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Abstract—this paper presents a novel hardware architecture
based on Associative Memory technology for sequence align-
ment. The Associative Memory chip (AMchip) architecture
employs a huge amount of parallelization to perform real time
combinatorial pattern matching. It can be used to perform very
fast searches over a large database using hamming weight as
a similarity metric. In the presented hardware platform the
AMchip communicates with a Xilinx Zynq ARM CPU + FPGA
through high-speed (2.4 Gbps) serial links enabling seamless in-
tegration between the software and the hardware acceleration.
The result shows that low score sections of a database sequence
are eliminated rapidly using this architecture which in turn
leads to significant speed up. The outcome of a preliminary
study on a selected reference protein database shows that all
the matches between query and database sequences found by
NCBI-BLAST can be successfully found also by the Associative
Memory based algorithm.

Keywords-AMchip; Xilinx FPGA; sequence alignment; NCBI
BLAST, Hamming Weight

I. INTRODUCTION

The Associative Memory chip (AMchip) is a custom

ASIC originally designed to perform real time combina-

torial pattern matching for charged particles trajectory re-

construction (tracking) at high-energy physics hadron col-

lider experiments [1]. The first application based on the

AMchip technology was the Silicon Vertex Trigger (SVT)

track finding supercomputer for CDF experiment [2]. The

most recent version of the AMchip (AMchip06) has been

developed for the FastTracKer (FTK) [3] [4] [5] processor

of the ATLAS experiment [6] at the LHC. FTK is a complex

hardware processor based on FPGAs and AMchips which

is able to reconstruct O(1000) particle trajectories per event

at 100 kHz event rate, processing the data coming from

90 million digital channels. The ability to process in real

time the huge amount of data produced by the experiment

is fundamental since it is possible to store for later analysis

only a tiny fraction of the events. The FTK, which will

be commissioned in 2018, will become a key component

of ATLAS online event selection procedure. The AMchip

plays an extremely important role in the FTK system and

its development is therefore driven by the main high-energy

physics application.

However, it is also a generic computing element that can

be applied into other domains such as image processing [7]

and of course bioinformatics, as shown in this document.

In bioinformatics, global/local sequence alignment algo-

rithms are comparing biological sequences such as amino

acids of different proteins sequences or nucleotides of DNA

sequences. Several sequence alignment algorithms have been

presented such as Smith-Waterman (SW) [8]. The Smith-

Waterman algorithm is a dynamic programming algorithm

with a scoring method. Basic Local Alignment Search Tool

(BLAST) [9] [10] is a popular software toolset that uses

a heuristic approach to find alignments efficiently without

the computational cost of the SW algorithm. The BLAST

search enables a researcher to compare a query with a

database to identify the database sequences matching the

query within a certain threshold. There are several BLAST

tools, for example BLASTP is the tool specialized for

protein databases.

The genomic algorithms are very time consuming and

therefore require intensive computing power when executed

on conventional CPUs. Aside from algorithmic acceleration

as provided by BLAST, several hardware solutions were

proposed in order to speed up alignment algorithms. These

can be divided into three main categories:

1) Acceleration using Graphic Processing Units (GPUs).

For example Feng et al [11] enhanced SW protein

sequence alignment algorithm on NVIDIA GPUs by

optimizing memory access bandwidth and thread al-

location. He achieved 32%-52% better performance

comparing to CUDASW++2.0 implementation [12].

CUDASW++ is a bioinformatics solution based on

Smith-Waterman algorithm developed on NVIDIA

Tesla GPUs with significant speed-ups over BLAST

under certain query length conditions. The latest ver-

sion is CUDASW++3.0 [13].

2) Acceleration using Field Programmable Gate Array

(FPGA) parallel computing power. Varieties of archi-

tectures were presented which accelerate SW algo-

rithms. An example is Causapruno et al [14], who

developed an architecture based on systolic array and
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interleave pipelining. Nawaz et al [15] proposed a

parallel architecture for any of-the-shelf FPGA devel-

opment board. Another interesting approach is Muriki

et al [16] who developed a solution for BLAST

acceleration based on embedded ARM processor and

FPGA to take into account not only computing power,

but also power efficiency. They used PCIe interface

for data communication purpose.

3) Acceleration using an Application Specific Integrated

Circuit (ASIC), a dedicated silicon chip to execute as

fast as possible a portion of the algorithm. An example

is the commercial accelerator Parcel [17]. Although

it provides a very fast processing, the usage of ASIC

is often discouraged by the high initial development

cost with respect to GPU or FPGA solutions.

This paper presents a solution mixing the two last categories.

