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Abstract— Computer-aided drug design techniques are 
important assets in pharmaceutical industry because of their 
support for research and development of new drugs. Molecular 
docking (MD) predicts specific compound’s binding modes 
within the active site of target proteins. Since MD is a time-
consuming process, existing approaches reduce the number of 
receptors or ligands in docking by evaluating only small sets of 
compounds. This restriction in the search space reduces the 
chances to uniformly cover the diverse space of compounds and 
misses opportunities to recognize whether new drugs can be 
identified. Another difficulty with large-scale is analyzing the 
results, e.g. browsing all directories manually to find which 
pairs were docked successfully. To address these issues we 
explored the potential of data provenance analysis and parallel 
processing of SciCumulus, a cloud Scientific Workflow 
Management System. We present SciDock, a molecular 
docking-based virtual screening workflow and evaluate its 
execution using 10,000 receptor-ligand pairs related to 
proteases enzymes of protozoan genomes. The overall 
performance of SciDock using 32 cores, in cloud virtual 
machines, reaches improvements up to 95.4% when running 
SciDock with AutoDock and 96.1% when running SciDock 
with Vina. We show how data provenance improved the result 
analysis and how it may indicate potential proteases drug 
targets for protozoan treatments. 

Keywords-component; workflow; cloud; drug discovery 

I. INTRODUCTION

The process of drug discovery and development is 
considered to be time-consuming, risky and costly; e.g. a
typical lifecycle for this process takes approximately 14 
years [1] with a cost of approximately one billion USD [2].
Computer-assisted drug design [3] (CADD) is one of the 
existing strategies that have been developed to shorten the 
research cycle and reduce the expense risk of failure for drug 
discovery. CADD covers many aspect of drug discovery, 
including computer programs for designing compounds and 
tools for systematically assessing potential lead candidates. 
Among the most used computational approaches to drug 
discovery is structure-based drug design [4] (SBDD). One of 
the most prominent SBDD methods is molecular docking-
based virtual screening that relies on the knowledge of the 
target structure, which is obtained from crystal structures (X-
ray crystallography), nuclear magnetic resonance (NMR) 
spectroscopy data or homology models [5]. 

The complexity of designing a molecular docking-based 
virtual screening is choosing the set of programs and scoring 
functions that are adequate to the large-scale of receptor-
ligand pairs. The complexity of its implementation is related 

to the management of thousands of combinations of receptor-
ligand pairs and the consequent high number of 
heterogeneous results. For composing, executing and 
analyzing scientific experiments in large-scale, scientists can 
use Scientific Workflow Management Systems [6] (SWfMS) 
designed for High Performance Computing (HPC) such as 
Swift/Turbine [7], Pegasus [8], Tavaxy [9], and SciCumulus 
[10]. Scientific workflows help to mitigate the inherent 
complexity of scientific workflows. A scientific workflow is 
an abstraction that models the docking experiment as a set of 
activities connected by a data flow. These engines distribute
several concurrent activity executions in an HPC 
environment while capturing provenance data [11], i.e. the 
historical information of the workflow execution. Scientific 
workflows for molecular docking are seen as a new exploring 
ground in bioinformatics and computational medicinal 
chemistry [12].

SWfMS can be configured to control input ligands 
combination automatically as a parameter sweep for each 
parallel workflow execution. Some of these workflows may 
execute for weeks or even months thus requiring HPC [13] 
support, such as cloud computing [56]. Clouds are becoming 
a viable HPC alternative to traditional cluster or grid 
environments, since clouds have already demonstrated 
applicability to a wide-range of problems in several scientific 
domains [9,22–28]. In addition, clouds like Amazon AWS 
[21] facilitate the deployment of experiments and data as 
services following a Software as a Service [14] (SaaS) 
deployment model, which facilitates the effective use of an
HPC computing infrastructure by bioinformaticians. 

