
Parallel and Memory-efficient Preprocessing for Metagenome Assembly

Vasudevan Rengasamy Paul Medvedev Kamesh Madduri
The Pennsylvania State University

University Park, PA, USA
vxr162@psu.edu, pashadag@cse.psu.edu, madduri@cse.psu.edu

Abstract—The analysis of high-throughput metagenomic se-
quencing data poses significant computational challenges. Most
current de novo assembly tools use the de Bruijn graph-based
methodology. In prior work, a connected components decom-
position of the de Bruijn graph and subsequent partitioning
of sequence read data was shown to be an effective memory-
reducing preprocessing step for de novo assembly of large
metagenomic datasets. In this paper, we present METAPREP,
a new end-to-end parallel implementation of a similar pre-
processing step. METAPREP has efficient implementations of
several computational subroutines (e.g., k-mer enumeration
and counting, parallel sorting, graph connectivity) that occur
in other genomic data analysis problems, and we show that
our implementations are comparable to the state-of-the-art.
METAPREP is primarily designed to execute on large shared-
memory multicore servers, but scales gracefully to use multiple
compute nodes and clusters with parallel I/O capabilities. With
METAPREP, we can process the Iowa Continuous Corn soil
metagenomics dataset, comprising 1.13 billion reads totaling
223 billion base pairs, in around 14 minutes, using just 16 nodes
of the NERSC Edison supercomputer. We also evaluate the
performance impact of METAPREP on MEGAHIT, a parallel
metagenome assembler.

1. Introduction

The field of metagenomics leverages advances in DNA
sequencing technology to directly analyze genomes of com-
munities of organisms. Metagenomics can aid applications
in medicine, energy, agriculture, and several other areas.
Due to the incompleteness of reference genome databases,
de novo assembly is often performed as a first step when
processing metagenomic datasets. Most de novo genome
and metagenome assembly software tools use the de Bruijn
graph-based assembly methodology.

Howe et al. [1] present two preprocessing strate-
gies, digital normalization [2] and partitioning, to divide
the de Bruijn graph corresponding to large metagenomic
datasets into individual components. These preprocessing
strategies are designed to separate non-overlapping se-
quences from different species into distinct components
of the de Bruijn graph. The main computational routine

in the partitioning strategy of Howe et al. is to perform
a weakly connected components (WCC) decomposition of
the de Bruijn graph. Flick et al. [3] propose creating a
read graph, which is an undirected graph whose connected
components (CC) correspond to the WCCs of the de Bruijn
graph. The CC output on the read graph can be directly
used as input to metagenome assembly software. Flick et al.
further present a scalable distributed memory CC labeling
algorithm tuned for metagenomic read graphs.

In this paper, we present a new tool called METAPREP

(Metagenome Preprocessing) for performing, in parallel, the
read graph partitioning approach described by Flick et al. We
use MPI for distributed memory parallelism and OpenMP
for shared memory multithreading. A key contribution of
our work is the highly memory-efficient implementation of
the sequence of steps in this preprocessing strategy. The
following are the key new ideas in METAPREP:

• We present a multi-pass strategy that accesses the input
files multiple times to reduce aggregate main memory
requirements. The main steps are all compatible with
multiple passes through the data.

• We use hybrid parallelism (with OpenMP and MPI) in all
steps to reduce inter-process communication.

• To ensure load-balanced parallel computation without dy-
namic scheduling, we store and precompute two index
files. These indices can be reused for parallel runs on dif-
ferent compute platforms. They also significantly reduce
shared memory synchronization overhead.

• Instead of explicitly constructing the read graph or the
de Bruijn graph, we use an implicit graph representation
that does not require ordering of vertices or edges.

• Our tool is constructed in a modular manner, and the im-
plementations of each step are competitive in performance
with state-of-the-art algorithms and tools.

We evaluate the impact of this preprocessing strategy
on the performance of the MEGAHIT [4] metagenome
assembler.

2. Background and Related Work

The de novo assembly of metagenomes is challenging
due to the following reasons: (i) Closely related strains from

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.159

283

the same species might be present in the community sample,
and these are difficult to distinguish from repeats in the
genomes of individual organisms. (ii) The sequencing depth
of coverage and the size of the genome of individual organ-
isms might be different, which leads to creating datasets that
are very different from isolate genomes. (iii) Metagenomic
sequencing dataset sizes are typically larger than isolate
genomic datasets.

Some metagenome-specific assembly tools developed in
the past few years include MEGAHIT [4], MetaVelvet [5],
Ray Meta [6], and Meta-IDBA [7]. These assembly tools
attempt to overcome challenges with metagenomic data
processing using a combination of methods.

The input to an assembly program is a set of reads.
Reads are short sequences from which k-mers (a k-mer is
a string of length k) are enumerated. In a de Bruijn graph,
each vertex is a k-mer, and edges connect k-mers whose
prefixes and suffixes overlap by a string of length k − 1.
Since the genomes in a metagenome can have varying depth
of coverage, assemblers such as MEGAHIT use multiple k-
mer lengths (i.e., a range of values of k). Small k values
help in reconstructing low coverage genomes, and larger k
values help in resolving repeats.

Howe et al. [1] present preprocessing strategies that
can be used to partition large metagenomic datasets. Their
preprocessing strategy filters reads before constructing a
de Bruijn graph, and then performs a weakly connected
components decomposition of the de Bruijn graph. Howe
et al. empirically show that such a k-mer-based data par-
titioning assigns most reads belonging to a species to the
same component (partition), and so, each component can
be assembled independently.

However, on applying this partitioning strategy and when
constructing the de Bruijn graph, the read information cor-
responding to k-mers is lost. More recently, Flick et al. [3]
presented a similar read graph partitioning strategy. Each
vertex in the read graph is a read, and two reads are
connected by an edge if they share at least one common
k-mer. The authors show that (proof sketch in [3]) if two
k-mers k1 and k2 belong to a WCC of the de Bruijn graph,
then the reads containing these k-mers also belong to a
CC in the read graph. Further, if k-mers k3 and k4 lie
in different WCCs in the de Bruijn graph, then the reads
containing these k-mers also belong to different CCs. Thus,
the problem of WCC decomposition of the de Bruijn graph
(without filtering) is closely related to CC decomposition of
the read graph. After partitioning, reads in a partition can
be assembled independently. Flick et al. did not assess the
impact of this strategy on metagenome assembly.

