
Constructing Similarity Graphs from Large-scale Biological Sequence Collections

Jaroslaw Zola

Rutgers Discovery Informatics Institute
Rutgers University

Piscataway, NJ 08854, USA
Email: jaroslaw.zola@rutgers.edu

Abstract—Detecting similar pairs in large biological sequence
collections is one of the most commonly performed tasks in
computational biology. With the advent of high throughput se-
quencing technologies the problem regained significance as data
sets with millions of sequences became ubiquitous. This paper
is an initial report on our parallel, distributed memory and
sketching-based approach to constructing large-scale sequence
similarity graphs. We develop load balancing techniques, de-
rived from multi-way number partitioning and work stealing,
to manage computational imbalance and ensure scalability on
thousands of processors. Our experimental results show that
the method is efficient, and can be used to analyze data sets
with millions of DNA sequences in acceptable time limits.

Keywords-sequence similarity; min-wise independent permu-
tations; load balancing; parallel computational biology;

I. INTRODUCTION

Detecting similar pairs in large biological sequence collec-

tions is arguably one of the most frequently performed tasks

in computational biology. It is an important prerequisite to

multiple sequence alignment [1], distance based phyloge-

netic inference [2], biological databases management [3],

and metagenomic clustering [4], among many others. In

recent years the problem gained a new momentum due to

the data deluge triggered by the next generation sequencing

technologies. With the increasing sequencing throughput

and the decreasing cost, data sets with millions of reads

became routinely available. This renders many traditional

methods, that depend on the exhaustive all pairs comparison,

computationally infeasible.

In this paper, we provide an initial report on our new

parallel method for large-scale sequence similarity graphs

construction. The method uses approach in which candidate

pairs are generated by the sketching technique [5], [6], and

the final graph is obtained by validating candidate pairs. To

guarantee scalability on large distributed memory machines

we propose two different strategies to address load balanc-

ing challenges in different phases of the algorithm. These

strategies include the multi-way number partitioning [7]

and work stealing [8], and scale to problems with millions

of sequences on thousands of processors. To demonstrate

efficiency of the resulting software we provide experimental

results with the actual biological data from the Human

Microbiome Project.

The reminder of this paper is organized as follows. In

Section II, we provide a formal definition of the similarity

graph construction problem. In Section III, we briefly intro-

duce a sequential solution that uses sketching technique to

accelerate candidate sequence pairs enumeration. We follow

up with a detailed presentation of our parallel approach

in Section IV, and experimental results in Section V. We

conclude the paper with a brief outlook in Section VI.

II. PROBLEM FORMULATION

The problem of constructing a similarity graph from

a large set of sequences can be formulated as follows:

Consider a set S = {s0, s1, . . . , sn−1} of DNA or protein

sequences, and a symmetric pairwise similarity function

F : S×S → R
+. We want to find graph G = (V,E), where

V = {v0, v1, . . . , vn−1} is a set of nodes such that vi ∈ V
corresponds to sequence si ∈ S, and pair e = (vi, vj)
becomes an edge in E only if F (si, sj) > t. Here, t
is a predefined threshold above which two sequences are

considered similar. The function F is usually derived from a

pairwise sequence alignment, for example it can be a fraction

of identities shared by two sequences, or it can be based on

one of alignment-free methods [9]. Finally, we are focusing

on cases where n is of order 105 − 106.

For a given S we can construct graph G by first comparing

all
(
n
2

)
sequence pairs, and then pruning those with similarity

below t. This direct approach is well studied, and has several

implementations targeting especially accelerator architec-

tures [10]. Unfortunately, it is computationally infeasible for

any but relatively small data sets: suppose that to compute

F we could use a highly optimized dynamic programming

algorithm capable of 10×109 dynamic programming matrix

cell updates per second. If our input consisted of 1M

sequences with average length of 250 characters (nucleotides

or amino acids), then it would take roughly 36 days to per-

form all pairs comparison. To put it in the context, data sets

that commonly appear in metagenomics and metaproteomics

can easily contain more than 5M much longer sequences

(see for example the CAMERA database [11]), and often

have to be analyzed instantly, e.g. in applications related to

biological threat detection. This clearly shows that a better

strategy is needed.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.63

500

III. SKETCHING-BASED APPROACH

Although the cost of directly constructing a similarity

graph is prohibitive, in a typical scenario the graph is very

sparse even for small values of t. In other words, for a given

set S and threshold t, the majority of function F evaluations

do not introduce edges to the resulting similarity graph.

