
Exploring Large Scale Receptor-Ligand Pairs in Molecular
Docking Workflows in HPC Clouds

Kary Ocaña1, Silvia Benza1, Daniel de Oliveira2, Jonas Dias1, Marta Mattoso1

1COPPE/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro - Brazil
2Fluminense Federal University - UFF, Niterói - Brazil

{silviabenza, kary, jonasdias, marta}@cos.ufrj.br; danielcmo@ic.uff.br

Abstract— Computer-aided drug design techniques are
important assets in pharmaceutical industry because of their
support for research and development of new drugs. Molecular
docking (MD) predicts specific compound’s binding modes
within the active site of target proteins. Since MD is a time-
consuming process, existing approaches reduce the number of
receptors or ligands in docking by evaluating only small sets of
compounds. This restriction in the search space reduces the
chances to uniformly cover the diverse space of compounds and
misses opportunities to recognize whether new drugs can be
identified. Another difficulty with large-scale is analyzing the
results, e.g. browsing all directories manually to find which
pairs were docked successfully. To address these issues we
explored the potential of data provenance analysis and parallel
processing of SciCumulus, a cloud Scientific Workflow
Management System. We present SciDock, a molecular
docking-based virtual screening workflow and evaluate its
execution using 10,000 receptor-ligand pairs related to
proteases enzymes of protozoan genomes. The overall
performance of SciDock using 32 cores, in cloud virtual
machines, reaches improvements up to 95.4% when running
SciDock with AutoDock and 96.1% when running SciDock
with Vina. We show how data provenance improved the result
analysis and how it may indicate potential proteases drug
targets for protozoan treatments.

Keywords-component; workflow; cloud; drug discovery

I. INTRODUCTION

The process of drug discovery and development is
considered to be time-consuming, risky and costly; e.g. a
typical lifecycle for this process takes approximately 14
years [1] with a cost of approximately one billion USD [2].
Computer-assisted drug design [3] (CADD) is one of the
existing strategies that have been developed to shorten the
research cycle and reduce the expense risk of failure for drug
discovery. CADD covers many aspect of drug discovery,
including computer programs for designing compounds and
tools for systematically assessing potential lead candidates.
Among the most used computational approaches to drug
discovery is structure-based drug design [4] (SBDD). One of
the most prominent SBDD methods is molecular docking-
based virtual screening that relies on the knowledge of the
target structure, which is obtained from crystal structures (X-
ray crystallography), nuclear magnetic resonance (NMR)
spectroscopy data or homology models [5].

The complexity of designing a molecular docking-based
virtual screening is choosing the set of programs and scoring
functions that are adequate to the large-scale of receptor-
ligand pairs. The complexity of its implementation is related

to the management of thousands of combinations of receptor-
ligand pairs and the consequent high number of
heterogeneous results. For composing, executing and
analyzing scientific experiments in large-scale, scientists can
use Scientific Workflow Management Systems [6] (SWfMS)
designed for High Performance Computing (HPC) such as
Swift/Turbine [7], Pegasus [8], Tavaxy [9], and SciCumulus
[10]. Scientific workflows help to mitigate the inherent
complexity of scientific workflows. A scientific workflow is
an abstraction that models the docking experiment as a set of
activities connected by a data flow. These engines distribute
several concurrent activity executions in an HPC
environment while capturing provenance data [11], i.e. the
historical information of the workflow execution. Scientific
workflows for molecular docking are seen as a new exploring
ground in bioinformatics and computational medicinal
chemistry [12].

SWfMS can be configured to control input ligands
combination automatically as a parameter sweep for each
parallel workflow execution. Some of these workflows may
execute for weeks or even months thus requiring HPC [13]
support, such as cloud computing [56]. Clouds are becoming
a viable HPC alternative to traditional cluster or grid
environments, since clouds have already demonstrated
applicability to a wide-range of problems in several scientific
domains [9,22–28]. In addition, clouds like Amazon AWS
[21] facilitate the deployment of experiments and data as
services following a Software as a Service [14] (SaaS)
deployment model, which facilitates the effective use of an
HPC computing infrastructure by bioinformaticians.

Using parallel processing is only part of the solution to
exploring large receptor-ligand datasets. Analyzing the
resulting files also in large scale is an open issue. There are
molecular docking workflows that explore parallel
processing with different approaches, but all of them limit
the number of receptors or ligands in each execution [22–29]
and none of them varies the receptor for each ligand.
Tracking these variations along the results is very complex in
large-scale. To the best of the authors’ knowledge, there is no
report of large-scale molecular docking experiments that
processes such large datasets of receptor-ligand pairs while
varying the number of receptors for each ligand.

The goal of this work is to address the problems of
designing a molecular docking workflow, executing it and
analyzing its results in large-scale. We present the design of
SciDock, a molecular docking-based virtual screening
workflow, which contains high performance docking
programs. SciDock adapts its definition to address the
heterogeneous size of the compounds. When compounds are

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.65

536

large and flexible SciDock invokes AutoDock Vina (Vina),
otherwise the workflow invokes AutoDock (AD4). For
executing SciDock in parallel, we use cloud HPC parallel
execution from SciCumulus SWfMS. A key feature in
SciCumulus, not found in other cloud SWfMS, is its adaptive
execution that takes advantage of cloud elasticity power.
SciCumulus can adapt the number execution resources (i.e.
virtual machines -VM) according to the current load. In
SciDock, it acquires and releases VMs according to the
profile of workflow programs. In addition, SciCumulus has a
re-execution mechanism, which supports long running
workflows, when some activity executions fail and need to
be re-submitted. Finally, the results of SciDock are analyzed
with the help of SciCumulus' provenance data generation by
submitting high level database analytical queries.

We evaluate SciDock with the targeting of cysteine
proteases [30] (CP) in protozoan neglected tropical diseases
[31] (NTD). Although this is a representative example in the
NTD domain [32], this is one example of thousands that
could be explored. We present a performance analysis of
SciDock parallel executions using SciCumulus up to 128
cores in Amazon AWS. The results show that SciDock is
capable of processing up to 10,000 receptor-ligand pairs with
significant performance improvements. The highest
performance gain in SciDock reduces execution time from
12.5 days (2 cores) to 11.9 hours (128 cores) with AD4 and
from 9 days (2 cores) to 7.7 hours (128 cores) with Vina.
Due to time constraints, molecular docking typically
evaluates small sets of compounds, which drastically limits
the search space, thus reducing the chance to identify new
drugs. With larger sets, e.g. analyzing 1,000 compound pairs,
SciDock detects 287 and 355 favorable receptor-ligand
interactions using AD4 and Vina, respectively. This
discovery would have been impossible with a reduced
number of receptor-ligand pairs or if they were in the
complementary space with no favorable interactions.

This paper is organized as follows. Section II discusses
related work. Section III presents background on molecular
docking. Section IV describes the specification of the
SciDock workflow and presents its implementation using
SciCumulus cloud workflow engine. Section V shows the
experimental results and Section VI concludes the paper.