In this paper, we perform a parallel read graph CC
decomposition identical in functionality to the approach of
Flick et al. The focus of [3] was on a distributed memory
CC labeling algorithm, whereas we also consider the steps
before and after the CC labeling step, and assess the impact
of read graph partitioning on metagenome assembly quality.

�������
	
��
�����

�������

	
������

���������

�������

�������

��������
	
���
�����

����

��

���� ��

���� ��!����

�
��
���
��
��
��
��
�

��"�#������

Figure 1. METAPREP overview.

TABLE 1. THE SEQUENCE OF PREPROCESSING STEPS PERFORMED.

METAPREP step Function

IndexCreate Create index files for parallel runs.
1 KmerGen On each task, enumerate 〈k-mer, readi〉

tuples.
2 KmerGen-Comm Transfer 〈k-mer, readi〉 tuples to corre-

sponding owner tasks.
3 LocalSort Local sort of tuples with k-mers as keys.
4 LocalCC Identify local connected components (CCs).
5 MergeCC Merge components across tasks, create out-

put FASTQ file with reads from largest CC.

3. METAPREP Algorithms

In this section, we describe METAPREP steps in detail
and motivate our implementation choices. Figure 1 and
Table 1 summarize the main steps. The input to METAPREP

is a collection of FASTQ read files corresponding to the
metagenome. The output is another set of FASTQ files
containing reads in individual partitions. IndexCreate is a
sequential preprocessing step that is performed once for each
dataset. This step creates files to ensure static load balancing
and easy parallelization of METAPREP steps. Due to the
double-stranded nature of DNA, we need to consider both a
k-mer and its reverse complement when we process reads.
A canonical k-mer is the lexicographically smaller string
among a k-mer and its reverse-complemented sequence.
METAPREP implicitly creates a read graph by enumerat-
ing canonical k-mers present in reads (in the KmerGen
step), and then sorting the enumerated canonical k-mers to
identify reads containing common canonical k-mers (in the
LocalSort step). If the output of KmerGen does not fit in

284

the aggregate main memory of the parallel system, we use
multiple passes through the input files to generate disjoint
sets of k-mers. The memory required for each pass can be
determined using the indices constructed in the IndexCreate
step. Once the read graph edges are created, METAPREP

partitions reads into weakly connected components by using
a distributed union-find approach (LocalCC and MergeCC).
Finally, partitioned reads are written in FASTQ format.
LocalCC and MergeCC can be considered a distributed-
memory implementation of CC decomposition, similar in
functionality to the algorithms proposed by Flick et al. [3]
and Jain et al. [8]. The KmerGen and MergeCC steps involve
some file I/O and the rest of the steps are performed in
memory. The KmerGen step is similar to routines in k-mer
counting tools (e.g., DSK [9], KMC 2 [10]) and de Bruijn
graph preprocessing algorithms.

3.1. Index Creation (IndexCreate)

In this step, we create two tables, merHist and FASTQ-
Part. These tables are written to disk in binary format and
used as indices for subsequent steps.

3.1.1. m-mer Histogram (merHist). We store counts of
all m-mer prefixes of canonical k-mers (m < k; we use
m = 10 in this work) in the merHist table. So there are 4m

histogram bins and the counts are stored as 32-bit integers.
The input FASTQ files are read once, canonical k-mers
are generated, and the m-mer bin counts are updated. The
histogram is used to partition the range of integers spanned
by k-mer values (k-mer range) for multipass and parallel
execution.

3.1.2. FASTQ partitions table (FASTQPart). Since we
want multiple threads to independently enumerate k-mers in
a load-balanced manner, we logically partition FASTQ files
into C chunks which have approximately the same file size.
In the FASTQPart table, each record contains information
for one chunk, which includes the location of the chunk
within the FASTQ file, global read ID (an integer value) of
the first read in the chunk, and the size of the chunk. These
parameters are used for reading each chunk in parallel.
In addition, each record also stores a m-mer histogram
similar to the merHist table, with counts of m-mer prefixes
of canonical k-mers present in the corresponding FASTQ
chunk. The FASTQPart table structure is shown in Figure 2.
The chunk-specific histograms are used for calculating the
buffer sizes and offsets for sending/receiving k-mers to/from
other processes.

These two tables let us statically determine, for a given
task and thread concurrency, the main memory required per
thread, the fewest number of passes for the dataset, the k-
mer range to enumerate in each pass, the offsets into the
FASTQ files that the threads should read from, and the
thread offsets for in-memory buffers created in subsequent
steps. These tables help simplify the parallel implementation
of subsequent steps and also let us preallocate memory for
data structures.

�$��% 	
���
������

��&� 	�����
'��"�
�"

�!�������������

(���)���!*

*

+
+

�

) !*
�

Figure 2. FASTQPart table structure.

,�!%-*./)

� � � ��(* � 0 �1 � � � �� (* 0 � 1

%�����,*02�3���. %������,*02�3���.

�����,*02�3���. �����,*02�3���.

* �

'�

����,�

����,
�

����,
�

�����,
�

Figure 3. Vectorized k-mer generation.

3.2. Enumerate k-mers (KmerGen)

In this step, on each pass, threads independently read one
or more FASTQ file chunks and generate k-mer and global
read identifier tuples. We use 64 bits to store k-mer values
and 32 bits for global read identifiers, and hence each tuple
requires 12 bytes. We do not enumerate k-mers that contain
the N symbol in reads. We also use a single read identifier
for both ends of a paired-end read, because we want to
preserve paired-end read information when generating the
final output. The C file chunks are distributed to threads to
enable parallel FASTQ file read operations.

