in a transductive setting where all

the unlabelled data came from the test set (we consider the

test set unlabeled since we do not know the true labels until

we do the evaluation). Given the semi-supervised nature of

GraphNER, we expect even higher performance when the

tool is provided abundant unlabelled data. Though this would

present an algorithmic challenge, as the time complexity

of graph construction grows rapidly with increased dataset

size, and becomes prohibitive for resources as large as the

complete PubMed database. However, once the graph is

constructed, we have shown that the time cost of semi-

supervised learning with GraphNER is low in comparison

to the CRF purely supervised model.

We expect that the increased accuracy of the GraphNER

algorithm and the fact that it can adapt to new types of

gene mentions that are not in the labeled training set will

lead to more successful automated knowledge discovery from

the massive quantities of published papers that overwhelm

biomedical researchers today.

REFERENCES

[1] A. Alexandrescu and K. Kirchhoff, “Graph-based learning for statis-
tical machine translation,” in NAACL 2009, 2009.

[2] R. K. Ando, “BioCreative II gene mention tagging system at IBM Wat-
son,” in Proceedings of the Second BioCreative Challenge Evaluation
Workshop, vol. 23. Centro Nacional de Investigaciones Oncologicas
(CNIO) Madrid, Spain, 2007, pp. 101–103.

Fig. 4. Upset plot of qualitative false positive differences
between GraphNER and BANNER-ChemDNER trained on the
AML corpus.

Fig. 5. Upset plot of qualitative false positive differences
between GraphNER and BANNER-ChemDNER trained on the
BC2GM corpus.

[3] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[4] D. Campos, S. Matos, and J. L. Oliveira, “Gimli: open source and
high-performance biomedical name recognition,” BMC bioinformatics,
vol. 14, no. 1, p. 54, 2013.

[5] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
lstm-cnns,” in TACL 2016., 2016.

[6] H.-J. Dai, P.-T. Lai, Y.-C. Chang, and R. T.-H. Tsai, “Enhancing of
chemical compound and drug name recognition using representative
tag scheme and fine-grained tokenization,” Journal of cheminformat-
ics, vol. 7, no. S1, pp. 1–10, 2015.

[7] D. Das and S. Petrov, “Unsupervised part-of-speech tagging with
bilingual graph-based projections,” in Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1. Association for Computational
Linguistics, 2011, pp. 600–609.

[8] G. H. Gonzalez, T. Tahsin, B. C. Goodale, A. C. Greene, and C. S.
Greene, “Recent advances and emerging applications in text and data
mining for biomedical discovery,” Briefings in bioinformatics, vol. 17,
no. 1, pp. 33–42, 2016.

[9] K. Hakala, S. Van Landeghem, T. Salakoski, Y. Van de Peer, and
F. Ginter, “Application of the evex resource to event extraction and
network construction: Shared task entry and result analysis,” BMC
bioinformatics, vol. 16, no. Suppl 16, p. S3, 2015.

[10] S. J. Hebbring, M. Rastegar-Mojarad, Z. Ye, J. Mayer, C. Jacobson,
and S. Lin, “Application of clinical text data for phenome-wide
association studies (PheWASs),” Bioinformatics, vol. 31, no. 12, pp.
1981–1987, 2015.

[11] M. Krallinger, O. Rabal, F. Leitner, M. Vazquez, D. Salgado, Z. Lu,
R. Leaman, Y. Lu, D. Ji, D. M. Lowe et al., “The chemdner corpus
of chemicals and drugs and its annotation principles,” Journal of
cheminformatics, vol. 7, no. S1, pp. 1–17, 2015.

[12] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
ICML, 2001.

237

[13] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer, “Neural architectures for named entity recognition,”
in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies. San Diego, California: Association for
Computational Linguistics, June 2016, pp. 260–270. [Online].
Available: http://www.aclweb.org/anthology/N16-1030

[14] R. Leaman, R. I. Doğan, and Z. Lu, “Dnorm: disease name normaliza-
tion with pairwise learning to rank,” Bioinformatics, vol. 29, no. 22,
pp. 2909–2917, 2013.