II.RELATED WORK

The complexity of molecular docking workflows is
addressed by several approaches [21-28] but they are all
limited by the use of a reduced number of receptors or
ligands. DockFlow [22], is a workflow for virtual screening
that integrates different docking tools (FlexX, AutoDock,
DOCK and GAsDock) on a grid execution while FReDoWS
[23] is a workflow for molecular docking experiments that
executes AutoDock in clouds with Hadoop, consuming a
unique receptor (multiples conformations) and ligand. Both
of them are not able to adapt the workflow according to the
type of input data neither to control activity failures.

AutoDockCloud workflow [24] is a Hadoop-based
workflow and it is executed on a private cloud platform. It
only handles the docking procedure in the screening task
(AutoDock), pre-docking and post-docking procedures were

not included in the workflow performance analyses.
Although AutoDockCloud is easy to be deployed since it is
based on the Hadoop framework, it has the same weaknesses
of Hadoop such as static scheduling, unability to execute
adaptive workflows and lack of provenance support.

CometCloud [25] is an autonomic computing engine for
running applications on hybrid computing environments,
with a MapReduce programming layer and executed on
Amazon EC2. CometCloud is “similar” to SciCumulus in the
sense that both execute scientific applications with
parallelism in MapReduce paradigm. However, it is not
connected to the concept of scientific workflows and it does
not provide workflow-specific features such as provenance
analysis, re-execution of failed activities or optimizations
based on domain-specific data. Although CometCloud team
has implemented an interesting Protein Data Bank mining
application, docking experiments were not addressed yet.

E-novo [26] is a workflow for virtual screening, with a
fast validation and scoring methods that uses predefined
optimization libraries for grids. FLIPDock [27] is a cloud
tool for docking of a single flexible ligand-receptor pair
using an older version of AutoDock. VSDocker [29] docking
tool runs AutoDock on Windows computer clusters for
parallel high-throughput virtual screening. Although existing
approaches represent a step forward, even the ones that
execute in parallel reduce the search space by fixing a small
number of ligands, which may limit the biological inference.

III. MOLECULAR DOCKING

Molecular docking [33] refers to the prediction of the
binding modes of small molecule ligands within the active
site of the target protein models [34], available in structural
databases e.g. RCSB-PDB [35]. A receptor’s (protein) 3D
structure is compared to a ligand (small molecule) 3D
structure in order to find the best binding energy between
that receptor-ligand pair. This process is based on the model
propose by Fischer [36], known as “key-lock” model, where
the protein (lock) has a cavity in which the ligand (key)
docks perfectly [37].

Molecular docking attempts to mimic the process of
bringing together a protein and a ligand to form a non-
covalent complex and to reveal the electrostatic and steric
complementarity between the protein and ligand. Thus, a
docking algorithm has three main tasks: determinate the
binding site (receptor’s active site), place the ligand in the
binding site and evaluate the binding energy between that
receptor-ligand pair [12]. Another crucial aspect, during the
docking process, is the scoring function applied to rank
docking. More than 60 small-molecule docking programs
and 30 scoring functions have been proposed as stated by
Morris and M. Lim-Wilby [33], Taylor et al. [34] and
Kitchen et al. [38]. The most popular docking tools are
AutoDock [39], AutoDock Vina [40], FlexX [41], Glide [42]
and GOLD [43].

Furthermore, molecular docking experiments represent a
big data [44] scenario, since they need to manage high
volumes of data (e.g. 600 GB for each execution of small-
scale experiments). Thousands or millions of potential
receptors and entire ligand databases need to be screened.

537

Yet, scientists manually test each docking process, although
this process is tedious and error-prone due the high number
of sequences in databases (e.g. NCBI [45]) and also due to
the complexity of implementing molecular docking
experiments to manage thousands of combinations of
heterogeneous resulting receptor-ligand pairs.

IV.DESIGNING SCIDOCK SCIENTIFIC WORKFLOW

Designing a molecular docking-based virtual screening
workflow is complex due to choosing small-molecule
docking programs and scoring functions among a large
number of options and combinations. Selecting the best
alternative implies analyzing thousands of combinations of
receptor-ligand pairs for each chosen program-scoring
function combination. This Section presents the specification
of SciDock and how SciCumulus helped in the configuration
and result analysis by its provenance database support.

A. SciDock Conceptual Specification
Usually, molecular docking experiments are divided in

four main macro-activities, labeled from A to D, and each
macro-activity are further decomposed into one or more
activities, labeled from 1 to 8 (Figure 1), as follows.
� Macro-Activity (A): Input Preparation, activities 1 to 3;
� Macro-Activity (B): Coordinates Generation, activity 4, 5;
� Macro-Activity (C): Docking Preparation, activity 6, 7;
� Macro-Activity (D): Molecular Docking, activity 8.

The SciDock activities are: (1) ligand transformation, (2)
ligand preparation, (3) receptor preparation, (4) AutoGrid’s
parameter preparation, (5) receptor’s coordinates map
generation, (6) docking filter, (7) docking parameter
preparation, and (8) docking execution.

Figure 1. SciDock Workflow Conceptual View

The first activity executes Babel to convert the format of
the ligand from SDF to Sybyl Mol2. Then, this ligand format
is used as input by the second activity, which executes a
python script from MGLTools (prepare_ligand4.py) and
produces a new PDBQT ligand format file as output. The
third activity executes a prepare-receptor script also from
MGLTools and produces a PDBQT receptor file format from
PDB containing the protein’s structure. AutoDock can
recognize both PDBQT files: from the ligand and receptor.

The fourth activity executes a python script from
MGLTools that extracts parameters contained in the ligand
and receptor PDBQT files and generates the Grid Parameter
File (GPF). The fifth activity receives parameters defined on
the GPF file (e.g. ligand and receptor atoms types extracted
from PDBQT files) and executes AutoGrid to generate the
coordinates maps based on that information. Files generated
by AutoGrid are: one map file for each receptor atom type;
two map files for the electrostatic and desolvation maps; the
grid map field file; the dimension and coordinates box of the
grid; and the execution log file.

The sixth activity executes an in-house python script to
filter receptors by size, and generates two datasets to be
executed using AD4 and/or Vina. The seventh activity has
two possibilities: (7a) AD4 uses python scripts from
MGLTools to extract parameters contained in the ligand and
receptor PDBQT files generating the file Docking Parameter
File (DPF); and (7b) Vina uses custom python scripts to
extract the dimension and coordinates box of the grid
generating the configuration file. The eighth activity: (8a)
receives parameters defined on the DPF file (e.g. for the
genetic algorithms used in docking) and executes AD4; and
(8b) receives parameters defined on the configuration file
and executes AutoDock Vina. AutoDock predicts the ligand-
receptor binding process using coordinates maps. AutoDock
generates an execution log file, which contains the binding
process execution’ information, a table of RMSD [46] (i.e.
root-mean-square deviation) values, histograms, and the best
conformation found by AutoDock for receptor-ligand pairs.
AutoDock Vina predicts the ligand-receptor binding process
using coordinates maps. AutoDock Vina generates the
execution log file, which contains the information from the
binding process execution and the best conformation found
by the AutoDock Vina for receptor-ligand pairs. AutoDock
Vina also generates a new version of the receptor PDBQT
file, which contains the binding information.

