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Abstract—We present an efficient and scalable scheme for
implementing agent-based modeling (ABM) simulation with In
Situ visualization of large complex systems on heterogeneous
computing platforms. The scheme is designed to make optimal
use of the resources available on a heterogeneous platform
consisting of a multicore CPU and a GPU, resulting in
minimal to no resource idle time. Furthermore, the scheme
was implemented under a client-server paradigm that enables
remote users to visualize and analyze simulation data as it is
being generated at each time step of the model. Performance
of a simulation case study of vocal fold inflammation and
wound healing with 3.8 million agents shows 35x and 7x
speedup in execution time over single-core and multi-core CPU
respectively. Each iteration of the model took less than 200 ms
to simulate, visualize and send the results to the client. This
enables users to monitor the simulation in real-time and modify
its course as needed.

Keywords-component; HPC; ABMs; In Situ Visualization;
Heterogeneous Platform; Systems Biology

I. INTRODUCTION

Agent-based modeling (ABM) is a powerful and widely

used approach to quantitatively simulate a system defined

by a set of autonomous agents that operate and interact

in discrete time steps. ABMs represent models at the mi-

croscale, which attempt to explain the emergence of higher

order properties of the overall system. Depending on the

system being modeled, each agent can represent a wide

variety of entity types in an environment ranging from

living cells in a biological process modeling, animals in an

ecosystem modeling, to cities or countries in an economic

model. These agents ’live’ in their environment, or world,
whose organization may vary substantially depending on

the particular application. In this work, we constrain the

world to a two-dimensional grid whose size is determined

by the granularity of the simulation. For complex biological

systems such as inflammatory and wound healing response,

the world consists of a grid of tissue patches, each patch

may contain a number of entities such as cells and extra-

cellular matrix (ECM) proteins. The size of the grid reflects

the granularity of the simulation, and hence the larger the

grid the more accurate the simulation. However, high fidelity

simulation typically introduces a significant computational

burden that, when coupled with the work needed to perform

in-situ visualization, makes the overall task of real-time

simulation and visualization quite challenging. Thus, such

high fidelity simulations stand to benefit substantially from

an efficient and scalable parallel implementation.

A challenge in biological simulation is to handle the

differences in spatiotemporal scales between cellular and

chemical interactions [1]. For example, cellular movements

occur at the rate of micrometers per hour (μm/τ ), while
cytokine diffusion in tissue occurs at the rate of micrometers

per second (μm/t). A naive approach would be to simulate

the model at the smallest temporal scale required, i.e. time

step ts = t. Clearly, this would unnecessarily increase

the complexity of the coarse-grain processes. To solve this

problem, we design a mechanism that captures the behavior

of the finer-scale processes over a coarse time window using

convolution, and offload this intensive computation to the

GPU while the CPU cores focus on coarse-grain processes.

Visualization is a crucial component of any ABM sim-

ulation and is usually done separately on the stored data

that was generated during the simulation. To date, most

visualization techniques proposed fall into one of the fol-

lowing categories; local simulation, conventional work-flow
remote simulation [2], or client-render remote simulation. In
local simulation, the visualization happens in the same place

where the computation is performed. Thus, this assumes a

monitor attached locally to the computing platform, which

means that, in order to take advantage of a powerful server,

the user needs to have a physical access to it. This solution

is not acceptable since servers are usually maintained in an

isolated highly-regulated area, which is only accessible to

the users via a secured network protocol. A commonly used

model, conventional work-flow remote simulation, performs

computational part of the simulation on the server first, store

data on disk for later visualization on the client machine.

This approach requires temporary storage and heavy traffic

on disk. Note that this approach precludes computation

steering. The last category is rarely seen, but is mentioned

here for completeness, namely the client-render remote sim-
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ulation. This scheme performs the simulation on the server

then send the rendering commands to the client. This leaves

all rendering responsibility to the client’s local computing

resource, which is usually much less powerful than that

of the server. Existing well-known ABM platforms use a

mix of strategies for visualization. NetLogo assumes local

simulation [3], while SPADES uses conventional work flow

[4]. MASON and FLAME GPU allow for both conventional

work flow and computation/visualization coupling [5], [6].

No server-client rendering protocol, however, were specified

for the latter option, thus it is fair to assume the local

simulation model was used for the coupling of computation

and visualization.