Consequently, by evaluating F only for those sequence

pairs that have a high probability of being similar it is

possible to significantly reduce the overall cost of graph

construction. Of course, this requires an efficient strategy

to identify candidate pairs, which at the same time has to be

sensitive so that no similar sequences are missed. Several

different variants of this approach have been pursued by

researchers. For example, Holm and Sander [3] introduced

the “decapeptide filter” to identify redundant proteins in

large databases, and Kalyanaraman et al. [12] used suffix

trees to efficiently enumerate candidate pairs for the ESTs

clustering. Both these approaches exploit the fact that similar

sequences must share a common substring of length k, a k-

mer, where k is a parameter.

In this paper, we built on top of the approach developed

by Yang et al. for metagenomic clustering [4]. Instead of

identifying pairs that share just a single k-mer, the method

efficiently approximates the fraction of shared k-mers be-

tween two sequences by means of min-wise independent

permutations [13]. The fraction of shared k-mers, which we

will call k-mer similarity, has been demonstrated to closely

reflect the evolutionary distance between sequences [9], [14].

Consequently, in a wide range of sequence homology it

can be used to bound alignment-based similarity functions.

Let Si be a k-mer spectrum of sequence si ∈ S, i.e. a

set of all k-mers in si. Then, the fraction of shared k-

mers between sequences si and sj is equal to the Jaccard

index between their k-mer spectra: J(Si,Sj) = |Si∩Sj |
|Si∪Sj | . To

capture containment it is often more convenient to consider

a slightly modified measure C(Si,Sj) =
|Si∩Sj |

min(|Si|,|Sj |) .

In [5] Broder proposed an unbiased estimator of Jaccard

index, as well as containment, that in the essence can

be written as J∗(Si,Sj) =
|Hi∩Hj |
|Hi∪Hj | = J(Hi, Hj) and

C∗(Si,Sj) = C(Hi, Hj). Here, Hi is a set of sketches

extracted from Si, and it is defined as follows. Let h be

a hashing function that maps a k-mer into an integer, and

let Xi be a set of all hashed k-mers from sequence si,
i.e. Xi = {xj | ∀sj∈Si xj = h(sj)}. For a given integer

parameter M , Hi contains all hashes from Xi that are 0
mod M : Hi = {x ∈ Xi | x mod M = 0}. It is easy to see

that a set of sketches must be significantly smaller than the

original set for any reasonable choice of M . Consequently,

sketches can be used to sort the original sets such that sets

that share sketches fall into the same bin. Then, Jaccard

index can be estimated while avoiding the O(n2) cost of

comparing all original sets against each other. This in turn

translates directly into an efficient method for identifying

pairs of sequences with high k-mer similarity. The resulting

approach is summarized in Algorithm 1.

Algorithm 1 Sketching-based similarity graph generation

Input: S, F, t and M,k, tmin

Output: G
1: For each si ∈ S generate spectrum Si
2: For each Si extract sketches Hi

3: Group sequences with the same sketch

4: For each pair (si, sj) sharing sketch compute J(Hi, Hj)
5: If J(Hi, Hj) > tmin compute F (si, sj)
6: If F (si, sj) > t add edge (vi, vj) to G

Note: All symbols are explained in the main text.

The algorithm proceeds in two stages: first, candidate

pairs are identified using the sketching technique (lines 1–

4). Two sequences form a candidate pair if approximated

Jaccard index of their k-mer spectra is above the thresh-

old tmin. Next, candidate pairs are validated by computing

function F , and checking whether the resulting similarity

is above the target threshold t (lines 5–6). Candidate pairs

that pass this test are added as edges to G. Yang et al. [4]

demonstrated that the sketching-based approach can reduce

the computational work to only few percent of all pairs

comparisons, while maintaining 99% sensitivity or higher.

The trade-off between computational cost and sensitivity

can be controlled by two additional parameters required

by the method: M and tmin. The parameter M decides

how many sketches will be generated for each sequence.