3.2.1. k-mer generation. We use SIMD vector extensions
to generate four canonical k-mers at a time from a given
read sequence. See Figure 3 for an illustration. R is a read of
length l containing l−k+1 k-mers. For ease of description,
we assume l − k + 1 is a multiple of 4. In the initial
step, four k-mers are generated from four equidistant points
(separated by (l−k+1)/4 letters) in the read and stored in
two 128-bit vector registers. One of these registers (kmerH)
stores the MSBs (most significant bits) of the four k-mers
and the other (kmerL) stores the corresponding LSBs (least
significant bits). Similarly, two more registers (rcH and rcL)
store the reverse complemented k-mers. We then output four
canonical k-mers by comparing the original and the reverse
complemented k-mers and selecting the lexicographically

285

smaller of the two. In each subsequent step, we generate the
next four k-mers by shifting the four currently-generated k-
mers and their reverse complements by one base and adding
the bases that appear next to these k-mers.

3.2.2. Storing k-mers. For each MPI task, we allocate
a single buffer in memory to store all generated tuples.
Since all threads within a MPI task add k-mer tuples to the
same buffer, we precompute write offsets for each thread.
This lets us update the buffer without synchronization. We
use the chunk-specific histograms in the FASTQPart table
to compute the offsets as follows: The number of tuples
generated by the T threads in a process p that lie in the k-
mer range assigned to another process p′ can be calculated
by adding histogram counts in the FASTQPart table rows
corresponding to the chunks assigned to threads in p and
columns corresponding to k-mer range of process p′. These
counts are stored in an array of size P ×T and a prefix sum
of this array gives the offsets for individual threads. We store
all k-mers belonging to the k-mer range of a single process
p′ consecutively so that k-mers can be communicated to
their respective processes in a single step.

3.3. Exchange k-mer tuples (KmerGen-Comm)

Once each task enumerates k-mers and read identifier
tuples, we need a communication step in the distributed-
memory implementation to do a disjoint partitioning of the
tuples based on the k-mer value. This communication step
can be considered a precursor to sorting the tuples with
the k-mer as the key. In a shared-memory implementation,
there is no need for this step. We do not use MPI’s Alltoallv
collective due to the limitation imposed by the sendcounts
and recvcounts parameters (that they need to be 32-bit
signed integers). Instead, we develop a custom All-to-all
approach using multiple point-to-point messages. In addition
to calculating the offsets within the send buffer as described
in Section 3.2.2, each task also calculates the number of
tuples to be received from other tasks and the corresponding
receive offsets in advance using the FASTQPart table. The
number of tuples received by process p from T threads of
process p′ can be calculated by adding histogram counts
in the FASTQPart table rows corresponding to the FASTQ
chunks assigned to individual threads in p′ and columns
corresponding to k-mer range of process p. Our All-to-
all implementation has P stages (P is the number of MPI
tasks). In stage i, task p sends tuples to task (p+i) mod P .

3.4. Local sort of k-mer tuples (LocalSort)

Once each task receives tuples corresponding to its k-
mer range from all tasks, the tuples are sorted locally with
the k-mer as the key. We sort the tuples in order to identify
all reads sharing a canonical k-mer and construct the read
graph. The local sort in each task has two stages.

1) Parallel Partitioning: This step involves partitioning the
received tuples on each task into T disjoint partitions

based on k-mer value, so that each partition can be sorted
concurrently. Each partition corresponds to one of the
T thread-specific k-mer ranges in each process. Since
multiple threads write tuples into a common output buffer
during range partitioning, we precompute offsets using
the FASTQPart table.

2) Serial Radix Sort: After range partitioning, we use T
threads to concurrently sort the T disjoint partitions.
Each thread sorts its k-mer sub-range using a serial
out-of-place radix sort. We reuse the send buffer of
KmerGen-Comm step for storing the sorted tuples. We
use 8 passes to sort tuples based on the 64-bit k-mers,
with each pass sorting 8 bits (using 256 buckets). We find
that sorting 8 bits per pass is faster than sorting higher
number of bits (say, 16) because accessing bucket counts
of 256 buckets repeatedly has better temporal locality
than accessing counts of 65536 (216) buckets randomly,
even though the number of passes is high.

3.5. Connected components (LocalCC)

After LocalSort, each thread points to a contiguous
list of sorted tuples. These tuples can be used to gen-
erate edges of the read graph. Flick et al. implement a
distributed-memory parallelization of the Shiloach-Vishkin
algorithm [11] for CC decomposition. Their iterative ap-
proach uses parallel sorting as a subroutine. We use a dif-
ferent strategy in this work that is compatible with multiple
I/O passes over the data. Assuming the total number of reads
is known beforehand, we adapt and parallelize the Union-
Find approach for CC decomposition. The main advantage
of using Union-Find is that the graph need not be explicitly
constructed, and components can be dynamically updated.
Further, we let each task update a local instance of the
disjoint set data structure (whose size is proportional to the
number of reads) for the tuples it stores, and the merge step
is performed separately and only once even with multiple
passes through the data.

Our shared memory parallel Union-Find approach com-
bines ideas from prior algorithms by Cybenko et al. [12] and
Patwary et al. [13]. In the Find operation, we use the path
splitting optimization [14]. For Union, we use the union-
by-index approach since it avoids introducing cycles in the
component trees when edges are processed concurrently. In
union-by-index, the parent pointer of the root element with
lower index is set to the root element with higher index.
Initially, the parent of each read (vertex) is set to point to
itself. Each thread then processes tuples it stores according
to Algorithm 1. The Union and Find operations of different
threads proceed concurrently without any synchronization.
Similar to [13], we also buffer the edges that result in Union
operations to be processed in the next iteration. The shared
memory algorithm of Cybenko et al. [12] uses union-by-
size and Find with path compression. Cybenko et al. show
that path compression is safe to perform in a multithreaded
setting. To avoid lost updates due to concurrent union op-
erations, Cybenko et al. treat union operations as critical
sections. Instead, we keep track of the edges resulting in a

286

Algorithm 1 LocalCC Union-Find algorithm.