In situ visualization, or in-place simulation output pro-

cessing, addresses all the issues other visualization work

flows pose. A quadtree-based ABM is proposed by [7] to

reduce the amount of irrelevant data analyzed in-situ, where

[8] attempts to accomplish the same goal with a bitmap-

based approach. Paraview Catalyst [9], [10] was developed

to process simulation output data in-situ according to the

user’s co-processing script. An image-based approach built

on top of Paraview Catalyst was presented by [11] to effi-

ciently manage rendered images created in-situ by Paraview

Catalyst. As much as all these work ( [7]–[11]) reduce I/O

loads, none completely by-pass I/O.

In the present study, VirtualGL is used in the implementa-

tion, resulting in an In Situ visualization ABMs framework

that completely by-passes the disk as a mediator in the

visualization pipeline. Our main goal is to be able, for

each time step of the model, to perform the simulation and

visualization in a few hundred milliseconds, including the

transfer time of the visualization and statistical summary

information to the remote client. Such a performance enables

the users to take full advantage of the computational power

of the server, while analyzing and steering the computation

in real-time.

II. OVERVIEW AND BACKGROUND

A. Heterogeneous Computing Platform

Heterogeneous computing systems refer to a diverse set

of computing resources interconnected via high speed net-

work to collaboratively support execution of computationally

intensive parallel and distributed applications [12]. Hetero-

geneous platforms of various architectures and scales are

quite popular. For example the larger scale platforms are

based on large clusters of different types of multicore CPUs

and many-core accelerators such as GPUs. In fact, almost

all current personal computers are based on heterogeneous

computing platforms that include a multicore CPU with an

attached accelerator of one or more GPUs. However, most

often the applications do not make effective use of these

available resources. For example, if the CPU is only there

to move data and launch GPU kernels, or the GPU is there

to merely act as an accelerator to the CPUs, the program

is not really employing the full power of the heterogeneous

computing environment. On the other hand, if both CPUs

and GPUs collaborate to handle important computations,

then major performance gains are possible. But this requires

a careful scheduling and orchestration of the operations

using the available resources. In this work, we will focus

on a single node platform consisting of a multi-core CPU

with one or several many-core GPUs attached to it.

1) Multi-Core Central Processing Units (CPUs): Driven

by a performance hungry market, there is always a de-

mand for faster processor regardless of the speed of the

fastest available processor at the time. Moore’s law predicts

that the number of transistors in a chip doubles every 18

months [13]. And continuous performance improvement of

a processor has been relying on increase in density of

integrated circuits (ICs) on a chip for decades [14], [15].

However, according to Pollack’s rule, performance increase

by microarchitecture alone is roughly proportional to square

root of increase in complexity [16], thus the performance

of a single processor core does not scale linearly with the

number of logic on the core. As the transistor size shrinks,

the leakage current becomes larger [17]. And with higher

integrated density, power dissipation becomes the bottleneck

of the architecture [16], [17]. Alternatively, performance

boost could be achieved by increasing the clock speed, or

the frequency at which the processor operates at. This gives

more instructions per second, however, due to increased

dynamic power dissipation and design complexity, the clock

frequency is currently limited to about 4 GHz [18]. Multi-

core architecture allows scalable processor design and offers

a way to achieve better performance without infringing the

power dissipation requirements [16]–[18].

Today, a CPU chip typically consists of 2 to 10 CPU

cores. A powerful compute node may consist of multiple

CPU sockets resulting in more number of cores, typically 16

to 20. For more computing power, multiple compute nodes

can work together in a cluster and communicate among

themselves via high-speed connections.

2) Graphics Processing Units (GPUs): GPUs were orig-

inally designed as special purpose processors focusing on

graphics computations such as polygon calculations, or

image filtering. Since the introduction of the CUDA high

level programming environment by NVIDIA, GPUs have

become the preferred high performance computing platform

especially for data parallel computations, achieving a much

better performance/energy tradeoff than multicore CPUs. In

general, a GPU consists of thousands of processing cores,

making them very suitable for data parallel operations. The

scientific community has picked up interest in GPU com-

puting due to their computationally demanding applications,

which has given rise to General Purpose GPU (GPGPU).