In this approach, sequence alignment is performed by a

novel system based on an AMchip (ASIC) interconnected

to a FPGA. The main aim of this paper is to demonstrate

how ASIC-AMchip can reduce the number of low score

sections (non-candidate) very rapidly by exploiting its highly

parallelized structure. Reducing the number of high score

sections (candidate) from thousands to few units by adjusting

threshold speeds up the alignment algorithm dramatically.

Since the AMchip is an available chip already developed

for physics experiments, an AMchip-FPGA approach would

have the computing power benefit of a dedicated hardware

system without the high development cost inherent in this

kind of solution.

The paper is organized as follow: section II will briefly

introduce the internal architecture of an AMchip in general

and explains the architecture and the operational sequence

of the AMchip06 in more details. The hardware environment

used to develop the algorithm is illustrated in section III.

A similarity region finding algorithm for AMchip will be

explained in section IV. The data set used for the data

analysis is described in section V and finally, the results

will be presented and discussed in section VI.

II. ASSOCIATIVE MEMORY ARCHITECTURE AND

AMCHIP IMPLEMENTATION

A. Internal architecture of an Associative Memory

The function of the Associative Memory is pattern recog-

nition. For the AM a pattern is a structured data made by a

sequence of values. The AM can store a database of patterns

and then it can be used to find occurrences of these patterns

in a query data set exploring all possible combinations of

the data set.

The Associative Memory basic building block is the Content

Addressable Memory (CAM) cell [18]. A CAM cell is a

memory element with a comparator: it is possible to write a

data value in the CAM cell and then query whether a certain

input data value is equal to the internally stored value. The

Figure 1. AMchip functional description.

Associative Memory is made of many CAM cells organized

in a matrix, as shown in Figure 1. Each column is associated

to an input data bus: all CAM cells in the column compare

at once with the data sent on the bus. Each row represents

a pattern: the sequence of values is stored in the CAM cells

of the row.

When the query dataset is sent to the AM all CAM cells

compare with the data at once. If a match at CAM cell

level is found it is recorded and this information is retained

during the examination of the whole dataset.

For each pattern (row) there is a logic element called

Majority: the function of this logic element is to decide

whether the pattern is present in the examined dataset or

not. In order to make the decision it looks at the amount of

CAM cells of the pattern that had a match in the data set,

if this amount is over the user specified threshold then the

pattern is declared matched and it is sent in output to the

AM. The patterns are sent in output by a priority encoder

called Fischer Tree starting with the matched pattern with the

lower memory address to the pattern with the higher address.

The output of the AM is the internal memory address of each

pattern found in the input data set along with its hitmap:

which input bus had a match.

The power of the AM is the ability to find patterns matching

any combination of the input dataset during dataset readout,

this without any further computation.

B. The AMchip06 architecture

There are several implementations of the AM concept

described before with different features in terms of storable

number of patterns and pattern length. The latest of these

implementations is AMchip06, a 65 nm custom ASIC with

several features, performance and power consumption im-

provements with respect to the previous versions.

The AMchip06 contains 8 CAM cells in each pattern row,

each CAM cell can store up to 16 bit of information with a

variable amount of ternary logic bits (possibility to encode 0,

474



bus 0-7
Des Unitsbus 0-7

pattin 0-1
Des Units

pattin 0-1

JTAG

JTAG signals

AM Bank

Logic
pattout
Ser Unit

pattout

data & conf

conf

co
nf

conf

data

data

data

Figure 2. AMchip I/O and internal logic blocks.

Figure 3. Database sequence reformatting of sequence = SSVPSQK-
TYQGSYGFRLGFLHSGTAK, m=26, n=8.

1, and either 0 or 1). The AMchip06 has a capacity of 128K

patterns in 8-word pattern mode. It can also be configured

in 16 or 32 words decreasing the number of bits per word

and the total number of patterns available (15 bit * 16

words pattern for 64k patterns or 14 bit * 32 words for 32k

patterns). It has the ability to handle data incoming at 2 gbps

per input bus and it can send matching sequences in output at

a 2.4 gbps data rate. It has the possibility to collect the output

patterns of two neighbouring chips enabling the possibility

to build multi-chip boards with the same I/O interface of

a single chip. The schematic internal structure of the chip

is sketched in Figure 2. The features of the AMchip06 are

detailed in [19] [20].

III. EXPERIMENTAL HARDWARE SETUP

A dedicated hardware platform is under development

using a Xilinx Zynq mini-ITX board [21] and dedicated

AMchip FMC mezzanine. The Zynq is a System on Chip

that contains an ARM Cortex-A9 processor and a Xilinx

Kintex FPGA integrated in a single chip. LINUX can be

executed on the ARM processor that is integrated with

the FPGA in such a way to facilitate data communication

between CPU, FPGA and AMchip on the FMC mezzanine.