B. Using SciCumulus: Benefits and Challenges
This conceptual specification of SciDock could be

executed by any parallel SWfMS, scientists should choose
the SWfMS that is more suitable for the type of experiment
being executed. SciCumulus was our choice since its unique
features have already demonstrated to be essential in several
HPC bioinformatics workflows [17,47–49].

Before using SciCumulus, we instrumented SciDock
activities using template files and extractor programs. This
instrumentation allows for SciCumulus to capture all
parameters involved in the workflow execution (with their
associated values) to store them in the provenance repository
to be further queried. In addition, using extractor components
SciCumulus is able to open produced files, extract useful
information (e.g. statistical binding energy values) and
associating them to provenance records. This allows for
domain-specific queries that can be used to analyze results
and to improve SciCumulus scheduling as presented by
Oliveira et al. [50]. SciDock is specified in an XML file,
which is used by SciCumulus when the workflow is
executed. Figure 2 shows an excerpt of the SciDock
specification for Babel, its first activity.

538

<SciCumulus>
<database name="scicumulus" server="ec2-50-17-107-164.compute-
1.amazonaws.com " port="5432"/>

<SciCumulusWorkflow tag="SciDock" description="Docking"
exectag="scidock" expdir="/root/scidock/">

<SciCumulusActivity tag="babel"
templatedir="/root/scidock/template_babel/"
activation="./experiment.cmd">

<Relation reltype="Input" name="rel_in_1" filename="input_1.txt"/>
<Relation reltype="Output" name="rel_out1"filename="output_1.txt"/>
<File filename="experiment.cmd" instrumented="true"/>

</SciCumulusActivity>
</SciCumulusWorkflow>
</SciCumulus>

Figure 2. An excerpt of XML specification for the SciDock Babel activity

As observed in Figure 2, templates do not have the actual
values of the parameters used, as they use tags. Tags are
replaced by actual values dynamically during the execution,
as executions are ready to be started as presented in Figure 3.

Figure 3. Activity specification in SciCumulus for the first activity Babel

Once defined, workflows can be reused/modified as
several images in Amazon AWS (ami-77f6381e, ami-
4550c42c, ami-742bf91d), where workflows were deployed.

There are several advantages in using SciCumulus that
are not available in other workflow engines. Scientists can
query the provenance database to help in workflow
configuration, reusing previous related workflows to model a
new one. These queries can be as simple as “Obtain statistics
related to SciDock executions” as presented in Query 1
(Figure 10) or “Retrieve names, sizes and locations of
SciDock files with the extension ‘.dlg’” of Query 2 (Figure
11); or more complex by mixing these simple ones with e.g.
the extraction of domain information i.e. contained in files. It
is worth noticing that SciCumulus allows for runtime
provenance query, which is a unique feature, yet it allows for
user steering and anticipating results.

The second benefit is the scheduling cost model of
SciCumulus. Since SciDock activities have heterogeneous
execution time distribution, SciCumulus can schedule short-
term activities to less powerful VMs and long-term activities
to more powerful VMs. In addition, SciCumulus is able to
scale the amount of VMs up and down according to
performance behavior. For example, Vina is computing
intensive and demands more computing power. By
monitoring or querying Vina's execution history in the
provenance database, SciCumulus scales up the amount of
VMs to improve the performance.

The third benefit is related to fault tolerance. Each
execution of SciDock contains about 10% of activity
execution failures. These faulty executions have to be
aborted and SciCumulus has to restart each activity. Since it

has all information stored in the provenance repository it
does not need to restart the entire workflow. It is easy to find
and re-execute only the failed activities.

V. EXECUTING SCIDOCK AND RESULT ANALYSIS

In this Section we present an evaluation of the parallel
execution of SciDock using SciCumulus cloud workflow
engine. Section A presents the environment setup whereas
Section B presents the experiment setup and SciDock
execution. Section C presents a performance evaluation and
Section D briefly discusses biological issues.

A. Environment Setup
SciCumulus engine is based on an algebraic approach

[51] where each activity receives a relation as input and
processes each tuple independently. By storing the
workflows definition related to its provenance data
execution, powerful domain queries can be defined. For
example, for each parameter, SciCumulus records all steps
and files associated to the executed activities with this
parameter in the provenance database. These records can be
queried, which allows for a systematic analysis of the
experiment in partial, or as a whole, after its completion.

Amazon EC2 was chosen for our case study since it is
very reliable and one of the most popular cloud computing
environments. Therefore, some of the implementation
decisions presented in this Section are specific for Amazon
EC2. Current version of SciCumulus was developed using
Java version 6.15. The components of the distribution and
execution layers were implemented using MPJ (MPI for
Java) [52]. Provenance data is stored using PostgreSQL
relational database version 8.4.6. SciCumulus uses a shared
file system, FUSE-based file system backed by Amazon S3
(s3fs 1), to manipulate input and output files. To setup a
virtual cluster, we used Amazon’s Application Programming
Interface to create and scale VMs in the cloud. A custom
image (AMI) for the execution instances was built (AMI ID:
ami-596f4d30).

There are several types of VMs in Amazon EC2, such as
micro, large, extra-large, high CPU extra-large instance, and
Quadruple Extra Large Instance. We used m3.xlarge and
m3.2xlarge, as in Table 1. Each VM instance uses Linux
Cent OS 5.5 (64-bit) and it was configured with libraries like
MPJ and the bioinformatics applications. All instances had
the same image, which was used to execute SciCumulus. We
chose US East-N. Virginia location to instantiate all VMs.

TABLE 1. CHARACTERISTICS OF USED VMS

Instance Type # cores Physical Processor

m3.xlarge 4 Intel Xeon E5-2670

m3.2xlarge 8 Intel Xeon E5-2670

1 https://code.google.com/p/s3fs/

539

B. Experiment Setup

Our experiments use a dataset of 238 receptors (PDB format)
of the CP clan named Peptidase_CA (CL0125) as input, with
42 CP-specific ligands (SDF format) (Table 2), all-out
10,000 receptor-ligands. Receptors and ligands were
extracted from RCSB-PDB [35] (Table 2).