Using parallel processing is only part of the solution to 
exploring large receptor-ligand datasets. Analyzing the 
resulting files also in large scale is an open issue. There are 
molecular docking workflows that explore parallel 
processing with different approaches, but all of them limit 
the number of receptors or ligands in each execution [22–29]
and none of them varies the receptor for each ligand. 
Tracking these variations along the results is very complex in 
large-scale. To the best of the authors’ knowledge, there is no 
report of large-scale molecular docking experiments that 
processes such large datasets of receptor-ligand pairs while 
varying the number of receptors for each ligand. 

The goal of this work is to address the problems of 
designing a molecular docking workflow, executing it and 
analyzing its results in large-scale. We present the design of 
SciDock, a molecular docking-based virtual screening 
workflow, which contains high performance docking 
programs. SciDock adapts its definition to address the 
heterogeneous size of the compounds. When compounds are 
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large and flexible SciDock invokes AutoDock Vina (Vina), 
otherwise the workflow invokes AutoDock (AD4). For 
executing SciDock in parallel, we use cloud HPC parallel 
execution from SciCumulus SWfMS. A key feature in 
SciCumulus, not found in other cloud SWfMS, is its adaptive 
execution that takes advantage of cloud elasticity power. 
SciCumulus can adapt the number execution resources (i.e. 
virtual machines -VM) according to the current load. In 
SciDock, it acquires and releases VMs according to the 
profile of workflow programs. In addition, SciCumulus has a 
re-execution mechanism, which supports long running 
workflows, when some activity executions fail and need to 
be re-submitted. Finally, the results of SciDock are analyzed 
with the help of SciCumulus' provenance data generation by 
submitting high level database analytical queries. 

We evaluate SciDock with the targeting of cysteine 
proteases [30] (CP) in protozoan neglected tropical diseases 
[31] (NTD). Although this is a representative example in the 
NTD domain [32], this is one example of thousands that 
could be explored. We present a performance analysis of 
SciDock parallel executions using SciCumulus up to 128
cores in Amazon AWS. The results show that SciDock is 
capable of processing up to 10,000 receptor-ligand pairs with 
significant performance improvements. The highest 
performance gain in SciDock reduces execution time from 
12.5 days (2 cores) to 11.9 hours (128 cores) with AD4 and 
from 9 days (2 cores) to 7.7 hours (128 cores) with Vina. 
Due to time constraints, molecular docking typically 
evaluates small sets of compounds, which drastically limits 
the search space, thus reducing the chance to identify new 
drugs. With larger sets, e.g. analyzing 1,000 compound pairs, 
SciDock detects 287 and 355 favorable receptor-ligand 
interactions using AD4 and Vina, respectively. This 
discovery would have been impossible with a reduced 
number of receptor-ligand pairs or if they were in the 
complementary space with no favorable interactions. 

This paper is organized as follows. Section II discusses 
related work. Section III presents background on molecular 
docking. Section IV describes the specification of the 
SciDock workflow and presents its implementation using 
SciCumulus cloud workflow engine. Section V shows the 
experimental results and Section VI concludes the paper. 

II.RELATED WORK

The complexity of molecular docking workflows is 
addressed by several approaches [21-28] but they are all 
limited by the use of a reduced number of receptors or 
ligands. DockFlow [22], is a workflow for virtual screening 
that integrates different docking tools (FlexX, AutoDock, 
DOCK and GAsDock) on a grid execution while FReDoWS 
[23] is a workflow for molecular docking experiments that 
executes AutoDock in clouds with Hadoop, consuming a 
unique receptor (multiples conformations) and ligand. Both 
of them are not able to adapt the workflow according to the 
type of input data neither to control activity failures. 

AutoDockCloud workflow [24] is a Hadoop-based 
workflow and it is executed on a private cloud platform. It 
only handles the docking procedure in the screening task 
(AutoDock), pre-docking and post-docking procedures were 

not included in the workflow performance analyses. 
Although AutoDockCloud is easy to be deployed since it is 
based on the Hadoop framework, it has the same weaknesses 
of Hadoop such as static scheduling, unability to execute 
adaptive workflows and lack of provenance support.