The Zynq + AMchip FMC is similar to a desktop PC and

all hardware details are hidden to the user.

The software running on the LINUX system on the CPU

side of the Zynq will be able to upload the data to the

Zynq

ARM

Linux

Zynq

FPGA

Pre-processing

Post-processing

AMchip

Similarity

Region

Finder

User

Commands

Figure 4. AM-based setup data flow.

FPGA side of the processor using the internal high-speed

bus. In turn the FPGA side will be able to communicate with

the AMchip hosted on the FMC mezzanine using 8 high-

speed serial links at 2 gbps to send query data and receive

the response from the AMchip using one high-speed serial

link at 2.4 gbps. The FPGA will be able to execute further

processing before sending the data back to the LINUX side

for final computation and presentation to the user. This data

flow architecture is show in figure 4.

IV. SIMILARITY REGIONS SEARCH WITH THE AMCHIP

This section outlines how the AMchip can be used for fast

finding of similarity regions between a query sequence and a

large database using a very simple algorithm. This algorithm

is preliminary and more refined analysis can be added in the

FPGA and CPU.

A. BLASTP algorithm

Since we are going to compare with the BLASTP tool of

the BLAST suite we briefly describe below the algorithm

used by the software tool. The BLASTP tool of the BLAST

suite is specialized for protein database query and is divided

into three stages:

1) Seeding: small fixed length similarity regions are

found

2) Ungapped extension: each seed is extended in both

directions without allowing for gaps (insertion or

deletion of symbols from the sequence), this stage

reject regions with poor ungapped alignment score

3) Gapped alignment: an algorithm similar to SW on the

regions found by the previous stage perform the local

alignment provining the final score

The quality of the alignment is determined by a score

computed as follows: for each pair x, y of aligned symbols

is assigned a score M(x, y) where M is a N×N matrix, N
being the number of possible symbols. This matrix is user

defined and assigns a high score to identical or biological

similar symbols while it assigns zero or negative score to

different symbols.

In the setup described below, the AMchip is performing the

seeding stage with large fixed word length.

B. Associative Memory algorithm

A gene bank or a protein database is reformatted before

loading into AMchip memory bank as shown in Figure 3.

In this method the database sequence is reformatted with

respect to the AM pattern length. Let’s assume m to be the
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Figure 5. Hamming Weight of sub-sequence comparison for every sub-
sequence position from table I. Possible thresholds are highlighted.

database sequence length and n the AM pattern size. The

database sequence is then divided into m-n sub-sequences

of length n, obtained by running a sliding window over the

database sequence. Each symbol in the database sequence is

encoded in such a way to be written as a word of the AM

pattern. In the case of the AMchip06 there are 14 bits per

word available in 32-word pattern mode, more than enough

to encode a nucleic acid or a protein amino acid. Each sub-

sequence of size n is then loaded as one pattern on the AM

memory bank. In order to load the full database in the AM

it is therefore necessary to have at least m-n patterns, for

example the biggest database loadable in a single AMchip06

in 32-word pattern mode (n=32) is 32k.

Once the reference database is loaded into the AM it can

be used to search matches with the query data. To let the

AM find the similarity regions between the query and the

database it is sufficient to put the query in input to the AM,

one symbol of the query for each input bus of the AM and

then ask the AM for the matching patterns over a certain

threshold T. If the query length is more than the pattern size

n then it is sufficient to repeat the query operation every n

symbols of the query. As explained in section II the AM

compare the input with all the patterns at the same time, the

time to execute this operation is therefore independent of the

pattern bank size. Since the patterns in the AM bank are the

database sequence in every possible position this operation

is equivalent to compute the hamming weight of the binary

comparison of the query with each sub-sequence of the

database. By definition [22], Hamming weight (HW) of a

binary number is equal to the number of ’1’ of this number’s

representation. For instance, the HW for a binary number

such as 1000110001011010 is 7. The HW represents

a measure of similarity between the query and the database

sequence. The output of the AMchip is then equivalent to

the first stage (seeding) of the BLASTP algorithm using a

score matrix M(x, y) equal to the identity matrix.