CUDA (II-B) was then introduced in 2007 to enable GPGPU

programming in C language with C-like extensions. Since its

introduction, more than 100 million computers with CUDA-
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capable GPUs have been shipped to end users [19].
GPUs consist of a number of Streaming Multiproces-

sors (SMs), each of which contains a number of Stream-

ing Processors (SPs or cores). The GPUs are capable of

launching thousands of threads simultaneously. All the SMs

have access to the high bandwidth Device memory (peak

bandwidth 240 GB/s). The best bandwidth is achieved when

all threads in warp access coalesced memory. In this work,

the computation component was tested on a compute node

with the Tesla K20c, whereas the whole suite (computation

and visualization) was tested on a node with a Tesla K80

GPU. The overview of their architecture is summarized in

table I.

Table I: Summary of Tesla C2050 and K20c Specifications

GPU Tesla K20c Tesla K80

SMs (per Device) 13 13
CUDA Cores per SM 192 192
Registers per SM 64k 64k
Configurable L1 Cache + 64 kB 128 kB
Shared Memory per SM

L2 Cache Size 1.25 MB 1.50 MB
Global Memory (per Device) 4.7 GB 11.25 GB
Max Clock Rate 0.71 GHz 0.82 GHz
Memory Clock Rate 2.6 GHz 2.5 GHz
Memory Bandwidth 208 GB/s 240 GB/s
Compute Capability 3.5 3.7

B. Programming Environment
Designing with speed and efficiency in mind, a light-

weight object-oriented programming language C++ is cho-

sen. To take advantage of multiple CPU cores, the code

was extended with Open Multi-Processing (OpenMP) to em-

ploy concurrency. OpenMP is a highly portable application

programming interface (API) which supports parallel exe-

cutions on shared-memory platforms via a set of platform-

independent compiler directives [20].
To communicate and issue instructions to GPUs, Compute

Unified Device Architecture (CUDA) programming interface

is used. CUDA is a parallel computing platform and pro-

gramming model, which allows general-purpose program-

ming of the GPU via C-like language extension keywords

[2]. CUDA assumes a GPU attached to the host (CPU) which

control data movement to/from GPU, and is responsible for

launching kernels, functions to be executed by all threads

launched on the GPU.
Visualization was implemented using Open Graphics

Library (OpenGL). OpenGL is an open standard, cross-

language API for 2D and 3D rendering. OpenGL is widely

used in extensive range of graphics applications for its

portability and speed.

C. Agent-Based Modeling (ABM)
Agent-based modeling (ABM) is a powerful bottom-up

approach for modeling systems with interacting components

to observe emerging behavior and insightful information

about the system [21]. The basic components of ABMs are:

• Agents - Autonomous objects which perform actions

and interact with other agents and the environment

• Agent Rules - Behaviors of each type of agents

• World - The environment in which all agents ’live’ in

Multiple types of agents can be modeled in a single ABM.

Agents are usually object instances, thus most ABMs are

implemented using object-oriented programs such as C++,

or JAVA.

Each type of agents behaves according to a set of pre-

defined rules, which can be deterministic or stochastic. For

example, a simulation related to tissue inflammation may

have various cell types, such as neutrophils, macrophages

and fibroblasts, as agents. Rules are then determined using

the best available knowledge in literature about the behavior

of cells. The autonomous agents are mobile and make

decisions based on their states and the world environment.

The world in our case is modeled as a grid of tiny squares

(2D) called patches. Patch size is uniform across the world,

and thus the resolution of the simulation environment is

inversely proportional to patch size.

The temporal dimension of ABMs is discrete and the

simulation progresses in sequence of synchronous iterations

(sometimes referred to as tick). Thus, even if the semantics

of agent execution in ABMs is parallel in nature, constant

updates and synchronizations at iteration-granularity are

inevitable, making the task of designing an efficient parallel

algorithm for ABMs challenging.