TABLE 2. RECEPTORS AND LIGANDS OF CLAN PEPTIDASE_CA (CL0125)

238 Receptor in PDB format
1AEC 1AIM 1ATK 1AU0 1AU2 1AU3 1AU4 1AYU 1AYV 1AYW 1BGO 1BP4 1BQI 1BY8
1CJL 1CPJ 1CQD 1CS8 1CSB 1CTE 1CVZ 1DEU 1EF7 1EWL 1EWM 1EWO 1EWP 1F29
1F2A 1F2B 1F2C 1FH0 1GEC 1GLO 1GMY 1HUC 1ICF 1ITO 1IWD 1JQP 1K3B 1KHP
1KHQ 1M6D 1ME3 1ME4 1MEG 1MEM 1MHW 1MIR 1MS6 1NB3 1NB5 1NL6 1NLJ 1NPZ
1NQC 1O0E 1PAD 1PBH 1PCI 1PE6 1PIP 1POP 1PPD 1PPN 1PPO 1PPP 1Q6K 1QDQ
1S4V 1SNK 1SP4 1STF 1THE 1TU6 1U9Q 1U9V 1U9W 1U9X 1VSN 1XKG 1YAL 1YK7
1YK8 1YT7 1YVB 2ACT 2AIM 2AS8 2ATO 2AUX 2AUZ 2B1M 2B1N 2BDL 2BDZ 2C0Y
2CIO 2DC6 2DC7 2DC8 2DC9 2DCA 2DCB 2DCC 2DCD 2DJF 2DJG 2F1G 2F7D 2FO5
2FQ9 2FRA 2FRQ 2FT2 2FTD 2FUD 2FYE 2G6D 2G7Y 2GHU 2H7J 2HH5 2HHN 2HXZ
2IPP 2NQD 2O6X 2OP3 2OUL 2OZ2 2P7U 2P86 2PAD 2PBH 2PNS 2PRE 2R6N 2R9M
2R9N 2R9O 2VHS 2WBF 2XU1 2XU3 2XU4 2XU5 2YJ2 2YJ8 2YJ9 2YJB 2YJC 3AI8
3BC3 3BCN 3BPF 3BPM 3BWK 3C9E 3CBJ 3CBK 3CH2 3CH3 3D6S 3E1Z 3F5V 3F75
3H6S 3H7D 3H89 3H8B 3H8C 3HD3 3HHA 3HHI 3HWN 3I06 3IEJ 3IMA 3IOQ 3IUT
3IV2 3K24 3K9M 3KFQ 3KKU 3KSE 3KW9 3KWB 3KWN 3KWZ 3KX1 3LFY 3LXS 3MOR
3MPE 3MPF 3N3G 3N4C 3O0U 3O1G 3OF8 3OF9 3OIS 3OVX 3OVZ 3P5U 3P5V 3P5W
3P5X 3PBH 3PDF 3PNR 3QJ3 3QSD 3QT4 3RVV 3RVW 3RVX 3S3Q 3S3R 3TNX 3U8E
3USV 4AXL 4AXM 4DMX 4DMY 4HWY 4K7C 4KLB 4PAD 5PAD 6PAD 7PCK 8PCH 9PAP

42 Ligand in SDF format
042 074 0D6 0E6 0I5 0IW 0LB 0LC 0PC 0QE 186 1RV 1ZB 23Z 25B 2CA 2HP 3FC
424 4MC 4PR 599 59A 73V 74M 75V 76V 77B 78A 935 93N ACE ACT ACY AEM ALD
APD

This input dataset is composed by different sizes of
receptors. To evidence the advantages of adaptation with
respect to compounds size, we fixed the docking program,
i.e. independently of the compound size we processed the
entire set with AutoDock with and without Vina (Figure 4).
� Scenario I - Executes AD4 for docking analyses using the

dataset categorized as small receptors 3D structures.
� Scenario II - Executes Vina for docking analyses using the

dataset categorized as large receptors 3D structures.

Figure 4. Molecular Docking Experiment Scenarios

For the molecular docking analysis, each input PDB-SDF
pair is processed using the following versions of programs:
Babel 1.6 [52]; AutoDock 4.2.5.1 [39] MGLTools 1.5.6
python scripts; a custom python script (for activity 6b),
AutoGrid 4.2.5 [39]; AutoDock 4.2.5.1 [39]; and AutoDock
Vina 1.1.2 [40]. All programs were configured with default
parameters.

According to Chang et al. [53], there is a clear
association between molecular docking predictions of
AutoDock (AD4) and AutoDock Vina (Vina). In terms of the
reported scoring values (i.e. FEB, RMSD), it is expected that
conformations assigned by both programs would tend to be
similar. Also, it seems that Vina is more scalable in
addressing more difficult docking problems (i.e. larger, more
flexible compounds) than AD4. Moreover Vina’s other
strengths include streamlined parameters and much faster
docking performance.

C. Performance Evaluation of SciDock
Before discussing the overall performance of SciDock we

analyze the time to execute each activity of the workflow.
Analyzing the provenance repository of SciCumulus we
show, in Figure 5, the histogram of the execution time for all
executions of SciDock activities. This histogram can be
generated using a simple SQL query such as:

SSELECT extract ('epoch' from (t.endtime-t.starttime))
FROM hworkflow w, hactivity a, hactivation t
WHERE w.wkfid = a.wkfid
AND a.actid = t.actid
AND w.wkfid = % ID OF THE WORKFLOW %
ORDER BBY t.endtime

Based on this query result, it is possible to calculate the
average (1,703.5 seconds) and standard deviation (108.3
seconds) for the activities execution time. The main
advantage of having such distribution of execution times is
that the workflow engine (i.e. SciCumulus) is able to
distribute compute intensive executions (i.e. long term
executions) to more powerful VMs. On the other hand,
SciCumulus dispatches less intensive executions (i.e. short
term executions) to less power VMs.

Figure 5. Number of ocurrences of SciDock

Such heterogeneous time distribution leads to a
heterogeneous execution time of SciDock activities as shown
in Figure 6 where we present the execution time distribution
per activity considering 16 cores execution. We note that the
last activity of the workflow is the most computing intensive.
SciCumulus adapts the execution accordingly. Following, we
present performance results of the entire execution of

540

SciDock with AD4 and Vina for each one of the
aforementioned scenarios.

Figure 6. Execution time per Activity

For each activity of SciDock, presented at Section III, we
first measure the performance of all programs on a single
VM to analyze the local optimization before adding more
VMs. We measured the scalability of SciDock using a
combination of m3.xlarge and m3.2xlarge VMs up to 32,
totalizing 128 virtual cores. As the number of VMs increases
(and consequently the number of virtual cores), the Total
Execution Time (i.e. TET) of SciDock with AD4 and Vina
executions decreases (Figure 7).

Figure 7. Total execution time of SciDock

The highest performance efficiency was obtained using 2
cores and the gains are very encouraging. For example, when
SciDock with AD4 processes 10,000 receptor-ligand pairs,
the TET was reduced from 12.5 days (using 2 cores) to 11.9
hours (using 128 cores) and for SciDock with Vina the TET
was reduced from approx. 9 days (using 2 cores) to 7.7 hours
(using 128 cores).