1: Ein ← E � Process all edges in the first iteration
2: Eout ← φ
3: while Ein �= φ do
4: for Each edge 〈u, v〉 ∈ Ein do
5: rootu ← Find(u)
6: rootv ← Find(v)
7: if rootu �= rootv then
8: Union(rootu, rootv) � Race condition
9: Eout ← Eout ∪ (u, v)

10: Ein ← Eout

11: Eout ← φ

(* 0 1) 4 5 6

(0) 5

()

(�

*�

0�

Figure 4. MergeCC: Communication with 8 MPI tasks.

union operation on each thread and verify them after pro-
cessing all edges. We find that the overall time is dominated
by the time for the first iteration.

3.5.1. Multipass Optimization (LocalCC-Opt). We de-
scribe an additional optimization when performing multiple
passes through the data. The running time of the Find
operation is dominated by random lookups to the component
array (p) to identify roots. To improve the data locality
while accessing the component array, we enumerate k-mer
and component ID instead of the k-mer and global read
ID. The component ID can be obtained by performing
Find on the corresponding read ID. This change does not
affect correctness, but improves locality. Since the number
of components is much smaller than the number of reads, the
random accesses to the p array are limited to a lower number
of locations corresponding to reads which are component
roots.

3.6. Merge local components (MergeCC)

After MPI tasks create local components, the results
have to be combined to obtain the final components. We
combine this information in �logP 	 iterations. We show an
example with 8 processors in Figure 4. This method was
introduced by Cybenko et al. [12]. In each iteration, tasks
with a higher MPI rank send their component array (p) to the
corresponding lower rank task. In successive iterations, the
number of tasks participating in the communication reduces
by a factor of 2. The receiving tasks treat the received
component arrays (p’) as additional edges to be processed

and update their local p array. For example, the ith element
is treated as an edge from vertex i to vertex p′(i) since
vertices i and p′(i) are in the same component in the sending
task. A Union operation is performed on the components
containing the vertices i and p′(i). The MPI task with rank
0 has the final component information. Since the number of
reads is substantially smaller than the total number of graph
edges, it is feasible to replicate the component array on each
task.

In this step, we also create new FASTQ files for the
partitioned read sequences. We currently write the reads
corresponding to the largest component to one file, and
all other reads to another file, since we observed a giant
component being formed for most of the datasets we exper-
imented with. This step is also performed in parallel. The
global components list in Rank 0 is broadcast to all other
tasks. Each thread extracts reads from its FASTQ chunks
and writes them to the corresponding output FASTQ files.
Each thread writes to separate FASTQ files.

3.7. Algorithm Analysis

We give analytic estimates for running times and mem-
ory used per task in terms of input data parameters. Let M
be the cumulative size of the input FASTQ files (in giga
base pairs, Gbp), R the total number of paired-end reads,
and C the number of file chunks. Let sc be the size of each
FASTQ chunk in bytes. The number of tuples enumerated
is upper-bounded by M . Let P be the number of MPI tasks,
T be the number of threads per task, and S be the number
of passes.

The running time for KmerGen is O(MS
PT). For local sort,

the time is O(M
PT) (assuming radix sort is linear-time, and in

each pass we sort the same number of tuples). In LocalCC,
each thread performs O(M

PT) Union and Find operations on

R reads, and the time complexity is O(M
PT log∗ R) (consid-

ering the time for only the first iteration). For the MergeCC
step, the time taken by task 0 determines the overall time.
The time complexity is O(R logP log∗ R). There is addi-
tionally inter-node communication in the KmerGen-Comm
and MergeCC steps. From this brief analysis, if S is a small
constant, the asymptotic running times of the first four steps
are essentially the same. The MergeCC step might become
a bottleneck if R logP
 M

PT .
We store the following arrays in main memory: merHist

and FastQPart; reads from FASTQ chunks; generated k-mer
tuples (kmerOut); received k-mer tuples (kmerIn); compo-
nent array (p); component array received from another task
(p′).

Since we use m-mers as histogram bins and 4 bytes
to store histogram frequencies, the merHist table requires
4m+1 bytes. Since FASTQPart contains the m-mer his-
togram for each chunk, it requires 4m+1C bytes. During
KmerGen step, each thread loads a FASTQ chunk into
memory. Hence, FASTQBuffer requires Tsc bytes per task.
The number of k-mer tuples generated by each task in each
pass is approximately M

SP , and so kmerOut and kmerIn

each require 12M
SP bytes. p and p′ are 4R bytes each. Thus,

287

TABLE 2. DESCRIPTION OF DATASETS.

Read Count Size
ID Dataset

R (×106) M (Gbp)
Source

HG Human gut 12.7 2.29 NCBI (SRR341725)
LL Lake Lanier 21.3 4.26 NCBI (SRR947737)
MM Mock microbial

community
54.8 11.07 NCBI (SRX200676)

IS Iowa, Continuous
corn soil

1132.8 223.26 JGI (402461)

the total memory (in bytes) required per task is given by
4m+1(C + 1) + Tsc +

24M
SP + 8R. The dominant term is

24M
SP , and we can increase the number of passes to reduce

the per-task memory footprint.

We give an example for the memory requirement per
MPI task for processing IS, the largest dataset used in our
experiments. When using 8 passes, 16 processes, and 24
threads per process, we can calculate the memory per task
as follows. The merHist data structure requires 4 MB. We
divide the reads into 1536 chunks and hence the FASTQPart
table requires approximately 6 GB memory. Each FASTQ
chunk is approximately 0.3 GB. Since we use 24 threads
per process, the size of FASTQBuffer per process is approxi-
mately 7 GB (24×0.3). The number of tuples enumerated by
each MPI process in a pass is approximately 1.3 billion, and
so kmerIn and kmerOut each require approximately 14 GB.
The number of reads is 1.13 Billion, and thus the p and p’
arrays require approximately 8 GB memory. Thus, the total
memory per MPI task is 49 GB (6 + 7 + 2× 14 + 8).

4. Performance Results

We now present results from an empirical evaluation
of METAPREP on a collection of large-scale metagenome
datasets. The datasets used in our experiments are listed in
Table 2, and we chose these datasets as they were used
in prior studies [1], [3], [4], [8]. We set k to 27 in most
experiments.