D. Modeling of Inflammatory and Healing Process in Vocal
Folds

Human vocal folds experience continuous biomechanical

stresses during phonation. Excessive vocalization can cause

phonotrauma, which, like any other forms of mechanical

trauma, triggers a highly complex process of inflammation

and tissue repair. Treatment outcomes often depend on the

level of the initial damage and influenced by individual’s

genetics or pre-morbid tissue status [22]. Thus, personal-

ized treatments based on individual’s biological profile can

increase the chance of better healing results. A vocal fold

ABM has been developed to simulate inflammation and

repair to gain a deeper mechanistic understanding of the

underlying cellular and molecular processes, which has shed

insights of rational therapeutic design. Vocal fold wound

healing modeling is thus an excellent candidate application

to test and validate our proposed parallelization of ABMs,

due to its complexity and the availability of patient-specific

data [23], [24].

Table II summarizes actions of each agent type for our

application. The cells, which includes Platelets, Neutrophils,

Macrophages and Fibroblasts, are mobile agents that make

action decisions based on the states of their surroundings.

At the time of acute injury, the traumatized mucosal tissue
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Figure 1: Flowchart of Vocal Fold ABM. Modified from

[22].

within the damaged area triggers platelet degranulation [23],

[25]. Different chemokine gradients were readily created and

stimulate vasodilation and attraction of inflammatory cells,

namely, neutrophils and macrophages. Activated neutrophils

and macrophages at the wound site secrete more chemokines

to attract fibroblasts and clean up cell debris. Fibroblasts ac-

tivated by tissue damage deposit extracellular matrix (ECM)

proteins such as collagen, elastin, and hyaluronans at the

wound area of repair. These ECM proteins then form a

scaffold for supporting fibroblasts in wound contraction and

other cells’ migration and wound repair activities [26]. The

flow diagram of the interactions between all the components

in the model is shown in Figure 1.

To achieve the best resolution in the ABM world, each

patch is made to be the smallest possible for a single cell

to occupy. This results in patch size of 15μm x 15 μm
[27], [28]. Initial density of cells and ECM proteins were

calculated based on empirical data from literature [29]–[33].

The configuration details, which were determined based on

our best knowledge of vocal folds anatomy, are shown in

table III.

Table II: Summary of Agent Rules

Agent Actions

Platelets Secrete TGF, MMP8 and IL-1β to attract
other cells.

Neutrophils Secrete TNF and MMP8 to attract other
Neutrophils and Macrophages.

Macrophages Secrete TNF, TGF, FGF, IL-1β, IL-6,
IL-8, IL-10 to attract Neutrophils, other
Macrophages and Fibroblasts.
Clean up cell debris.

Fibroblasts Secrete TNF, TGF, FGF, IL-6, IL-8 to attract
Neutrophils, Macrophages and other Fibrob-
lasts.
Deposit ECM proteins to repair tissue dam-
age.

ECM Managers Manages ECM functions and conversion.
One Manager per patch.

Table III: Summary of Simulation Configurations

Item Unit Size

World patches x patches 1660 x 1160
Patch μm x μm 15 x 15

patches 1.9M
Simulated area mm x mm 24.9 x 17.4
Simulated time-step minutes 30
Neutrophils cells 182.4k
Macrophages cells 22.8k
Fibroblasts cells 22.8k

E. Chemical Diffusion

Chemical diffusion is one of the most crucial and highly

intensive computational components of the model. Diffusion

equation with decay in 2D can be written as follows:

∂c

∂t
= D

(
∂2c

∂x2
+

∂2c

∂y2

)
− γc, (1)

where c is the chemical concentration, D is the diffusion

coefficient and γ is the decay constant. By using a Taylor

expansion to discretize the continuous diffusion equation,

we get:

c (x, y, t+Δt) = c (x, y, t)+

DΔt

[(
c (x+Δx, y, t)− 2c (x, y, t) + c (x −Δx, y, t)

Δx2

)
+

(
c (x, y +Δy, t)− 2c (x, y, t) + c (x, y −Δy, t)

Δy2

)]

− γΔtc(x, y, t) (2)

In our case, Δx = Δy, thus Eqn. (2) becomes:

c (x, y, t+Δt) =

(
1− 4DΔt

Δx2
− γΔt

)
c (x, y, t)+

DΔt

Δx2
[c (x+Δx, y, t) + c (x −Δx, y, t)+

c (x, y +Δy, t) + c (x, y −Δy, t) ] (3)

Notice that Eqn. (3) is a discrete function that can be

implemented easily as a function. However, we need to first

make sure that the solution is stable. Using Von Neumann

Stability Analysis method to study the growth of the waves

eikx [34], we have the following stability conditions:

DΔt

Δx2
+

DΔt

Δy2
≤ 1

2
(4)

Since Δx = Δy, we have,

Δt ≤ Δx2

4D
(5)

Given that the largest values of D in our set of chemical

types is 900 μm2

minute , with patch width Δx = 15μm, Δt ≤
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0.0625 minute. Clearly, the work complexity of the simu-

lation would be unnecessarily high if we simulate the model

at Δτ = 0.0625 minute rather than Δτ = 30 minutes.
Fortunately, there is a way to capture Eqn. (3) at a larger

time step. By letting λ = DΔt
Δx2 , Eqn. (3) can be rewritten as

follows:

c (x, y, t+Δt) = (1− 4λ − γΔt) · c (x, y, t)
λ · c (x+Δx, y, t) + λ · c (x −Δx, y, t)+

λ · c (x, y +Δy, t) + λ · c (x, y −Δy, t) (6)

or,

c (x, y, t+Δt) =

x+1∑
l=x−1

y+1∑
k=y−1

c (l, k, t) · f (x − l, y − k) , (7)

where

f (x, y) =

⎧⎪⎨
⎪⎩
1− 4λ − γΔt x = 0, y = 0

λ x = ±1, y = ±1
0 otherwise

Clearly, Eqn. (7) is equivalent to saying c (x, y, t+Δt) =
c (x, y, t) ∗ f (x), where ∗ represents convolution. Thus, we

can fast forward this process to capture diffusion at large

time step, Δτ , without violating stability constraints using

convolution.

In order to compute c (x, y, τ +Δτ), where Δτ = m·Δt,
we convolve the chemical concentrations from previous step,

c (x, y, τ), with f (x, y), m times. By commutative property

of convolution, we can convolve f (x, y) with itself m times

to get fm (x, y), and compute the diffused concentrations at

each tick as follows:

c (x, y, τ +Δτ) = c (x, y, τ) ∗ fm (x, y) (8)

For example, the effective diffusitivity of IL-1β in tissue is

900 μm
2

min [35]. In our 15-μm patch world, simulating at 30-

minute time steps, the program has to calculates c (x, y, τ)∗
f480 (x, y) at each time step. This means a chemical on a

given patch (x,y) can diffuse to all patches within x ± 480
and y ± 480, which is a window of dimension 961x961 or

approximately 1 million patches.

After obtaining the formula for fast-forward diffusion

calculations, we need to also consider boundary conditions

to appropriately pad the data for convolution operations.

Depending on the area of interest, the padding chosen could

either be constant padding or mirror padding or both.

In our case study of vocal fold modeling, our tissue area

of interest has epithelium on the outermost layer. Since the

dynamics of vocal fold epithelium is abstracted in this ABM,

we have effectively one wall, or 1-side 0-flux boundaries.

And the rest of the walls are padded with empirically

obtained baseline chemical levels, or constant padding.

III. METHODOLOGY

A. Scheduling and Coordination of the CPU and GPU
Computations
As discussed in section II-E, chemical concentration in

a patch can affect other patches within a radius of up to

480 patches. In other words, our convolution kernel can

be as large as 961 × 961, defining a window that contains

roughly a million patches. Fortunately, GPUs are much faster

at computing convolutions than CPUs [36]. However, the

diffusion needs to be updated at every iteration, which means

we need to move data between the CPU and GPU at the end

of each iteration, which makes the total time to compute

diffusion and move the results back quite significant.
To address this issue, we hide the diffusion computation

time by utilizing our GPU and p CPU cores as follows:

i) We allocate p − 1 CPU threads for executing parallel

operations other than diffusion.

ii) The remaining CPU thread prepares and manages data

movement to and from the GPU

iii) GPU computes chemical diffusion using FFT-based

convolutions concurrently with the CPU threads exe-

cuting their operations

Since all agent decisions during time step t are determined

by the state of the environment determined at the end of time

step t−1, steps (i) and (iii) can be executed simultaneously

as shown in Figure 2.
This approach is applicable to chemical diffusion in bio-

logical systems such as hormones in the endocrine system,

or pharmacokinetics of drug infusions. Furthermore, particle

diffusion is encountered in a wide range of system modeling

applications. Hence, the technique discussed can be applied

to a broad range of system modeling applications involving

any type of particle diffusion. The diffusion equation (Eqn.