Small values of M result with many sketches extracted

per sequence, and thus better k-mer similarity estimates

(hence improved sensitivity). However, this comes at the

cost of generating many candidate pairs rejected during

validation. The parameter tmin is tightly related to the

threshold t. Because we use k-mer similarity as a bound

for F , tmin can be set by, for example, experimentally

checking a relation between k-mer similarity and F . Of

course, if we use k-mer similarity as F , then tmin must be

less than t. In either case tmin can be tuned to compensate

for a possible underestimation of the Jaccard index by the

sketching technique. The parameter k is well understood,

e.g. in the context of alignment-free sequence comparison

methods, and typically k ≥ 15 for DNA, and k = 4 or

k = 5 for protein sequences. When set to one of these

common values, this parameter has a minor impact on the

performance of the method.

Finally, we note that to further increase sensitivity, can-

didate pairs can be identified in several iterations, where in

iteration j = 0 . . .M − 1 the set of sketches for si becomes

Hi = {x ∈ Xi | x mod M = j}.
IV. PARALLEL APPROACH

While the sketching technique significantly reduces the

cost of similarity graph generation, the problem remains

501

challenging. This is because the number of candidate pairs

that have to be validated can easily exceed hundreds of

millions, which poses nontrivial memory and computational

requirements. Moreover, the problem is highly irregular

owing to varying length of input sequences, and an unpre-

dictable structure of the output graph.

To enable processing of data sets with millions of se-

quences in reasonable time limits, we developed a new

scalable MPI-based approach. Our method proceeds in two

tightly coupled steps that correspond to candidate pairs

generation and validation stages in Algorithm 1. To ensure

scalability we completely distribute both input and output

data, and we develop load balancing approaches based on the

multi-way number partitioning and efficient work stealing.

A. Candidate Pairs Generation

The process of candidate pairs generation can be sum-

marized as follows: first, we extract sketches and pair them

with sequences from which they have been extracted. Then,

we sort such obtained pairs using sketch as a key. We follow

with enumerating all pairs of sequences that share a sketch.

Finally, we perform reduction on this list to obtain the final

list of candidate pairs.
1) Extracting sketches: Let p be the number of pro-

cessors. We start by distributing S such that processor

i = 0, . . . , p − 1 receives a subset of sequences Si ={
s in

p
, . . . , s (i+1)n

p −1

}
. Each sequence is assigned a unique

identifier, which is its index in S. This identifier will

enable us to instantly find a processor on which given

sequence is stored. Next, we proceed to deriving sketches.

This involves a linear scan of all sequences and can be

performed independently by each processor. As a result each

processor creates a list of all extracted sketches, in which

every sketch forms a tuple (x, r, d). Here, x is the actual

sketch represented by a 64-bit hash computed using function

h (in our case Murmur2 [15]), r is an identifier of a sequence

from which x has been extracted, and d is the total number

of sketches extracted from sequence sr. Note that we store

d to quickly compute containment, which is a preferred

measure in the majority of real-life applications. Because the

length of sequences stored on different processors can vary,

we expect a slight imbalance between processors during

sketching. However, this step is computationally extremely

fast, and hence the resulting imbalance can be safely ignored.
2) Grouping sketches: Given sketch-sequence pairings

we can now proceed to identifying sequences that share

sketches. To do this we first perform all-to-all data ex-

change such that processor i receives all tuples for which

x mod p is i. Let Li be a list of all tuples assigned to

the processor i and sorted using sketch x as a key. At this

stage each processor could simply enumerate all sequence

pairs prescribed by every sketch it stores. This approach

however would result in great computational imbalance, and

additionally could quickly exhaust the main memory. To see

why observe that it is possible that some k-mers will be

shared by all sequences, while some others will be uniquely

present in just one sequence. This bias will be reflected in

the distribution of sketches, with some sketches common to

many sequences, and some to only a few. Consequently, it

could happen that for a single sketch we would enumerate

all
(
n
2

)
sequence pairs, thus defying the purpose of the

sketching procedure. To eliminate such a possibility each

processor removes from Li all sketches shared by more than

Cmax sequences, and stores them in an auxiliary list Ai, this

time however as a pair (r, x). Once Li is pruned we can

redistribute it between processors to balance computational

load. Let Li(x) ⊆ Li, |Li(x)| ≤ Cmax, be a set of all

tuples in Li with sketch x. Notice that for sketch x we have

to enumerate l =
(|Li(x)|

2

)
corresponding sequence pairs.