To evaluate the behavior of performance gains according
to the number of virtual cores, we used the speedup metric
(Figure 8). In clusters and supercomputers, the speedup value
is impacted by serial portions of the code and communication
between processors, while in the cloud, besides these factors,
we have to consider others such as heterogeneity of the
environment, performance fluctuations due to the

virtualization and high communication latency [54].
However, even with cloud performance fluctuations, When
using 16 cores SciDock is approximately 13 times faster than
the best-performing workflow execution on a single core.

Figure 8. Speedup of SciDock

There is always a gain by adding more virtual cores, from
32 up to 128 cores for both SciDock with AD4 and Vina, but
the speedup presents a small degradation in both executions
since the VMs are heterogeneous and load balancing
becomes more complex, thus introducing more overhead in
the activity distribution by SciCumulus. However, from 2 to
32 cores, the speedup was near linear in both SciDock with
AD4 and Vina. This result indicates that acquiring more than
32 VMs may not bring the expected benefit, particularly if
financial costs are involved (since m3 VMs in Amazon are
expensive types).

We also observed that, when the number of activity
executions becomes extremely large, SciCumulus introduces
an overhead to manage the distribution of activities.
Consequently, some VMs may remain idle. This happens
because SciCumulus has a native weighted cost model
associated with a greedy scheduling algorithm. When we
increase the amount of activities to execute and the number
of available VMs, the greedy algorithm tends to require more
time to process the scheduling plan at runtime since the
search spaces increases exponentially. This behavior can be
seen in Figure 9 where the efficiency of SciDock decreases as
the number of VMs increases from 32 to 128 cores.

Figure 9. Efficiency of SciDock

0

5

10

15

20

25

30

35

40

Babel Python
Script

Python
Script

Python
Script

AutoGrid Python
Script

Python
Script

AD4/Vina

To
ta

l E
xe

cu
tio

n
tim

e
(in

 h
ou

rs
)

Activity Name

Activity Excecution Time (AD4 and Vina)

AD4 Vina

541

Overall, our performance analyses were facilitated by the
information obtained by querying SciCumulus provenance
repository after the workflow termination. The provenance
repository of SciCumulus is based on the W3C PROV and
PROV-Wf [55] models. Due to that, the following query was
executed to extract the desired information:
Query 1: “Obtain the TET, statistical averages and biological
information related to the SciDock executions”.

By querying provenance repository, it is possible to
extract the execution time for all executions of activities of
SciDock. This information is very useful in special in large-
scale experiments, as scientist have the possibility to know
how experiments are running, or if any execution fails.
Scientist can steer at runtime. It is possible that the error is
related with the size of the receptor or ligand or by the
presence of an atom (e.g. Hg) that cannot be recognized by
the docking programs. Figure 10 shows the result of Query 1.

SSELECT a.tag,
min(extract ('epoch' from (t.endtime-t.starttime))),
max(extract ('epoch' from (t.endtime-t.starttime))),
sum(extract ('epoch' from (t.endtime-t.starttime))),
avg(extract ('epoch' from (t.endtime-t.starttime)))

FROM hworkflow w, hactivity a, hactivation t
WHERE w.wkfid = a.wkfid
AND a.actid = t.actid
AND w.wkfid =432
GROUP BBY a.tag

Based on this information scientists evaluate the time
required for processing docking for each receptor-ligand pair
and analyze the influence of the receptor or ligand sizes in
docking execution time. Moreover TET (Figure 7), speedup
(Figure 8) and efficiency (Figure 9) can be calculated by using
Query 1's resulting data.

Figure 10. Result of the Query 1

By using steering in HPC docking executions, scientists
can explore at runtime their experiment executions.
Following we present some benefits identified by running
SciDock with SciCumulus.

In docking experiments, there is an extensive set of
ligands and receptors, to form the dataset (receptor-ligand
pairs) for the docking experiment. Both receptor and ligands
belonging to CP enzymes were mapped and extracted from
the PDB-RCSB database.

After the initial SciDock executions, a particular behavior
was observed: there are several activities with abnormal
execution time (they remain in looping state) when
processing specific ligands. For those activity executions, no
error messages were generated by the docking program, since
they remain in looping state waiting for the intervention of

the scientist. Using SciCumulus we dynamically detected
these errors and aborted/adapted them at runtime.
Simultaneously, we queried the SciCumulus provenance
database by searching all “problematic” ligands that could
present the same behavior, thus avoiding generating the same
errors in future.

Another similar error captured by querying the
SciCumulus provenance database was identified, but now
related to receptors. The third activity (Receptor preparation)
consumes approximately 10 seconds, but in some cases these
executions remained, yet again, in looping state and did not
stop until the scientist’s interaction. It was observed that
inside those receptors the “Hg” molecule is present. Then,
after this discovering, it was added one routine in
SciCumulus that recognizes the presence of these Hg in
receptors. Then those activity executions were identified and
aborted before their execution. Specific biological analyses
also benefited from SciCumulus's provenance as follows.

D. Biological Analysis
NTDs specially affect populations around the world with

low socioeconomic status, thus we need new inhibitors for
those diseases. CP [30] enzymes are known to have
important pathogenicity factors of protozoan parasites, which
indicates that they are potential targets for rational
antiparasitic drug design. Clan Peptidase_CA (CL0125) is
the most representative CPs’ clan with 46 members. CL0125
is the chosen CP clan in our experiments. Thus, 238 CP
receptors with 42 CP-specific ligands, all-out 10,000
receptor-ligand pairs (

Table 2) were used to execute the molecular docking and
scoring processes. We evaluate the result details for the first
1,000 receptor-ligand pairs (238 CP receptors with 4 CP-
specific ligands: 042, 074, 0D6, 0E6) as presented in Table 3.

Table 3 shows results for all molecular docking processes
using SciDock with AD4 and Vina. Our evaluation (1)
examines values of RMSD, (2) examines Free Energy of
Binding (FEB), (3) rank the orientations-conformations
according to their FEB [56] scores, and (4) rank the total
number of negative FEB or FEB (-). The smaller (most
negative) the FEB value, the better the binding of the ligand
into the receptor-binding pocket. RMSD values usually with
1.5 or 2 Å (depending on ligand size) have performed
successfully. Nevertheless, there is no consensus about what
is the reasonable range for FEB and RMSD values [57].

TABLE 3. RESULTS OF MOLECULAR DOCKING PROCESSES FOR SCIDOCK

Ligand
Total Number of

FEB (-)
Average FEB (-)

(kcal/mol)
Average RMSD

(Å)
SciDock

AD4
SciDock

Vina
SciDock

AD4
SciDock

Vina
SciDock

AD4
SciDock

Vina
042 79 91 -4.9 -4.5 55.4 10.3
074 76 83 -5.9 -4.7 57.3 9.1
0D6 65 70 -8.4 -5.7 53.5 9.7
0E6 67 111 -7.2 -5.2 53.1 9.5

Docking outputs (Table 3) show good average of FEB,
which means that receptors conformation leads to a favorable
ligand association. SciDock with AD4 resulted in FEB scores
that range from -4.9 to -8.4 kcal/mol and SciDock with Vina
from -4.5 to -5.7 kcal/mol. We also observe that RMSD

542

scores for SciDock with Vina are the lowest. Regarding the
total number of negative FEB, it represents favorable
receptor-ligand interactions. From a total of 1,000 docking
experiments, SciDock with Vina generates 355 FEB (-) and
SciDock with AD4 287 FEB (-). The remaining ones (not
negative FEB) are related to non-favorable ligand-receptor
interactions or others docking experiments that do not
converge to a favorable interaction.