[15] R. Leaman, G. Gonzalez et al., “Banner: an executable survey of ad-
vances in biomedical named entity recognition.” in Pacific Symposium
on Biocomputing, vol. 13. Citeseer, 2008, pp. 652–663.

[16] R. Leaman, C.-H. Wei, and Z. Lu, “tmchem: a high performance
approach for chemical named entity recognition and normalization.”
J. Cheminformatics, vol. 7, no. S-1, p. S3, 2015.

[17] H.-J. Lee, T. C. Dang, H. Lee, and J. C. Park, “Oncosearch: cancer
gene search engine with literature evidence,” Nucleic acids research,
p. gku368, 2014.

[18] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister,
“Upset: visualization of intersecting sets,” IEEE transactions on vi-
sualization and computer graphics, vol. 20, no. 12, pp. 1983–1992,
2014.

[19] G. Li, K. E. Ross, C. N. Arighi, Y. Peng, C. H. Wu, and K. Vijay-
Shanker, “mirtex: A text mining system for mirna-gene relation
extraction,” PLoS Comput Biol, vol. 11, no. 9, p. e1004391, 2015.

[20] S. Liu, C.-H. Li, M. Li, and M. Zhou, “Learning translation consensus
with structured label propagation,” in ACL 2012, 2012.

[21] Y. Luo, Ö. Uzuner, and P. Szolovits, “Bridging semantics and syntax
with graph algorithmsstate-of-the-art of extracting biomedical rela-
tions,” Briefings in bioinformatics, p. bbw001, 2016.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[23] T. Munkhdalai, M. Li, K. Batsuren, H. Park, N. Choi, and K. H. Ryu,
“Incorporating domain knowledge in chemical and biomedical named
entity recognition with word representations.” J. Cheminformatics,
vol. 7, no. S-1, p. S9, 2015.

[24] S. Padó, User’s guide to sigf: Significance testing by approximate
randomisation, 2006.

[25] S. Pyysalo, T. Ohta, R. Rak, A. Rowley, H.-W. Chun, S.-J. Jung,
S.-P. Choi, J. Tsujii, and S. Ananiadou, “Overview of the cancer
genetics and pathway curation tasks of bionlp shared task 2013,” BMC
bioinformatics, vol. 16, no. Suppl 10, p. S2, 2015.

[26] M. Rei, G. K. Crichton, and S. Pyysalo, “Attending to characters in
neural sequence labeling models,” arXiv preprint arXiv:1611.04361,
2016.

[27] A. Saluja, H. Hassan, K. Toutanova, and C. Quirk, “Graph-based semi-
supervised learning of translation models from monolingual data,” in
ACL 2014, 2014.

[28] G. Sheikhshab, E. Starks, A. Karsan, A. Sarkar, and I. Birol, “Graph-
based semi-supervised gene mention tagging,” in Proceedings of the
15th Workshop on Biomedical Natural Language Processing, 2016,
pp. 27–35.

[29] A. Subramanya and J. A. Bilmes, “Entropic graph regularization in
non-parametric semi-supervised classification,” in Advances in Neural
Information Processing Systems, 2009, pp. 1803–1811.

[30] A. Subramanya, S. Petrov, and F. Pereira, “Efficient graph-based semi-
supervised learning of structured tagging models,” in Proceedings of
the 2010 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2010, pp.
167–176.

[31] P. P. Talukdar, J. Reisinger, M. Paşca, D. Ravichandran, R. Bhagat, and
F. Pereira, “Weakly-supervised acquisition of labeled class instances
using graph random walks,” in EMNLP 2008, 2008.

[32] A. Tamura, T. Watanabe, and E. Sumita, “Bilingual lexicon extraction
from comparable corpora using label propagation,” in EMNLP-CoNLL
2012, 2012.

[33] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[34] A. Yeh, “More accurate tests for the statistical significance of result
differences,” in Proceedings of the 18th conference on Computational
linguistics-Volume 2. Association for Computational Linguistics,
2000, pp. 947–953.

[35] X. Zhu, Z. Ghahramani, J. Lafferty et al., “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML, vol. 3, 2003,
pp. 912–919.

238