Hence, we can think about Li(x) as an input data to pair
enumeration task with cost l. Here, cost refers not only to

computations but also to the memory, as each enumerated

pair has to be stored. To achieve the ideal load balancing the

total cost of pair enumeration tasks should be the same on

all processors. This is equivalent to the multi-way number

partitioning problem in which one wants to partition a set

of integers such that the sum of numbers in the resulting

subsets is equal [7]. Therefore, we developed the following

load balancing procedure. Each processor sends information

about its pair enumeration tasks to processor 0, which

runs a simple greedy strategy to find the best assignment

of tasks to processors (the largest tasks are iteratively

assigned to the least loaded processors). It then broadcasts

information about which processors should swap which

tasks, and all processors exchange parts of Li accordingly,

which concludes the procedure. Note that although the multi-

way number partitioning problem is NP -hard the greedy

approach, which is often used in scheduling, performs very

well in practice, especially when the number of processors

p is large. It has the additional advantage that it can be very

efficiently implemented using e.g. a Fibonacci heap.

Figure 1 shows an example of how our procedure per-

forms in practice. In the middle plot, we can see that

the total cost of tasks on the most loaded processor is

reduced approximately by a factor of two. In spite of this,

processors remain in a slight but significant imbalance.

This imbalance is triggered by an unavoidable skew in

the tasks cost distribution, which becomes more visible

with the increasing number of processors. To mitigate this

effect once pair enumeration tasks are redistributed we

decompose large tasks into a set of smaller but manageable

subtasks. Notice that we can think about sequence pairs

enumeration for sketch x as filling in an |Li(x)| × |Li(x)|
upper (lower) triangular matrix, or equivalently two upper

(lower) triangular matrices and one square matrix, each of

size
|Li(x)|

2 × |Li(x)|
2 . Following this intuition we decompose

Li(x) into three subsets, each corresponding to one of the

502

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

To
ta

l C
os

t (
in

 m
ill

io
ns

)

Processor Rank

 100

 105

 110

 115

 0 20 40 60 80 100 120

To
ta

l C
os

t (
in

 m
ill

io
ns

)

Processor Rank

 100

 105

 110

 115

 0 20 40 60 80 100 120

To
ta

l C
os

t (
in

 m
ill

io
ns

)

Processor Rank

Figure 1. The total cost of pair enumeration tasks on different processors before load balancing (left), after load balancing (middle), and after tasks
decomposition (right). p = 128, n = 1,250,000 and Cmax = 10,000. Note that y-axis in the first plot has different scale.

three matrices. A subset related to the square matrix contains

the same elements as the original set but its associated cost

is
|Li(x)|2

4 . Two other subsets simply contain half of the

elements of the original set. Newly created tasks can be

recursively divided until certain assumed size is reached,

with the exception that tasks related to square matrices have

to be split into four subtasks. Once tasks decomposition is

completed we repeat balancing via the multi-way number

partitioning. The right plot in Figure 1 shows that with this

additional step our procedure is able to achieve a near perfect

load balance. Because tasks decomposition is performed

after the initial balancing, we avoid memory congestion by

newly generated subtasks. Finally, in all our tests the load

balancing procedure took significantly less than 1% of the

entire candidate pairs enumeration step, which confirms its

feasibility.

3) Enumerating candidate pairs: With Li balanced we

proceed to generating candidate pairs. The general idea

is to first enumerate sequence pairs prescribed by every

sketch, then to perform a reduction to count how many

sketches are shared by each pair, and then to compute

containment C for each pair. The first step can be carried

out independently by each processor. Consider two tuples

(x, ra, da) and (x, rb, db) from Li(x), ra �= rb. Since sra
and srb share x they form a sequence pair that we represent

by a tuple (ra, rb, dab = min(da, db)) if ra ≤ rb, and

(rb, ra, dab) otherwise. Let W i be a list of all sequence

pairs enumerated on processor i. To locally count how many

sketches are shared by each pair, it is sufficient to sort W i,

and perform a linear scan to merge the same pairs while

counting how many times given pair occurred in W i. Having

W i locally reduced we can perform a global reduction, to

obtain the total sketch count for each pair. To achieve this,

processors first perform all-to-all exchange such that tuple

(ra, rb, dab) is assigned to processor i = ra ⊕ rb mod p,

and then repeat the local reduction step. Here, using a

combination of XOR and modulo operations ensures a fairly

even redistribution of sequence pairs. Note that although

this step induces processors synchronization, this is not a

problem since Li is balanced. The last operation we have to

perform is to update the sketch count for each sequence pair.