CometCloud [25] is an autonomic computing engine for 
running applications on hybrid computing environments, 
with a MapReduce programming layer and executed on 
Amazon EC2. CometCloud is “similar” to SciCumulus in the 
sense that both execute scientific applications with 
parallelism in MapReduce paradigm. However, it is not 
connected to the concept of scientific workflows and it does 
not provide workflow-specific features such as provenance 
analysis, re-execution of failed activities or optimizations 
based on domain-specific data. Although CometCloud team 
has implemented an interesting Protein Data Bank mining 
application, docking experiments were not addressed yet.

E-novo [26] is a workflow for virtual screening, with a 
fast validation and scoring methods that uses predefined 
optimization libraries for grids. FLIPDock [27] is a cloud 
tool for docking of a single flexible ligand-receptor pair 
using an older version of AutoDock. VSDocker [29] docking 
tool runs AutoDock on Windows computer clusters for 
parallel high-throughput virtual screening. Although existing 
approaches represent a step forward, even the ones that 
execute in parallel reduce the search space by fixing a small 
number of ligands, which may limit the biological inference. 

III. MOLECULAR DOCKING 

Molecular docking [33] refers to the prediction of the 
binding modes of small molecule ligands within the active 
site of the target protein models [34], available in structural 
databases e.g. RCSB-PDB [35]. A receptor’s (protein) 3D 
structure is compared to a ligand (small molecule) 3D 
structure in order to find the best binding energy between 
that receptor-ligand pair. This process is based on the model 
propose by Fischer [36], known as “key-lock” model, where 
the protein (lock) has a cavity in which the ligand (key) 
docks perfectly [37].  

Molecular docking attempts to mimic the process of 
bringing together a protein and a ligand to form a non-
covalent complex and to reveal the electrostatic and steric 
complementarity between the protein and ligand. Thus, a 
docking algorithm has three main tasks: determinate the 
binding site (receptor’s active site), place the ligand in the 
binding site and evaluate the binding energy between that 
receptor-ligand pair [12]. Another crucial aspect, during the 
docking process, is the scoring function applied to rank 
docking. More than 60 small-molecule docking programs 
and 30 scoring functions have been proposed as stated by 
Morris and M. Lim-Wilby [33], Taylor et al. [34] and 
Kitchen et al. [38]. The most popular docking tools are 
AutoDock [39], AutoDock Vina [40], FlexX [41], Glide [42] 
and GOLD [43].  

Furthermore, molecular docking experiments represent a 
big data [44] scenario, since they need to manage high 
volumes of data (e.g. 600 GB for each execution of small-
scale experiments). Thousands or millions of potential 
receptors and entire ligand databases need to be screened. 
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Yet, scientists manually test each docking process, although 
this process is tedious and error-prone due the high number 
of sequences in databases (e.g. NCBI [45]) and also due to 
the complexity of implementing molecular docking 
experiments to manage thousands of combinations of 
heterogeneous resulting receptor-ligand pairs.  

IV.DESIGNING SCIDOCK SCIENTIFIC WORKFLOW

Designing a molecular docking-based virtual screening 
workflow is complex due to choosing small-molecule 
docking programs and scoring functions among a large 
number of options and combinations. Selecting the best 
alternative implies analyzing thousands of combinations of 
receptor-ligand pairs for each chosen program-scoring 
function combination. This Section presents the specification 
of SciDock and how SciCumulus helped in the configuration 
and result analysis by its provenance database support.