Our results reinforce a previous virtual screening study
that compare the programs AutoDock 4 (AD4) and
AutoDock Vina (Vina) [53]. According to Chang et al. [53],
there was a clear association between the predictions from
AD4 and Vina. In terms of FEB, it is expected that the
conformations reported by both programs would also tend to
be similar. Also, it seems that Vina is more scalable in
addressing more difficult docking problems (i.e. larger, more
flexible compounds) than AD4. Moreover, Vina has other
strengths such as streamlined parameters and a much faster
docking performance. Finally, Vina’s authors state that, for
their study, docking each library lasted approximately 10
times longer with AD4 when compared to Vina. However,
this claim was not based on an experiment designed for HPC.

For all molecular docking processes (Table 3), the
average RMSD is not well acceptable (i.e. RMSD > 4 Å).
We analyzed the top ten best interactions. We observed
acceptable FEB values for SciDock with AD4 and Vina.
However RMSD for SciDock with AD4 continues to be too
high. The best three interactions (receptor-ligands) are
2HHN-0E6, 1S4V-0D6 and 1HUC-0D6, which can be
associated to potential drug target for protozoan CPs.
However, these receptor-ligand associations should be
refined and reinforced using alternative approaches, such as:
(i) testing other receptor or ligand conformations; (ii)
redocking, molecular dynamics or QSAR analyses; (iii)
testing others algorithms, programs or parameters.

Finally, we presented a biological analysis overview
focused mainly in the information obtained by querying
SciCumulus provenance repository after the workflow ends.
By querying the provenance database, it is possible to obtain
the TET, statistical averages, and several docking parameters
with resultant files as those reported in Query 1. In Query 2,
we extract some biological results contained in molecular
docking outputs e.g. ‘.dlg’ files.

Query 2: “Retrieve the names, sizes and locations of

files with the extension ‘.dlg’ (containing docking

parameters and results), which were produced for all
SciDock workflow executions. Recovering also, which
workflow and activities produced those files”.

Query 2 is crucial for real-time monitoring of SciDock
workflow execution. The result of Query 2 is presented in
Figure 11, and allows scientists to find files that are being
generated by SciDock. Query 2 helps biological analysis in
real-time. For instance, scientists may use graphical tools to
verify the resulting structure obtained after the docking
(contained in ‘.dlg’ files). These ‘.dlg’ files contain the
binding affinity values between ligands and target receptors
and also which one is the best ligand (e.g. E06) for each
receptor (e.g. 2HHN), based on a prediction method for

positioning the ligand to the binding site. One example of
the visualization of this ‘.dlg’ file is presented on Figure 12.

Figure 11. Result of Query 2

Without querying the provenance database with Query 2,
scientists would need to browse all directories manually and
search which pairs were docked successfully. Then they
would need to separate and open these files to extract the
information of molecular docking process. The provenance
database stores all this data and its relationships on a
structured model. Thus it simplifies the querying process
and allows for long-term analyses over experimental data.

Figure 12. 3D structure of the complex 2HHN-0E6 obtained with SciDock.
Receptor 2HHN and into the white box the best ligant 0E6

Figure 12 shows the structure of the receptor 2HHN with
the ligand E06 with the highest affinity obtained by SciDock.
The 2HHN receptor is the “Cathepsin S in complex with
non-covalent arylaminoethyl amide”, which have been
implicated in a variety of important biological events and
have also been validated as drug targets of high promise [58].
We demonstrate that, using SciDock, it is possible to test in
silico a set of receptors and ligands of interest for drug target
candidates. Furthermore, performance and biological data
can be mapped and queried via SQL.

VI. FINAL REMARKS AND FUTURE WORK

Molecular docking workflows executed by parallel
SWfMS and HPC environments can manage a large volume
of receptors and ligands comparisons, reducing the long
processing time for molecular docking analyses. In this

543

paper, we proposed the SciDock workflow to execute and
manage molecular docking data-intensive experiments
aiming at discovering alternative drug target for NTD
treatments. SciDock was executed with SciCumulus in
Amazon EC2 using parallel processing.

Our experiment evaluated 10,000 receptor-ligand pairs
related to proteases enzymes belonging to protozoan genomic
data. In the first 1,000 receptor-ligands pairs, SciDock
already detected 287 and 355 favorable receptor-ligand
interactions using AD4 and Vina, respectively. These
interactions represent potential proteases drug targets for
protozoan treatments.

SciDock generated 140,000 workflow activity executions
(10,000 executions of the 7 activities of 2 workflows) and
data files, producing 600 gigabytes of data for each workflow
execution. By analyzing the overall performance, through the
provenance database, we state that SciDock obtained
significant gains with AD4 and Vina. For example,
executions with 32 cores reach performance improvements
up to 95.4% for SciDock with AD4 and 96.1% for SciDock
with Vina. Based on the TET, speedup, efficiency and
molecular docking scoring values, we observe that SciDock
with Vina performs better than SciDock with AD4.

Analyzing the results, we may conclude that as we
increase the ‘cover diversity space of compounds’, this
positively influences the chance of identifying new drugs.
Thus, using 1,000 compound pairs involving an entire family
of enzymes, we detected 287 and 355 favorable receptor-
ligand interactions using SciDock with AD4 and Vina. This
scenario would have been impossible with a reduced number
of receptor-ligand pairs, especially if we use only one
receptor/ligand or if the input sample belongs to the
complementary space in which no favorable interaction was
found (i.e. 1,000 less the 287 + 355 interactions we found).

Overall, the overhead imposed by the executions of
SciDock with SciCumulus is compensated by the advantages
of data parallelism without too much effort from scientists.
SciDock results provide evidence that large computations
involving MD experiments can benefit from SciCumulus in
HPC clouds as verified in previous publications [17,47–49].

Finally, results presented in this paper can be extrapolated
to the development of workflows in other areas that also
require the exploration of large amounts of data. As future
work, we plan to model other computing-intensive CADD
workflows (e.g. molecular modeling, dynamics, ligand-based
and structure-based virtual screening, 2D and 3D QSAR) to
explore complete protozoan genomes of actual interest and to
search new candidate drug target enzymes.

ACKNOWLEDGMENT

The work was partially funded by the Brazilian funding
agencies CAPES, FAPERJ and CNPq.

REFERENCES

[1] S. Myers and A. Baker, 2001, Drug discovery--an operating model for a
new era, Nature biotechnology, v. 19, n. 8 (Aug.), p. 727–730.