Recall that initially we discarded information about sketches

contained in more than Cmax sequences. These sketches

however should still contribute to the final containment score

for each sequence pair. Therefore, each processor broadcasts

its sorted auxiliary list Ai, and then for every tuple in W i

it runs a binary search over the aggregate of all auxiliary

lists. In practice this requires parallel sorting followed by

all-to-all exchange of Ai. The update to the sketch count

for tuple (ra, rb, dab) is equal to the size of the intersection

between the subset of the auxiliary list containing ra and the

subset containing rb. In other words, we check how many

times ra and rb share a sketch in the auxiliary list. Let cab
be the updated sketch count. Then, C(Hra , Hrb) =

cab

dab
and

the tuple becomes a candidate pair if C(Hra , Hrb) > tmin.

Using this condition each processor prunes its list W i, which

now becomes the list of candidate pairs.

B. Candidate Pairs Validation

To construct the final graph G we have to validate all

candidate pairs. Recall, that the set of input sequences S is

evenly distributed between p processors: S = S0∪S1∪. . .∪
Sp−1, Si∩Sj = ∅, i �= j. Let g(r) be the function returning

index of the processor with sequence sr, i.e. sr ∈ Sg(r).

Consider now a candidate pair (ra, rb) ∈W i on processor i
(we drop the third element of the tuple for convenience). In

order to validate this pair we have to compute F (sra , srb),
which means that we have to access both sequences. This

leads to three possible cases:

1) g(ra) = i and g(rb) = i, hence F can be evaluated

directly by the processor i.
2) g(ra) = i and g(rb) �= i, or g(ra) �= i and g(rb) = i,

which means that to compute F one of the sequences

has to be fetched from a remote processor.

3) g(ra) �= i and g(rb) �= i, in which case either both

sequences have to be fetched, or the candidate pair has

to be sent to the processor g(ra) leading to Case 1 or

Case 2.

503

Among these three cases, Case 1 is clearly the most desired,

while Case 3 would require a significant communication

overhead. Unfortunately, as the number of processors grows,

Case 1 becomes less probable. Keeping this in mind we

designed the following strategy. We redistribute W i such

that the candidate pair (ra, rb) is assigned to the processor

g(ra) if ra + rb mod 2 = 0, and to g(rb) otherwise.

In this way we eliminate Case 3 as now each candidate

pair is stored on the same processor as at least one of its

component sequences. For each candidate pair in W i we

create a corresponding task that is placed in a local FIFO

queue on processor i. Tasks are inserted such that in the front

of the queue are tasks falling into Case 1, and in the back

are tasks matching Case 2. Additionally, Case 2 tasks that

have to fetch a sequence from the same processor are not

interleaved with any other tasks. Note that by organizing

computations in this way we are able to efficiently use

work stealing, which we explain next. Once all tasks are

placed in the respective queues, processors start execution

immediately. When processor i encounters a task matching

Case 2 for which input sequence has not been prefetched, it

looks up a target processor storing that sequence. Because

tasks in the queue are organized with respect to their target

processor, i can execute one communication to obtain all

sequences from a given target. As a result, the remaining

tasks can be processed as if they were Case 1 tasks. Although

the above procedure is sufficient to complete candidate

pairs validation, it is not scalable. This is again due to the

computational imbalance coming from the varying size of

the task queue on each processor, and the varying cost of

each task, which depends on the length of input sequences.

To address this challenge we extended our queuing system

with a work stealing capability.

1) Work stealing protocol: Work stealing techniques have

been demonstrated as a scalable and efficient way to perform

dynamic load balancing in both shared and distributed

memory regimes [8], [16]. In our case work stealing is

particularly well suited as all tasks are independent, and

once the task queue is initialized no new tasks are generated.

This simplifies the queue management and the termination

detection procedure.