1) is of the same form as the Heat Equation, which has an

even larger range of applications such as the aforementioned

particle diffusion, Brownian motion, Schrodinger equation

for a free particle, thermal diffusivity, financial mathematics

etc. And more importantly, if we generalized this idea, the

computational overlap technique discussed can also be ap-

plied to any system modeling application with the following

properties:

1) Simulation is carried out in discretized synchronous
temporal steps.

2) All operations in time step t depend solely on the state

of the environment and agents determined by the end

of time step t − 1.
3) Computations in each time step can be divided into

multiple independent tasks with at least one task in each

of the following categories:

(a) CPU suitable task

(b) Intensive GPU suitable task

If all the three properties above hold, the CPU-GPU

computation overlap technique can be applied to any system

467



Figure 2: A diagram depicting the proposed CPU-GPU

computation overlap technique (GPU-mCPU-overlap).

modeling implementation on a heterogeneous (CPU/GPU)

computing platform to ensure data and task parallelization,

resulting in efficiency and performance improvements on the

model computation.

B. Update and Synchronization

All agents make decisions in time step t based on the state

of the system in time step t − 1. Each agent then modifies

its own state in time step t according to the decisions made

in the same time step. This means there is little to no data

dependency in the process of state update for each agent for

any specific time step, making ABM simulation an excellent

candidate for parallelization. However, as discussed earlier in

section II-C, constant updates are unavoidable causing heavy

traffic to memory. In order to mitigate memory bandwidth

contention, each agent maintains dirty flags, and each agent

only updates when necessary.

Apart from writing to their own fields, agents’ decisions

also affect their environment. If we assume that the resolu-

tion of the world is the finest possible, each patch will only

allow one agent. When an agent targets a patch to move into,

it needs to make sure no other agents will move into that

patch. Naively, one could maintain a lock for each patch;

however locks incur a high overhead. For optimal perfor-

mance, atomic operations were used for synchronization to

enforce the rule of one agent per patch as shown in algorithm

1. The function atomic test and set(v) atomically sets the

content of v to true and return the previous value of v, thus
an agent can find out if the patch is available by checking

the return value.

C. In Situ Remote Visualization

In recent years, as the computational power of computing

platforms has substantially increased, numerical simulations

Algorithm 1: Agent Atomic Move

Input: P = target patch

Output: rc = true if move was successful, false
otherwise

if ¬atomic test and set(P.isoccupied) then
this.x ← P.x;
this.y ← P.y;
return true;

else
return false;

end

Figure 3: Pseudo code demonstrating atomic move

algorithm for enforcing one agent per patch rule efficiently.

developed on these platforms have grown much more com-

plex, generating outputs that measure up to hundreds of

terabytes in sizes (and soon exabytes) [2]. Conventional

visualization work-flow of writing output to disk for later

visualization is not really a cost effective solution for such

cases. To design a simulation framework that scales with

the computational power of the latest platforms, a compute-

visualize paradigm satisfying the following properties will

be extremely desirable.

1) Both the computation and the visualization will take

full advantage of computational power of the server;

2) The load on the disks should be minimized;

3) The researcher should be able to steer the computation

based on the data as it is being generated and visualized.

The local simulation, as previously discussed, can rarely

take advantage of the server as it assumes direct connection

between the compute node and the display and it is uncom-

mon for the user to have physical access to the server. On the

other hand, conventional work-flow remote simulation may

be able to partly take advantage of the powerful server, but

it doesn’t exhibit neither property 2 nor 3. Lastly, the client-
render remote simulation scheme may manifest both 2 and

3; however, it doesn’t fully take advantage of the powerful

server since it redirects the rendering to the client.

The In Situ Remote Visualization paradigm [37] exhibits

all three of the desired properties. Our ABM implementation

was developed and tested on a system configured with

VirtualGL and TurboVNC. VirtualGL is an open source

package which gives any Unix or Linux remote display

software the ability to run OpenGL applications with full

3D hardware acceleration [38]. Figure 4 shows the X11

transport with an X proxy diagram. The application uses

Xlib to communicate with the 3D X server to request for an

openGL context. Once the context is created, the application

can then talk directly to the rendering hardware via libGL.