[2] H. Moses 3rd, E.R. Dorsey, D.H.M. Matheson, and S.O. Thier, 2005,
Financial anatomy of biomedical research, JAMA: the journal of the
American Medical Association, v. 294, n. 11 (Sep.), p. 1333–1342.

[3] D. Loughney, B.L. Claus, and S.R. Johnson, 2011, To measure is to
know: an approach to CADD performance metrics, Drug Discovery
Today, v. 16 (Jul.), p. 548–554.

[4] V. Lounnas, T. Ritschel, J. Kelder, R. McGuire, R.P. Bywater, and N.
Foloppe, 2013, Current progress in Structure-Based Rational Drug
Design marks a new mindset in drug discovery, Computational and
Structural Biotechnology Journal, v. 5, n. 6 (Feb.)

[5] L.O. Sillerud and R.S. Larson, 2012, Advances in nuclear magnetic
resonance for drug discovery, Methods in molecular biology (Clifton,
N.J.), v. 910, p. 195–266.

[6] E. Deelman, D. Gannon, M. Shields, and I. Taylor, 2009, Workflows
and e-Science: An overview of workflow system features and
capabilities, Future Generation Computer Systems, v. 25, n. 5, p. 528–

540.
[7] J. Wozniak, T. Armstrong, K. Maheshwari, E. Lusk, D. Katz, M. Wilde,

and I. Foster, 2012, Turbine: A distributed-memory dataflow engine for
extreme-scale many-task applications, In: Proceeding of 1st
International workshop on Scalable Workflow Enactment Engines and
Technologies

[8] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi, 2007,
"Pegasus: Mapping Large-Scale Workflows to Distributed Resources",
Workflows for e-Science, Springer, p. 376–394.

[9] M. Abouelhoda, S. Issa, and M. Ghanem, 2012, Tavaxy: Integrating
Taverna and Galaxy workflows with cloud computing support, BMC
Bioinformatics, v. 13, p. 77.

[10] D. Oliveira, E. Ogasawara, F. Baião, and M. Mattoso, 2010,
SciCumulus: A Lightweight Cloud Middleware to Explore Many Task
Computing Paradigm in Scientific Workflows, In: 3rd International
Conference on Cloud Computing, p. 378–385

[11] J. Freire, D. Koop, E. Santos, and C.T. Silva, 2008, Provenance for
Computational Tasks: A Survey, Computing in Science and
Engineering, v.10, n. 3, p. 11–21.

[12] C. Liao, M. Sitzmann, A. Pugliese, and M.C. Nicklaus, 2011, Software
and resources for computational medicinal chemistry, Future
Medicinal Chemistry, v. 3, n. 8 (Jun.), p. 1057–1085.

[13] M. Mattoso, K. Ocaña, F. Horta, J. Dias, E. Ogasawara, V. Silva, D. de
Oliveira, F. Costa, and I. Araújo, 2013, User-steering of HPC
workflows: state-of-the-art and future directions, In: Proceedings of the
2nd ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, p. 1–6

[14] D. Oliveira, F. Baião, and M. Mattoso, 2010, "Towards a Taxonomy
for Cloud Computing from an e-Science Perspective", Cloud
Computing: Principles, Systems and Applications, Nick Antonopoulos
and Lee Gillam edHeidelberg: Springer-Verlag

[15] J.T. Dudley and A.J. Butte, 2010, In silico research in the era of cloud
computing, Nature Biotechnology, v. 28, n. 11 (Nov.), p. 1181–1185.

[16] V.C. Emeakaroha, P. \Labaj, M. Maurer, I. Brandic, and D.P. Kreil,
2011, Optimizing bioinformatics workflows for data analysis using
cloud management techniques, In: Proceedings of the 6th workshop on
Workflows in support of large-scale science, p. 37–46

[17] D. Oliveira, K.A.C.S. Ocaña, E. Ogasawara, J. Dias, J. Gonçalves, F.
Baião, and M. Mattoso, 2013, Performance evaluation of parallel
strategies in public clouds: A study with phylogenomic workflows,
Future Generation Computer Systems, v. 29, n. 7 (Sep.), p. 1816–1825.

[18] S.V. Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala, D.R.
Riley, C. Arze, J.R. White, O. White, et al., 2011, CloVR: a virtual
machine for automated and portable sequence analysis from the
desktop using cloud computing, BMC Bioinformatics, v. 12, p. 356.

[19] J.T. Dudley, Y. Pouliot, R. Chen, A.A. Morgan, and A.J. Butte, 2010,
Translational bioinformatics in the cloud: an affordable alternative,
Genome Medicine, v. 2, n. 8, p. 51.

[20] Google Developers, 2012. Android Cloud to Device Messaging
Framework - Android — Google Developers. Available at:
https://developers.google.com/android/c2dm/. Accessed: 27 Aug 2012.

[21] Amazon EC2, 2010, Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2/.

[22] A. Wolf, M. Hofmann-Apitius, M. Ghanem, N. Azam, D.
Kalaitzopoulos, K. Yu, and V. Kasam, 2009, DockFlow - a prototypic
PharmaGrid for virtual screening integrating four different docking
tools, Studies in health technology and informatics, v. 147, p. 3–12.

544

[23] R. De Paris, F.A. Frantz, O.N. de Souza, and D.D.A. Ruiz, 2013,
wFReDoW: a cloud-based web environment to handle molecular
docking simulations of a fully flexible receptor model, BioMed
research international, v. 2013, p. 469363.

[24] S.R. Ellingson and J. Baudry, 2014, High-throughput virtual molecular
docking with AutoDockCloud: High-throughput virtual molecular
docking with AutoDockCloud, Concurrency and Computation:
Practice and Experience, v. 26, n. 4 (Mar.), p. 907–916.

[25] M. AbdelBaky, H. Kim, I. Rodero, and M. Parashar, 2012,
Accelerating MapReduce Analytics Using CometCloud, p. 447–454

[26] B.C. Pearce, D.R. Langley, J. Kang, H. Huang, and A. Kulkarni, 2009,
E-novo: an automated workflow for efficient structure-based lead
optimization, Journal of chemical information and modeling, v. 49, n.
7 (Jul.), p. 1797–1809.

[27] Y. Zhao and M.F. Sanner, 2007, FLIPDock: docking flexible ligands
into flexible receptors, Proteins, v. 68, n. 3 (Aug.), p. 726–737.

[28] R. Spitzer and A.N. Jain, 2012, Surflex-Dock: Docking benchmarks
and real-world application, Journal of Computer-Aided Molecular
Design, v. 26, n. 6 (May.), p. 687–699.

[29] N.D. Prakhov, A.L. Chernorudskiy, and M.R. Gainullin, 2010,
VSDocker: a tool for parallel high-throughput virtual screening using
AutoDock on Windows-based computer clusters, Bioinformatics, v. 26,
n. 10 (Apr.), p. 1374–1375.

[30] I. Berdowska, 2004, Cysteine proteases as disease markers, Clinica
chimica acta; international journal of clinical chemistry, v. 342, n. 1-2
(Apr.), p. 41–69.