At the very high level our work stealing mechanism can

be explained as follows. As soon as processor i is done with

executing tasks in its local queue it starts work stealing. It

randomly identifies a victim processor and initiates com-

munication to check weather the victim’s task queue in not

empty. If this is the case, i extracts a set of tasks from the

back of the queue together with associated input sequences

that are local to the victim. It then executes these tasks

locally as Case 1 or Case 2 tasks. If the victim’s queue is

empty, i removes that victim from its list of potential victims,

and selects another target. This process is repeated until all

processors report empty queue, which is our termination

condition.

One challenging aspect of any work staling protocol is

its implementation. The data prefetching required by Case

2 tasks can be easily implemented using MPI one-sided

communication (each processor exposes its set Si for RMA

access). Similarly, to implement work stealing each proces-

sor could expose its task queue for one-sided communica-

tion. This however would require an RMA lock-free queue

implementation to support concurrent updates by local and

remote processors, especially when two different processors

select the same victim. Although new MPI-3 standard intro-

duced necessary API (e.g. MPI COMPARE AND SWAP

function), the majority of vendors do not support it yet.

Therefore, we implemented a slightly more sophisticated

solution on top of MPI-2.

Before starting tasks execution each processor initializes

a work stealing request handler, by issuing a non-blocking

receive from any source. After each completed task, proces-

sor calls the handler to test weather a message indicating a

steal request arrived. If such a message arrived the processor

answers by sending either a location in its one-sided com-

munication buffer from which the thief can obtain tasks, or

the empty queue flag if no tasks remain. Once the answer is

sent the processor again issues a non-blocking receive from

any source. Note that this procedure inherently serializes

the access to the processor’s local queue, hence eliminating

race conditions and locks. To steal tasks processor initiates

a non-blocking send that caries its steal request, and then

switches between testing weather this message has been

delivered, and calling its work stealing request handler to

answer potential incoming steal requests (which then would

be answered with the empty queue flag). Once the request

message is delivered, the processor receives information

about the status of the victim’s queue, and if there are tasks

to steal it proceeds with one-sided communication to obtain

them. To terminate, each processor checks whether it sent

p− 1 empty queue answers. If that is the case it cancels the

last non-blocking receive, and finalizes the validation stage.

As a final remark, we note that by interleaving tasks

execution with calls to the work stealing request handler

we induce progress of non-blocking messages in the main

MPI thread. Consequently, the message exchange overhead

becomes negligible and does not hinder the overall scalabil-

ity.

V. EXPERIMENTAL RESULTS

We implemented our parallel approach in the ELaSTIC

package. This tool supports several popular sequence sim-

ilarity functions, including global and local alignment, and

can be used to analyze both DNA and protein sequences.

All tools in the package are written in C++ and MPI-2, and

are freely available from http://www.jzola.org/elastic.

We tested ELaSTIC’s scalability using a collection of

16S rRNA sequences from the Human Microbiome Project.

From the SRP002395-7514 data set [17] we selected all

504

Table I
SUMMARY OF DATA SETS USED IN EXPERIMENTS.

Data set Total Nucleotides Candidate Pairs Final Edges

625K 295,492,320 624,603,560 306,775,041
1250K 588,126,956 1,102,288,912 601,086,466
2500K 1,174,628,604 1,942,549,831 1,072,468,284

non-redundant 454 reads covering V3-V5 region. Next, by

random sampling we created three subsets of size 650K,

1250K and 2500K sequences, such that a smaller set is

completely contained in a larger one. Properties of all three

subsets, including the number of candidate pairs generated

and the number of edges in the final graph, are summarized

in Table I. Note that in our experiments we concentrated

on scalability only, since sensitivity of the method has been

analyzed by Yang et al. [4]. Therefore, in all tests we set F to

be k-mer similarity, t = 0.75, M = 25, k = 15, tmin = 0.5,

and finally Cmax = 10,000. These can be considered default

parameters for the 16S rRNA metagenomic analysis.

We executed ELaSTIC on the two-rack IBM Blue Gene/P

system. This machine provides 2,048 nodes running at

850 MHz, each with 2 GB of RAM. Although each node

has four cores, in our experiments we run only one MPI

process per node, owing to the limited memory per node.

To build ELaSTIC we used the GCC 4.7 compiler and

the IBM BG/P MPI library. For each input data set we

ran ELaSTIC on different number of processors recording

the time taken by the pair generation stage, and the pair

validation stage executed with and without work stealing.