We perform experiments primarily on the NERSC Edi-
son Cray XC30 supercomputer. Each compute node of
Edison has two 12-core Intel Xeon E5-2695 v2 processors
and 64 GB memory. We use the Lustre-based scratch file
system for I/O on Edison. We compile all programs on
Edison with the default Cray compiler settings and use the
scatter policy for pinning threads to cores. The memory
bandwidth obtained using the STREAM Triad benchmark
is 99 GB/s. The point-to-point link bandwidth of large
messages is 8 GB/s. For all multi-node experiments on
Edison, we use 1 MPI task per node and 24 threads on
each task. We also present results on a single node of the
Penn State Ganga cluster. Each node has two 6-core Intel
Xeon E5-2620 processors and 64 GB memory. On Ganga,
we compiled code using the GNU C compiler v4.9.2.

1 2 4 8 12 24

Threads

0

50

100

150

200

250

300

350

T
im

e
(s
ec
on

d
s)

98

HG Ganga

1 2 4 8 12 24

Threads

20

HG Edison

5

10

15

20

5

10

15

20

R
el
at
iv
e
S
p
ee
d
u
p

KmerGen-I/O
KmerGen

LocalSort
LocalCC-Opt

CC-I/O
Speedup

KmerGen-I/O
KmerGen

LocalSort
LocalCC-Opt

CC-I/O
Speedup

Figure 5. Single node execution times and relative speedup. The number
on top of bar gives execution time in seconds.

4.1. Parallel Scaling

In this section, we evaluate scalability of METAPREP

preprocessing steps using single and multi-node experi-
ments.

4.1.1. Single-node scaling. Figure 5 shows multithreaded
execution times and speedup for processing the HG dataset
on a single node of Ganga and Edison. KmerGen-I/O in-
dicates the time to read FASTQ chunks in the KmerGen
step and CC-I/O denotes the I/O time in the CC step. A
single Edison node is nearly 5 times faster than a Ganga
node for this dataset. Parallel file writes do not scale well
on the shared file system of Ganga, resulting in poor overall
scalability (3.4× relative speedup on 24 threads). On Edison,
both I/O and compute steps scale well, resulting in a 14.5×
speedup on 24 cores. This experiment indicates the need for
efficient parallel I/O to achieve good overall performance.
On Edison, LocalSort is the most time-consuming step for
all thread concurrencies.

4.1.2. Multi-node scaling. Figure 6 gives multi-node exe-
cution times and relative speedup (compared to single node
execution time) for three datasets. In this figure, MergeCC-
Comm indicates the step that merges local components.
The k-mer tuples for the HG dataset fit in a single node’s
memory, and so we use 1 I/O pass for all runs. The other two
datasets are bigger. We use 2 passes for LL and 4 passes for
MM in all experiments. The relative speedup on 16 nodes
varies from 3.23× (HG) to 7.5× (MM). The speedup values
are less than the ideal 16× speedup primarily because of the
additional inter-node communication and merge steps. Also,
the KmerGen-I/O step does not scale to high process and
thread counts, leading to a reduction in overall speedup.
However, it is notable that we can process a 11.1 Gbp data
set (MM) in just 22 seconds on 16 nodes.

Figure 7 shows 16-node, 8-pass and 64-node, 2-pass
results for the large IS dataset. The KmerGen step is the
dominant time-consuming stage in both runs. We achieve

288

1 2 4 8 16

Nodes

0

5

10

15

20

25
T
im

e
(s
ec
on

d
s)

6

HG

1 2 4 8 16

Nodes

0

5

10

15

20

25

30

35

40

12

LL

1 2 4 8 16

Nodes

0

20

40

60

80

100

120

140

160

180

22

MM

4

8

16

4

8

16

4

8

16

R
el
at
iv
e
S
p
ee
d
u
p

KmerGen-I/O
KmerGen
KmerGen-Comm

LocalSort
LocalCC-Opt
Merge-Comm

MergeCC
CC-I/O
Speedup

Figure 6. Multi-node execution times and relative speedup. The number on
top of bar gives execution time in seconds.

16 64

Nodes

0

100

200

300

400

500

600

700

800

900

T
im

e(
se
co
n
d
s)

3.25X

1X
KmerGen-I/O

KmerGen

KmerGen-Comm

LocalSort

LocalCC-Opt

Merge-Comm

MergeCC

CC-I/O

Figure 7. Multi Node execution time for Iowa Continuous corn soil dataset
(8 passes for 16 nodes, 2 passes for 64 nodes).

a 3.25× speedup going from 16 to 64 nodes, due to the
reduction in the number of passes and an increased 4×
parallelism. Local sort is not the dominant step, unlike the
single-node case for the other datasets.

4.1.3. Load balance. To show load balance among MPI
tasks, in Figure 8, we give a box plot of execution times for
processing the MM dataset on 16 nodes. We note that the
KmerGen, LocalSort and LocalCC-Opt steps have good load
balance due to the use of the indexes. The MergeCC-Comm
and MergeCC stages have logP sub-steps (4 in this case) of
communicating local component information and merging
components. The difference in the time spent by different
tasks in these steps is due to fewer tasks participating in
successive iterations of the distributed merge step.

4.1.4. Multi-pass execution statistics. Table 3 evaluates
the impact of multi-pass execution on METAPREP’s time
and memory consumption. For MM, we vary the number of
passes from 1 to 8 and use 4 compute nodes for each run.
The KmerGen time increases with an increasing number

K
m
er
G
en
-I
/O

K
m
er
G
en

K
m
er
G
en
-C
om

m
Lo
ca
lS
or
t

Lo
ca
lC
C
-O
pt

M
er
ge
C
C
-C
om

m
M
er
ge
C
C

C
C
-I
/O

Preprocessing Step

0

1

2

3

4

5

6

7

T
im

e
(s
ec
on

d
s)

Figure 8. Load balance among 16 MPI tasks - MM dataset.

of passes because FASTQ files are redundantly read on
each pass. The k-mer tuple communication time decreases
with an increasing number of passes. This is because the
communication time for the first pass is higher (due to
communication setup time), and communication in subse-
quent passes takes less time. The LocalSort time does not
change much, as the total number of tuples to sort remains
the same. LocalCC time decreases with increasing number
of passes due to the multi-pass optimization described in
Section 3.5.1. By enumerating component identifiers instead
of read identifiers during k-mer enumeration, cache locality
improves considerably during LocalCC step. MergeCC time
decreases with increasing number of passes as the com-
munication time decreases similar to KmerGen-Comm step.
Finally, CC-I/O time does not change because same number
of reads are written for all passes. As expected, the per-
node memory footprint decreases with increasing number
of passes.