[31] J.A.L. Lindoso and A.A.B.P. Lindoso, 2009, Neglected tropical
diseases in Brazil, Revista do Instituto de Medicina Tropical de São
Paulo, v. 51 (Oct.), p. 247–253.

[32] Dávila and Kary A. C. S. Ocaña, 2011, Phylogenomics-Based
Reconstruction of Protozoan Species Tree, Evolutionary
Bioinformatics (Jul.), p. 107.

[33] G.M. Morris and M. Lim-Wilby, 2008, Molecular docking, Methods in
Molecular Biology (Clifton, N.J.), v. 443, p. 365–382.

[34] R.D. Taylor, P.J. Jewsbury, and J.W. Essex, 2002, A review of
protein-small molecule docking methods, Journal of computer-aided
molecular design, v. 16, n. 3 (Mar.), p. 151–166.

[35] P.W. Rose, C. Bi, W.F. Bluhm, C.H. Christie, D. Dimitropoulos, S.
Dutta, R.K. Green, D.S. Goodsell, A. Prlic, et al., 2013, The RCSB
Protein Data Bank: new resources for research and education, Nucleic
acids research, v. 41, n. Database issue (Jan.), p. D475–482.

[36] H. Kunz, 2002, Emil Fischer—Unequalled Classicist, Master of
Organic Chemistry Research, and Inspired Trailblazer of Biological
Chemistry, Angewandte Chemie International Edition, v. 41, n. 23
(Dec.), p. 4439–4451.

[37] W.L. Jorgensen, 1991, Rusting of the lock and key model for protein-
ligand binding, Science (New York, N.Y.), v. 254, n. 5034 (Nov.), p.
954–955.

[38] D.B. Kitchen, H. Decornez, J.R. Furr, and J. Bajorath, 2004, Docking
and scoring in virtual screening for drug discovery: methods and
applications, Nature reviews. Drug discovery, v. 3, n. 11 (Nov.), p.
935–949.

[39] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S.
Goodsell, and A.J. Olson, 2009, AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility, Journal of
Computational Chemistry, v. 30, n. 16 (Dec.), p. 2785–2791.

[40] O. Trott and A.J. Olson, 2010, AutoDock Vina: improving the speed
and accuracy of docking with a new scoring function, efficient
optimization, and multithreading, Journal of computational chemistry,
v. 31, n. 2 (Jan.), p. 455–461.

[41] B. Kramer, M. Rarey, and T. Lengauer, 1997, CASP2 experiences with
docking flexible ligands using FlexX, Proteins, v. Suppl 1, p. 221–225.

[42] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic,
D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, et al., 2004, Glide:
a new approach for rapid, accurate docking and scoring. 1. Method and
assessment of docking accuracy, Journal of medicinal chemistry, v. 47,
n. 7 (Mar.), p. 1739–1749.

[43] M.L. Verdonk, J.C. Cole, M.J. Hartshorn, C.W. Murray, and R.D.
Taylor, 2003, Improved protein-ligand docking using GOLD, Proteins,
v. 52, n. 4 (Sep.), p. 609–623.

[44] K. Michael and K.W. Miller, 2013, Big Data: New Opportunities and
New Challenges [Guest editors’ introduction], Computer, v. 46, n. 6
(Jun.), p. 22–24.

[45] K.D. Pruitt, T. Tatusova, W. Klimke, and D.R. Maglott, 2009, NCBI
Reference Sequences: current status, policy and new initiatives,
Nucleic Acids Research, v. 37, n. Database issue (Jan.), p. D32–D36.

[46] K. Ginalski, 2006, Comparative modeling for protein structure
prediction, Current opinion in structural biology, v. 16, n. 2 (Apr.), p.
172–177.

[47] K.A.C.S. Ocaña, F. Oliveira, J. Dias, E. Ogasawara, and M. Mattoso,
2013, Designing a parallel cloud based comparative genomics
workflow to improve phylogenetic analyses, Future Generation
Computer Systems, v. 29, n. 8, p. 2205–2219.

[48] K.A.C.S. Ocaña, D. de Oliveira, F. Horta, J. Dias, E. Ogasawara, and
M. Mattoso, 2012, "Exploring Molecular Evolution Reconstruction
Using a Parallel Cloud-based Scientific Workflow", Advances in
Bioinformatics and Computational Biology, , chapter 7409, Berlin,
Heidelberg: Springer, p. 179–191.

[49] K.A.C.S. Ocaña, D. Oliveira, E. Ogasawara, A.M.R. Dávila, A.A.B.
Lima, and M. Mattoso, 2011, "SciPhy: A Cloud-Based Workflow for
Phylogenetic Analysis of Drug Targets in Protozoan Genomes", In: O.
Norberto de Souza, G.P. Telles, and M. Palakal, eds., Advances in
Bioinformatics and Computational Biology, , chapter 6832, Berlin,
Heidelberg: Springer, p. 66–70.

[50] D. Oliveira, K. Ocaña, F. Baião, and M. Mattoso, 2012, A Provenance-
based Adaptive Scheduling Heuristic for Parallel Scientific Workflows
in Clouds, Journal of Grid Computing, v. 10, n. 3, p. 521–552.

[51] E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M.
Mattoso, 2011, An Algebraic Approach for Data-Centric Scientific
Workflows, Proc. of VLDB Endowment, v. 4, n. 12, p. 1328–1339.

[52] N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch,

and G.R. Hutchison, 2011, Open Babel: An open chemical toolbox,
Journal of Cheminformatics, v. 3, n. 1, p. 33.

[53] M.W. Chang, C. Ayeni, S. Breuer, and B.E. Torbett, 2010, Virtual
Screening for HIV Protease Inhibitors: A Comparison of AutoDock 4
and Vina, PLoS ONE, v. 5, n. 8 (Aug.), p. e11955.

[54] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, 2009, A
break in the clouds: towards a cloud definition, SIGCOMM Comput.
Commun. Rev., v. 39, n. 1, p. 50–55.

[55] P. Missier, K. Belhajjame, and J. Cheney, 2013, The W3C PROV
family of specifications for modelling provenance metadata, In:
Proceedings of the 16th International Conference on Extending
Database Technology, p. 773–776

[56] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K.
Belew, and A.J. Olson, 1998, Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function,
Journal of Computational Chemistry, v. 19, n. 14 (Nov.), p. 1639–
1662.

[57] R. Wang, Y. Lu, X. Fang, and S. Wang, 2004, An extensive test of 14
scoring functions using the PDBbind refined set of 800 protein-ligand
complexes, Journal of chemical information and computer sciences, v.
44, n. 6 (Dec.), p. 2114–2125.

[58] J.C. Mottram, M.J. Helms, G.H. Coombs, and M. Sajid, 2003, Clan
CD cysteine peptidases of parasitic protozoa, Trends in Parasitology,
v. 19, n. 4 (Apr.), p. 182–187.

545