The obtained results are summarized in Tables II and III,

and Figures 2–4.

We focus first on the candidate pairs generation stage.

Table II shows that the sketching-based approach is very

fast, and candidate pairs can be identified in just a matter

of seconds, even for the largest data set. The time taken

to identify candidate pairs is typically less than 10% of the

total run time. Here, we should keep in mind that in our tests

we executed only one iteration of the sketching procedure,

and we employed k-mer similarity that can be computed in

a linear time. In many production runs we would expect the

sketching step to be repeated several times, and a similarity

function to use alignment with the dynamic programming in

quadratic time. Consequently, the candidate pairs generation

would take even smaller fraction of the total run time, which

then would be dominated by the validation stage. Figure 2

shows that our approach maintains near linear speedup up

to 512 processors. Then the efficiency slightly deteriorates,

and is around 60% on 2,048 processors. This performance

drop can be attributed to the parallel sorting routine required

to distribute the auxiliary list Ai, that is difficult to balance.

We are currently investigating how to counter this problem.

To analyze performance of the candidate pairs validation

step we measured the total throughput expressed as the

number of candidate pairs over the time required to validate

them. The obtained throughput was close to 8M pairs per

second on 2,048 processors, irrespective of the input data

set. To asses the speedup we first extracted a sample of

10K sequences. Then, we analyzed all pairs of sequences

using a single processor, and measured the throughput which

was 4650 pairs per second. Note that the sequence length

distribution was well preserved in the sample, and hence

the resulting estimate can be assumed accurate. Figure 3

shows almost perfect scalability of our approach. On 2,048

processors we achieve over 80% efficiency irrespective of

the input data set. To demonstrate how important for the

scalability is our work stealing procedure, we executed the

validation step without the work stealing component. In this

case, each processor after finishing tasks in its local queue

waited idle for all other processors to complete their work.

Figure 4 shows that disabling work stealing tremendously

decreases performance. The efficiency does not exceed 40%,

and the run time jumps from 240 seconds, for 2500K

sequences on 2,048 processors, to 807 seconds – more than

a three-fold increase. To conclude, we would like to point

out that the scalability of the validation stage is critical as it

dominates the total run time of our method. For example, in

one of our production runs we analyzed the 2500K set with

t = 0.80, M = 25, k = 15, tmin = 0.70, Cmax = 10,000,

9 iterations of the sketching stage, and validation via the

global pairwise alignment executed on 1,024 processors of

our IBM Blue Gene/P. In this case the entire candidate pairs

generation step was completed in 400 seconds while the

validation of the resulting 4,157,303,313 candidate edges

required 72,425 seconds.

Table II
RUN TIME IN SECONDS OF THE CANDIDATE PAIRS GENERATION STEP

FOR THE VARYING NUMBER OF PROCESSORS.

64 128 256 512 1024 2048

625K 168 87 44 24 14 9
1250K – 151 76 42 25 16
2500K – – 138 76 44 28

64

512

1024

2048

64 512 1024 2048

R
el

at
iv

e
S

pe
ed

up

Processors

Linear
625K

1250K
2500K

Figure 2. Relative speedup of the candidate pairs generation step.

505

Table III
RUN TIME IN SECONDS OF THE CANDIDATE PAIRS VALIDATION STEP

FOR THE VARYING NUMBER OF PROCESSORS.

64 128 256 512 1024 2048

625K 2264 1162 596 313 165 79
1250K – 1958 992 525 285 140
2500K – – 1739 908 487 243

64

512

1024

2048

64 512 1024 2048

S
pe

ed
up

Processors

Linear
625K

1250K
2500K

Figure 3. Speedup of the candidate pairs validation step with work stealing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a distributed memory paral-

lelization of the sketching-based similarity graph generation

method. The obtained results demonstrate excellent perfor-

mance of our load balancing strategies, great scalability of

the entire framework, and its ability to handle data sets

with millions of sequences. The resulting software provides

a production quality solution that supports both DNA and

protein sequences, and offers the choice of several similar-

ity functions, including alignment-based and alignment-free

functions.