4.2. Comparisons to State-of-the-art

4.2.1. KmerGen performance comparison. We compare
the efficiency of our KmerGen step to the KMC 2 k-mer
counting tool [10]. KMC 2 is a shared-memory parallel
approach using the idea of minimizers (super k-mers), and
has a significantly smaller memory footprint compared to
other k-mer counters. Figure 9 compares the k-mer enu-
meration time of KMC 2 and our method for the datasets
(HG, LL, and MM), and also shows the relative speedups.
The Stage1 time in KMC 2 involves reading FASTQ input
files, enumerating, and binning super k-mers. In Stage2, the
bins are sorted, compacted, and written to disk. Stage1 time
for METAPREP corresponds to the KmerGen and KmerGen-
Comm steps, and Stage2 corresponds to LocalSort. For
HG, METAPREP performs better in Stage1, but worse in
Stage2 compared to KMC 2. This is because in Stage1,
KMC 2 incurs an additional overhead of finding super k-
mers and in Stage2, the number of tuples to be sorted by
METAPREP is higher than that of KMC 2. For the other two

289

TABLE 3. METAPREP EXECUTION TIME AND MEMORY USE FOR MM DATASET WHEN VARYING NUMBER OF I/O PASSES. ALL RUNS USE 4 NODES.

Number of Time (seconds) Memory/Node
Passes KmerGen KmerGen-Comm LocalSort LocalCC-Opt MergeCC CC-I/O Total (GB)

1 10.95 20.91 12.48 6.51 5.00 5.4 61.32 49.72
2 12.04 12.35 15.23 4.9 3.13 5.35 53 27.02
4 20.21 9.93 15.23 3.9 3.57 5.4 58.24 15.64
8 33.42 8.56 15.16 2.52 1.70 5.34 66.70 9.96

HG
-K
M
C

HG
-M
et
aP
re
p

HG
-M
et
aP
re
p1
6

LL
-K
M
C

LL
-M
et
aP
re
p

LL
-M
et
aP
re
p1
6

M
M
-K
M
C

M
M
-M
et
aP
re
p

M
M
-M
et
aP
re
p1
6

Category

100

101

102

103

T
im

e
(s
ec
on

d
s)

1.56X

1X

4.24X

1.76X

1X

5.6X

1.57X
1X

10.61X

Stage1

Stage2

Stage1

Stage2

Figure 9. KmerGen time: Comparison with KMC 2.

TABLE 4. EXECUTION TIME COMPARISON WITH METAGENOME

PARTITIONING WORK (AP LB).

Dataset
Time (seconds) METAPREP

METAPREP AP LB Speedup

HG 5.59 23.6 4.22×
LL 11.53 25.97 2.25×
MM 19.6 56.1 2.86×

larger datasets, Stage1 for METAPREP becomes slower than
KMC 2 because KmerGen becomes slower, due to more
passes for these datasets. Finally, we see that METAPREP

on 16 nodes performs better as the dataset size increases.

4.2.2. LocalSort performance comparison. We evaluate
the efficiency of our parallel radix sort implementation by
comparing with the NUMA-aware out-of-place stable LSB
radix sort implementation of [15]. We benchmarked our
LocalSort step and the NUMA-aware radix sort on a single
node of Edison using 24 threads. The NUMA-aware sort
processes up to 196 million tuples per second, whereas our
LocalSort implementation processes up to 154 million tuples
per second, thereby achieving 78% performance of this
state-of-the-art sort implementation. We could not directly
use the NUMA-aware implementation in our work, because
this code requires that both the key and payload be 64 bits,
and also assumes that the input data is stored in disjoint
partitions across NUMA domains.

4.2.3. Comparison to read graph connectivity [3]. Ta-
ble 4 compares the execution time of some of the steps
in METAPREP to the corresponding steps in the AP LB

TABLE 5. INDEX CREATION TIME (SEQUENTIAL).

Dataset # Chunks
Time (seconds)

FASTQPart merHist

HG 384 32 109
LL 384 32 154
MM 384 33 343
IS 1536 180 5160

(Active Partition with Load Balancing) metagenome par-
titioning work [3]. AP LB filters reads/k-mers based on
k-mer frequency before partitioning. We do not report the
time for this step. We use 16 Edison nodes for all runs. The
speedup of METAPREP over AP LB varies from 2.25× for
LL to 4.22× for HG. The improvement is primarily because
our method requires fewer communication rounds (logP)
in comparison to the O(logM) iterations for the Shiloach-
Vishkin algorithm. AP LB requires 19, 20, and 21 iterations
for the HG, LL, and MM datasets, respectively.

4.3. Index Creation

The FASTQPart and merHist table creation steps are
currently sequential, since they are executed just once for
each dataset, and hence are not in the critical path. Table 5
lists the time to create these indices. Creating logical chunks
of FASTQ files involves finding the start offset in the
FASTQ files for every chunk. This step incurs additional
overhead in case of paired-end FASTQ files containing
trimmed reads because after finding the chunk offset in one
FASTQ file, the same read has to be located in the other
FASTQ file. Creating k-mer frequency histograms is similar
to the KmerGen preprocessing step and can be parallelized
in the same manner. Currently, this step takes 5160 seconds
for the largest dataset (Iowa continuous corn soil) on Edison.