An X proxy, in our case TurboVNC, essentially acts as a

virtual X server. The X11 rendering is then performed to
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Figure 4: Diagram depicting the system configuration for

In Situ remote visualization using X11 transport with an X

proxy.

a virtual framebuffer in main memory rather than a real

framebuffer on the graphics card. This allows the X proxy to

compress and transmit the buffer content to end user without

the need to provide any X server capabilities, thus a very

thin client can be used.

Once the remote visualization protocol has been estab-

lished, the next step is to make sure the rendering code is

efficient. The visualization code is optimized using Vertex

Buffer Objects (VBOs) as well as Index Buffer Objects

(IBOs), which is a way for OpenGL to reserve fast graphics

memory. ABMs generally consist of at least one plane, the

world plane. The world plane is usually heterogeneous in

patch type. In the case that the programmer knows that the

ratio of a certain type of patches to other types is high, he or

she can make that patch type a base type, spread them across

the world using one big texture and store the coordinates of

their outline in a VBO, and render other types of patches

on top. This strategy reduces the number of OpengGL draw

calls to the number of patches that are not of the base type,
which can result in a significant work reduction in many

cases. For example, the vocal fold model, about 80% of the

patches are tissue, then the rest are capillary and epithelial

patches. In this case, the calls to render the world plane can

be reduced by 80% using the technique discussed.

IV. PERFORMANCE

A. Computation Only

Different versions of Vocal Fold ABM were implemented

for performance evaluation purposes as shown in table IV.

These versions follow the same model rules, but differ in

computing resource utilization. They were tested and bench-

marked on a compute node with 16-core Intel(R) Xeon(R)

E5-2690 CPU and NVIDIA Tesla K20c GPU. As shown in

Table IV: Implementation Summary

Tasks Executed on
Implementation Single-core CPU Multi-core CPU GPU

sCPU-sCPU Diffusion - -
Other functions

mCPU-mCPU - Diffusion -
Other functions

GPU-sCPU Other functions - Diffusion
GPU-mCPU - Other functions Diffusion
GPU-mCPU-
overlap

- Other functions Diffusion

Figure 5, the GPU-mCPU-Overlap implementation achieves

the best performance. This implementation follows the tech-

niques discussed in Section III, where the ABM model

execution is being divided up into smaller more manage-

able tasks that are either high-throughput computationally-

intensive or complex, but less computationally intensive. The

former is considered GPU-suitable, thus is executed on the

GPU, whereas the latter gets executed on the CPU. The

CPU-suitable tasks are then further sped up by multiple

CPU threads. The total time to execute one iteration of the

program is governed by the following equation:

ttotal = max{tCPUmaxthreads
, tGPUmaxthreads

}+ tsync,
(9)

where tCPUmaxthreads
and tGPUmaxthreads

are the time

consumed by executing tasks using maximum number of

threads on CPU and GPU respectively. The maximum

number of threads typically corresponds to the number of

physical cores on the specified computing device. tsync is

the time it takes to synchronize the data resulting from

task executions on CPU and GPU. If tdevice1maxthreads
≥

tdevice2kthreads
, then clearly, any number of threads launched

beyond k threads on device2 would not benefit the overall

performance. For the vocal folds simulation on the afore-

mentioned compute node, tGPUmaxthreads
≥ tCPU8threads

,

thus the load is most balanced when executing with 8 CPU

threads.

Our implementations are able to execute the vocal fold

ABM at a scale, which is infeasible on a popular existing

ABM framework, NetLogo [3]. To demonstrate the perfor-

mance gain of the proposed techniques compared to an

existing ABM framework, we obtain the performance of

the GPU-mCPU-overlap implementation running at a scale

feasible on NetLogo. For a 1-million patch world, with half

number of initial cells, the model runs on average 36.6 s per

iteration on NetLogo and an average of 0.091 s per iteration

on the GPU-mCPU-overlap implementation, resulting in a

400x speedup.

Despite differences in underlying hardware, D’Souza’s

work on Tuberculosis (TB) ABM Simulation [43] is ar-

guably most suitable for performance comparison with the
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Figure 5: Performance of 2D Vocal Fold Inflammation and

healing ABM on different processing platforms.

work reported in this paper. The aforementioned TB ABM

describes a complex multi-scale biological system of agents

that communicate via chemical signals, which aligns in most

respects with our model. The largest case reported in their

work consists of 256 patches x 256 patches world with 100

initial Macrophages, and takes 450 seconds to run for a 4-

day simulation. In comparison, our case study consists of

30x world size with 1000x the number of initial cells, and

takes only 25 seconds, i.e. 20x less, to perform a 4-day

simulation.