Our current effort is focused on further improving scal-

ability of the candidate pairs generation stage, and re-

ducing memory footprint of the method. Additionally, our

approach can be easily extended with a hybrid parallelism,

e.g. by including OpenMP in all iterative steps, such as

sketches extraction or sequence pairs enumeration, and by

accelerating computations of similarity functions. In [6]

Yang et al. described a MapReduce parallelization of the

sketching-based similarity graph generation, and in [18]

Wu and Kalyanaraman presented a protein-oriented solution

based on suffix trees and the distributed producer/consumer

model. A comparison of all three approaches, taking into

consideration both scalability and sensitivity criteria, would

provide many interesting insights into performance of dif-

ferent parallel programming models as well as similarity

detection techniques. We hope to run such a comparison

in the near future.

REFERENCES

[1] G. Parmentier, D. Trystram, and J. Zola, “Large scale multiple
sequence alignment with simultaneous phylogeny inference,”

64

512

1024

2048

64 512 1024 2048

S
pe

ed
up

Processors

Linear
625K

1250K
2500K

Figure 4. Speedup of the candidate pairs validation step without work
stealing.

Journal of Parallel and Distributed Computing, vol. 66,
no. 12, pp. 1534–1545, 2006.

[2] O. Gascuel, “BIONJ: an improved version of the NJ algorithm
based on a simple model of sequence data.” Molecular
Biology and Evolution, vol. 14, no. 7, pp. 685–695, 1997.

[3] L. Holm and C. Sander, “Removing near-neighbour redun-
dancy from large protein sequence collections.” Bioinformat-
ics, vol. 14, no. 5, pp. 423–429, 1998.

[4] X. Yang, J. Zola, and S. Aluru, “Large-scale metagenomic
clustering on map-reduce clusters,” Journal of Bioinformatics
and Computational Biology, vol. 11, no. 1, p. 1340001, 2013.

[5] A. Broder, “On the resemblance and containment of doc-
uments,” in Proc. of the Compression and Complexity of
Sequences, 1997.

[6] X. Yang, J. Zola, and S. Aluru, “Parallel metagenomic se-
quence clustering via sketching and maximal quasi-clique
enumeration on map-reduce clouds,” in Proc. IEEE Int.
Parallel and Distributed Processing Symposium, 2011, pp.
1223–1233.

[7] R. Korf, “Multi-way number partitioning.” in Proc. of the In-
ternational Joint Conference on Artificial Intelligence, 2009,
pp. 538–543.

[8] J. Dinan, D. Larkins, P. Sadayappan et al., “Scalable work
stealing,” in Proc. of Supercomputing, 2009, pp. 1–11.

[9] S. Vinga and J. Almeida, “Alignment-free sequence compar-
ison – a review,” Bioinformatics, vol. 19, no. 4, pp. 513–523,
2003.

[10] A. Sarje, J. Zola, and S. Aluru, Scientific Computing with
Multicore and Accelerators. Chapman and Hall/CRC, 2010,
ch. Pairwise Computations on the Cell Processor with Appli-
cations in Computational Biology.

[11] S. Sun, J. Chen, W. Li et al., “Community cyberinfrastructure
for advanced microbial ecology research and analysis: the
CAMERA resource,” Nucleic Acids Research, vol. 39, no.
suppl 1, pp. D546–D551, 2011.

506

[12] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari,
“Space and time efficient parallel algorithms and software
for EST clustering,” IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 12, pp. 1209–1221, 2003.

[13] A. Broder, M. Charikar, A. Frieze et al., “Min-wise in-
dependent permutations,” Journal of Computer and System
Sciences, vol. 60, no. 3, pp. 630–659, 2000.

[14] R. Edgar, “Local homology recognition and distance mea-
sures in linear time using compressed amino acid alphabets,”
Nucleic Acids Research, vol. 32, no. 1, pp. 380–385, 2004.

[15] “MurmurHash,” http://sites.google.com/site/murmurhash/.

[16] R. Blumofe and C. Leiserson, “Scheduling multithreaded
computations by work stealing,” Journal of the ACM, vol. 46,
no. 5, pp. 720–748, 1999.

[17] “Human microbiome project data set documentation,”
http://www.hmpdacc.org/resources/dataset documentation.php.

[18] C. Wu, A. Kalyanaraman, and W. Cannon, “pGraph: Efficient
parallel construction of large-scale protein sequence homol-
ogy graphs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 10, pp. 1923–1933, 2012.

507