4.4. Use with MEGAHIT

We next evaluate the impact of preprocessing on
metagenome assembly time and quality. After pre-
processing, reads in different components can be assembled
in parallel. However, we find that read-based preprocessing
results in a single giant component and numerous extremely
small components. For instance, for the MM dataset, when
using k = 27, 99.5% of the reads belong to the giant
component. We instead desire a balanced decomposition.
So, we explore two strategies to reduce the size of the
largest component: we use a k-mer frequency-based filter

290

TABLE 6. IMPACT OF k ON SINGLE-NODE METAPREP EXECUTION TIME

(MM DATASET).

k
Time (seconds)

KmerGen LocalSort LocalCC-Opt CC-I/O Total

27 77.02 55.33 6.41 5.40 144.16
63 59.73 67.60 5.16 5.35 137.84

TABLE 7. LARGEST COMPONENT SIZE WITH DIFFERENT VALUES OF k
AND k-MER FREQUENCY FILTER (KF) SETTINGS.

k Filter
LC size (% Reads)

HG LL MM

27 None 95.5 76.3 99.5
63 None 87.1 58.9 97.8
27 KF < 30 73.5 67.6 45.0
27 10 ≤ KF < 30 55.2 45.2 40.0
63 10 ≤ KF < 30 51.6 30.6 59.0

and try larger values of k. The k-mer frequency-based
filter only considers read graph edges that correspond to
a user-specified k-mer frequency. High frequency k-mers
may occur due to repeated sequences in the metagenome.
Low frequency k-mers may occur due to sequencing errors.
Most de Bruijn graph-based assemblers include such filters
in the graph construction step, and this results in improved
assembly quality. Additionally, using a larger value of k
could result in fewer edges between reads. However, note
that very aggressive filtering or an unreasonably large value
of k could result in very small components.

We modify the METAPREP k-mer enumeration code
to support k-mer sizes up to 63. With this change, the
size of a k-mer tuple is 20 bytes (16-byte k-mer and 4-
byte read ID). Table 6 shows the impact of a higher k on
single-node execution time for the MM dataset. We compare
performance with k set to 27 and 63. Although using 63-
mers requires 20 bytes per k-mer tuple, the number of 63-
mers is less than the number of 27-mers (4.12 billion tuples
vs 8.4 billion tuples), and hence the KmerIn and KmerOut
buffers require less storage (91 GB for 27-mer run vs. 78.65
GB for 63-mer run). Due to the lower number of tuples, the
execution time of all steps except LocalSort step is lower for
the 63-mer run, resulting in better overall time. LocalSort
requires 8 radix passes for sorting 27-mers and 16 radix
passes for 63-mers, and so the sort is slower in the 63-mer
run.

Table 7 shows the percentage of reads in the largest
component, when running METAPREP with different filter
settings. Even without using the k-mer frequency filter, the
size of the largest component decreases when k is increased
from from 27 to 63. However, even with k = 63, the
largest component size is still considerable for HG and MM
datasets. We find that applying the k-mer frequency filter
reduces the largest component size in general. For the MM
dataset, there are many 27-mers occurring more than 30
times when compared to 63-mers and hence, more 27-mers
are filtered out. This is the reason for the larger component
size for the k = 63, 10 ≤ KF < 30 filter in comparison to

TABLE 8. MEGAHIT ASSEMBLY TIME (IN SECONDS) WITH AND

WITHOUT PREPROCESSING. KF DENOTES k-MER FREQUENCY FILTER.

Dataset
MEGAHIT time (seconds) METAPREP

SpeedupNo LC Other LC Other time
Preproc No Filter KF < 30 (seconds)

HG 1082 1009 51 848 141 39 1.22×
LL 2857 2228 456 2100 553 75 1.31×
MM 2211 2252 25 1464 962 168 1.36×

k = 27, 10 ≤ KF < 30. We chose the values 10, 30, and
63 arbitrarily. An extensive evaluation of filtering strategies
and k settings is left for future work.

Table 8 compares the time taken by the MEGAHIT
metagenome assembler to assemble the whole sequence data
(No Preproc) with the time to assemble reads partitioned
by METAPREP, with and without using filters. The table
also shows METAPREP preprocessing time for each dataset.
METAPREP time includes the time for reading and writing
FASTQ files. All experiments are run on a single node of
Edison supercomputer, since MEGAHIT does not support
multi-node parallelism. It can be seen that METAPREP’s
preprocessing time is very low compared to the actual
assembly time even on a single node. METAPREP time
can be further reduced using multiple compute nodes. We
report MEGAHIT time for assembling reads belonging to
the largest component (indicated as LC) and the time for
assembling the remaining reads (indicated as Other). These
two runs can be performed in parallel using 2 compute
nodes. We define speedup to be the time for MEGAHIT as-
sembly on the full data set divided by the sum of METAPREP

time and the time to assemble the largest component reads
(with filtering). We obtain speedups up to 36% with this
approach.

Table 9 gives assembly quality results with and without
preprocessing. We set k to 27 in METAPREP for all the
experiments. For all the datasets, ‘No Preproc’ and ‘No
Filter’ (i.e., using METAPREP and splitting the dataset into
large component and Other reads) result in similar quali-
tative results. For example, the length of the largest contig
recovered (indicated Max in the table) and N50 values are
very similar in these two cases.

When KF < 30 filter is used, the size of the largest
component decreases, and this results in better assembly
time, as shown in Table 8. The corresponding assembly
quality is shown in the rows labeled KF < 30. The total
number of bases assembled improves with filtering. The
largest contig is recovered in the LC assembly for two of
the three datasets: HG and LL. For these two datasets, we
find that N50 value is higher than unpartitioned read as-
sembly. For the MM dataset, this filtering criterion becomes
very aggressive and reduces assembly quality. Hence, filter
settings need to be chosen carefully, with the overall goal
of reducing assembly time while not reducing quality.

291

TABLE 9. ASSEMBLY QUALITY COMPARISON.