Next, we compare the performance improvement gained

by the GPU-mCPU-overlap implementation over other low-

level highly optimized implementations. A 5-day high-

resolution simulation that takes 20 minutes on CPU only

takes half a minute when both CPU and GPU are efficiently

utilized via our proposed task orchestration technique, ac-

counting for a 35.1x and 6.6x speedup in execution time over

single-core and multi-core CPU respectively. This improve-

ment is significant given the fairly complex and biologically

representative 2D model with intensive calculations and

heavy memory traffic.

Table V: Performance Comparison of Various Implementa-

tions

Implementation Execution Time Speedup over
(ms/tick) Serial Execution

sCPU-sCPU 4562 1.0x
mCPU-mCPU 855 5.3x
GPU-sCPU 640 7.1x
GPU-mCPU 210 21.7x
GPU-mCPU-overlap 130 35.1x

B. Computation + Visualization

We coupled the GPU-mCPU-overlap computation imple-

mentation, which shows the best performance from section

1Texture sources: [39], [40]
2Texture sources: [39]–[42]

Table VI: Average Execution Time of Remote In Situ

Simulation

Average Execution Time
(ms/tick)

Computation 142
Rendering + Image Transmission 47
Total 189

Figure 6: A screenshot of a running vocal fold

inflammatory and wound-healing process with aggregated

chemical statistics plots and chemical visualization on

(heat map and surface plots)1.

IV-A with visualization code implemented with OpenGL.

The advanced visualization component displays aggregated

statistics and simulation state of multiple components over

spatio-temporal dimensions simultaneously. This complex

simulation suite (Figure 6, 7) is then tested and benchmarked

on a compute node which consists of a 16-core Intel(R)

Xeon(R) CPU E5-2630 and an NVIDIA Tesla K80 GPU

with rendering enabled. As shown in table VI, average

Figure 7: A screenshot of a running vocal fold

inflammatory and wound-healing process with aggregated

chemical statistics plots and ECM visualization on2.
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execution time per tick, which includes complex simulation

computation and rendering on the server, takes a little bit less

than 200 ms. VirtualGL and TurboVNC enable simulation

frames to be transmitted to the end user with very minimal

overhead. Therefore, the total time from the start of the

iteration execution to the time the simulation output frame

gets completely rendered on the client terminal can be kept

under 200 ms.

V. CONCLUSION

We presented an efficient ABM task scheduling and

management technique which optimally utilizes both multi-

core CPU and many-core GPU on a single heterogeneous

compute node simultaneously. The techniques proposed

showed a speedup of 35x over an optimized sequential im-

plementation when benchmarked with a complex biological

modeling application of vocal folds inflammation and wound

healing. More importantly, the proposed technique can be

generalized to improve efficiency and performance of many

complex discrete synchronized time step simulations which

can be partitioned into smaller tasks that are either high-

throughput and computationally-intensive (GPU-suitable) or

more complex but less computationally-intensive (CPU-

suitable).

The model computation is then coupled with an advanced

visualization component which displays aggregated statistics

and simulation state of multiple components over spatio-

temporal dimensions. To take full advantage of the powerful

computational server, minimize disk load, and enable com-

putational steering, the program was tested and benchmarked

on the system with X11 transport via X proxy protocol

configured. In-situ visualization along with optimization

using OpenGL buffer objects and base-type main plane bring

the total time to under 200 ms per iteration enabling remote

real-time simulation and visualization.

VI. FUTURE WORK

While the proposed techniques resulted in a significant

improvement on efficiency and speedup of a fairly complex

ABM simulation, there is still room for further optimization.

Future work includes optimization of GPU implementation

on multi-device GPU chips (2D) and high performance

clusters for the 3D case. Changes in data structures to im-

prove spatial locality and memory access are being explored.

Additional visualization functionalities such as computa-

tional steering input user interface are being expanded to

aid users in obtaining more insightful information from the

simulation.
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