A preliminary study has been conducted on two short

Table I
QUERY AND AN EXAMPLE DATABASE SEQUENCE

Query Sequence
HLMRVEGNLQAYYMEDVNSGRHSVCVPYEGPQ
Database Sequence
SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCP
VQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPP
QHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS
SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENL

Table II
SELECTED SEQUENCE FOR THE PRIMARY OBSERVATION

Sequence (gi) Reference (ref) Sequence (gi) Sequence (ref)
8922077 NP_061172.1 768020113 XP_011527730.1
70167113 NP_001020278.1 768020129 XP_011527734.1
578800406 XP_006711172.1 768020121 XP_011527732.1
70167032 NP_056656.2 4501919 NP_001103.1
70166944 NP_056655.2 237681091 NP_001153702.1
767908090 XP_011507364.1 7669479 NP_056649.1
70166852 NP_001102.2 578836418 XP_006724017.1
767908088 XP_011507363.1 7669477 NP_056648.1
767908086 XP_011507362.1 768020101 XP_011527727.1
530377181 XP_005262802.1 768020117 XP_011527731.1
226530771 NP_001152767.1 302058269 NP_036223.2
21245124 NP_640336.1 530423621 XP_005255871.1
226529650 NP_001152757.1 223972688 NP_631913.3
223972690 NP_001138872.1 767989508 XP_011521221.1
767989510 XP_011521222.1

sequences as shown in table I. Figure 5 shows the HW cal-

culated by AMchip for the two given sequences. According

to the threshold value it is effectively possible to select only

the regions with the desired similarity. For example if the

threshold is set to T1 only one candidate will be selected,

the best match, while if threshold is set to T2 13 candidates

will be selected. To select interesting region the threshold

should be set over the expected random matches between

two sequences of length n, for example in the case of this

protein data and a sequence of length 32 a threshold >5 is

effective. The computing cost of this algorithm is negligible,

the only parameters that determine the execution speed are

the readout speed of the query (2 gbps in the case of the

AMchip06), the output speed (2.4 gbps in the case of the

AMchip06), and the number of similarity regions found.

V. TEST DATA (QUERY AND DATABASE SEQUENCES)

In order to check further the validity of this algorithm

a larger set of sequences was selected and results were

compared to the matches obtained by the BLASTP analysis

tool. From the reference protein sequence database (Ref-

seq protein [23]) we extracted some sequences of Homo

sapiens database as listed in II. : 29 sequences with length

ranging from 200 to 1200 symbols. The search query of

length 32 is the same as in I. .

VI. RESULTS AND DISCUSSION

Figure 6 shows the best matches interval between query

(TABLE I. ) and each sequence of TABLE II. found by
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AMchip and BLASTP. In each case the region found by

the hamming weight thresholding and BLASTP is the same.

This result shows that AMchip is capable to find the best

matches in a very simple case successfully with little differ-

ence comparing to NCBI BLASTP tool. The time to perform

this operation depends on the data itself, but it is possible

to give a general estimation. Currently the slowest operation

is loading the reference database on the AMchip. Writing

patterns is performed through the slow JTAG interface due

to a design constraint and currently takes 700 ms. In case

of multi-chip board it is possible to write all chips in parallel.

This limitation is not due to the AM internal architecture and

it will probably be lifted in future AMchip versions enabling

writing at the same speed than the I/O buses. The query

operation is done through the 2 gbps high-speed serial links

and is very fast: it is possible to send 8 symbols in parallel

each 10 ns so for example querying a 32 symbols long

sequence takes 40 ns. For each query the system must wait a

fixed latency ( 400 ns) plus 16.6 ns for each matched pattern

(2.4 gbps output). If we suppose an average of 1 matched

pattern per query it is possible to analyze data with respect

to the loaded reference database at 2.2 MHz. In any case, the

processing time is independent from the size of the database

sequence. It must also be noted that the proposed dataflow is

a pipeline: the FPGA stage and the final processing in CPU

can proceed in parallel with the AM stage as soon as first

matched patterns become available.

VII. CONCLUSION AND FUTURE WORK

The Associative Memory was presented and the AMchip

silicon implementation was described. An hardware plat-

form based on CPU+FPGA+AMchip was described and a

preliminary algorithm for fast search of similarity regions

has been described. The comparison between the sequence

alignment results achieved by BLASTP tool and the results

calculated by AMchip shows that it successfully determined

the location of the best matches between a query and a

given protein database sequence. The presented sequence

matching result is promising, however, larger databases and

longer sequences must be studied in order to understand

more precisely the computing performances of the AMchip

approach. The AMchip step is supposed to be the pre-

processing stage of a more refined alignment algorithm

implemented in FPGA and CPU. Until now, only protein

sequences were considered in the study and no other type

of genomes. It will be interesting to know how the proposed

approach will apply to DNA sequences.
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Figure 6. Best match interval between query and a database sequences
(sequence extracted from TABLE II) found by AMchip and BLASTP
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