Dataset Type
MEGAHIT assembly output statistics

Contigs Total (Mbp) Max (bp) N50 (bp)

HG No Preproc 63 519 116.19 217 183 5071

No Filter 63 483 116.18 217 183 5098
LC 58 770 113.83 217 183 5510
Other 4713 2.35 2860 513

KF < 30 64 571 119.01 217 183 5123
LC 56 732 110.13 217 183 5687
Other 7839 8.87 43 863 2271

LL No Preproc 179 828 165.63 225 770 1273

No Filter 181 751 166.67 225 805 1263
LC 141 136 148.75 225 805 1593
Other 40 615 17.9 4028 432

KF < 30 182 717 168.42 225 770 1275
LC 140 081 147.51 225 770 1587
Other 42 636 20.90 43 718 465

MM No Preproc 24 931 203.65 1 067 762 50 607

No Filter 25 002 203.65 1 067 762 50 550
LC 23 959 202.99 1 067 762 50 781
Other 1043 0.66 5788 695

KF < 30 40 632 208.24 611 608 23 126
LC 26 233 156.04 611 608 28 135
Other 14 399 52.19 591 560 12 285

5. Conclusions and Future Work

In this work, we developed a new bioinformatics tool
called METAPREP for partitioning metagenomic reads into
disjoint components, such that each component can be in-
dependently assembled by existing assemblers. Empirical
results show that METAPREP exhibits good strong scaling
on a single compute node with 24 cores (14.5× speedup),
while also exhibiting reasonable scaling on multiple com-
pute nodes. We also evaluated the performance of individual
steps in METAPREP by comparing with corresponding state-
of-the-art implementations. Using just 16 compute nodes of
the NERSC Edison system, METAPREP partitioned the Iowa
Continuous Corn soil dataset in around 14 minutes.

The scalability of METAPREP is partially limited by
the MergeCC step, the complexity of which increases with
increasing number of MPI tasks. This step could be im-
proved by adopting the component graph contraction meth-
ods described in [16]. Also, we find that the metagenome
datasets we processed result in creation of a giant component
(i.e., a single large component). We explored two simple
strategies to reduce the size of the giant component in this
work. In future work, we will explore alternate component-
splitting strategies, and additional settings in which we can
use existing genome and metagenome assembly software.

Acknowledgment

This research is supported in part by NSF awards
#1453527, #1356529, and #1439057. This research used
resources of the National Energy Research Scientific Com-

puting Center, a DOE Office of Science User Facility sup-
ported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. We
thank Chita Das for providing access to the Ganga cluster
and the reviewers for their helpful comments.

References

[1] A. C. Howe, J. K. Jansson, S. A. Malfatti, S. G. Tringe, J. M. Tiedje,
and C. T. Brown, “Tackling soil diversity with the assembly of large,
complex metagenomes,” Proceedings of the National Academy of
Sciences, vol. 111, no. 13, pp. 4904–4909, 2014.

[2] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M. Tiedje, and C. T.
Brown, “Scaling metagenome sequence assembly with probabilistic
de Bruijn graphs,” Proceedings of the National Academy of Sciences,
vol. 109, no. 33, pp. 13 272–13 277, 2012.

[3] P. Flick, C. Jain, T. Pan, and S. Aluru, “A parallel connectivity
algorithm for de Bruijn graphs in metagenomic applications,” in Proc.
Int’l. Conf. for High Performance Computing, Networking, Storage
and Analysis (SC), 2015.

[4] D. Li, R. Luo, C.-M. Liu, C.-M. Leung, H.-F. Ting, K. Sadakane,
H. Yamashita, and T.-W. Lam, “MEGAHIT v1.0: A fast and scal-
able metagenome assembler driven by advanced methodologies and
community practices,” Methods, vol. 102, pp. 3–11, 2016.

[5] T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara, “MetaVelvet:
an extension of velvet assembler to de novo metagenome assembly
from short sequence reads,” Nucleic acids research, vol. 40, no. 20,
pp. e155–e155, 2012.

[6] S. Boisvert, F. Raymond, É. Godzaridis, F. Laviolette, and J. Corbeil,
“Ray Meta: scalable de novo metagenome assembly and profiling,”
Genome biology, vol. 13, no. 12, p. R122, 2012.

[7] Y. Peng, H. C. Leung, S.-M. Yiu, and F. Y. Chin, “Meta-IDBA: a
de Novo assembler for metagenomic data,” Bioinformatics, vol. 27,
no. 13, pp. i94–i101, 2011.

[8] C. Jain, P. Flick, T. Pan, O. Green, and S. Aluru, “An adaptive
parallel algorithm for computing connectivity,” arXiv.org e-Print
archive, 2016. [Online]. Available: http://arxiv.org/abs/1607.06156

[9] G. Rizk, D. Lavenier, and R. Chikhi, “DSK: k-mer counting with
very low memory usage,” Bioinformatics, vol. 29, no. 5, pp. 652–
653, 2013.

[10] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz,
“KMC 2: Fast and resource-frugal k-mer counting,” Bioinformatics,
vol. 31, no. 10, pp. 1569–1576, 2015.

[11] Y. Shiloach and U. Vishkin, “An O(logn) parallel connectivity algo-
rithm,” Journal of Algorithms, vol. 3, no. 1, pp. 57–67, 1982.

[12] G. Cybenko, T. G. Allen, and J. E. Polito, “Practical parallel Union-
Find algorithms for transitive closure and clustering,” International
Journal of Parallel Programming, vol. 17, no. 5, pp. 403–423, 1988.

[13] M. M. A. Patwary, P. Refsnes, and F. Manne, “Multi-core spanning
forest algorithms using the disjoint-set data structure,” in Proc. IEEE
Int’l. Parallel & Distributed Processing Symposium (IPDPS), 2012.

[14] R. E. Tarjan and J. Van Leeuwen, “Worst-case analysis of set union
algorithms,” Journal of the ACM (JACM), vol. 31, no. 2, pp. 245–281,
1984.

[15] O. Polychroniou and K. A. Ross, “A comprehensive study of main-
memory partitioning and its application to large-scale comparison and
radix-sort,” in Proc. ACM SIGMOD Int’l. Conf. on Management of
Data (SIGMOD), 2014.

[16] J. Iverson, C. Kamath, and G. Karypis, “Evaluation of connected-
component labeling algorithms for distributed-memory systems,” Par-
allel Computing, vol. 44, pp. 53 – 68, 2015.

292