A. SciDock Conceptual Specification  
Usually, molecular docking experiments are divided in 

four main macro-activities, labeled from A to D, and each 
macro-activity are further decomposed into one or more 
activities, labeled from 1 to 8 (Figure 1), as follows. 
� Macro-Activity (A): Input Preparation, activities 1 to 3;  
� Macro-Activity (B): Coordinates Generation, activity 4, 5;
� Macro-Activity (C): Docking Preparation, activity 6, 7; 
� Macro-Activity (D): Molecular Docking, activity 8.

The SciDock activities are: (1) ligand transformation, (2) 
ligand preparation, (3) receptor preparation, (4) AutoGrid’s 
parameter preparation, (5) receptor’s coordinates map 
generation, (6) docking filter, (7) docking parameter 
preparation, and (8) docking execution.  

Figure 1. SciDock Workflow Conceptual View 

The first activity executes Babel to convert the format of 
the ligand from SDF to Sybyl Mol2. Then, this ligand format 
is used as input by the second activity, which executes a 
python script from MGLTools (prepare_ligand4.py) and 
produces a new PDBQT ligand format file as output. The 
third activity executes a prepare-receptor script also from
MGLTools and produces a PDBQT receptor file format from 
PDB containing the protein’s structure. AutoDock can 
recognize both PDBQT files: from the ligand and receptor. 

The fourth activity executes a python script from 
MGLTools that extracts parameters contained in the ligand 
and receptor PDBQT files and generates the Grid Parameter 
File (GPF). The fifth activity receives parameters defined on 
the GPF file (e.g. ligand and receptor atoms types extracted 
from PDBQT files) and executes AutoGrid to generate the
coordinates maps based on that information. Files generated 
by AutoGrid are: one map file for each receptor atom type; 
two map files for the electrostatic and desolvation maps; the 
grid map field file; the dimension and coordinates box of the 
grid; and the execution log file. 

The sixth activity executes an in-house python script to 
filter receptors by size, and generates two datasets to be 
executed using AD4 and/or Vina. The seventh activity has 
two possibilities: (7a) AD4 uses python scripts from 
MGLTools to extract parameters contained in the ligand and 
receptor PDBQT files generating the file Docking Parameter 
File (DPF); and (7b) Vina uses custom python scripts to 
extract the dimension and coordinates box of the grid 
generating the configuration file. The eighth activity: (8a) 
receives parameters defined on the DPF file (e.g. for the 
genetic algorithms used in docking) and executes AD4; and 
(8b) receives parameters defined on the configuration file 
and executes AutoDock Vina. AutoDock predicts the ligand-
receptor binding process using coordinates maps. AutoDock 
generates an execution log file, which contains the binding 
process execution’ information, a table of RMSD [46] (i.e. 
root-mean-square deviation) values, histograms, and the best 
conformation found by AutoDock for receptor-ligand pairs. 
AutoDock Vina predicts the ligand-receptor binding process 
using coordinates maps. AutoDock Vina generates the 
execution log file, which contains the information from the 
binding process execution and the best conformation found 
by the AutoDock Vina for receptor-ligand pairs. AutoDock 
Vina also generates a new version of the receptor PDBQT 
file, which contains the binding information. 

B. Using SciCumulus: Benefits and Challenges 
This conceptual specification of SciDock could be 

executed by any parallel SWfMS, scientists should choose 
the SWfMS that is more suitable for the type of experiment 
being executed. SciCumulus was our choice since its unique 
features have already demonstrated to be essential in several 
HPC bioinformatics workflows [17,47–49].

Before using SciCumulus, we instrumented SciDock 
activities using template files and extractor programs. This 
instrumentation allows for SciCumulus to capture all 
parameters involved in the workflow execution (with their 
associated values) to store them in the provenance repository 
to be further queried. In addition, using extractor components 
SciCumulus is able to open produced files, extract useful 
information (e.g. statistical binding energy values) and 
associating them to provenance records. This allows for 
domain-specific queries that can be used to analyze results 
and to improve SciCumulus scheduling as presented by 
Oliveira et al. [50]. SciDock is specified in an XML file,
which is used by SciCumulus when the workflow is 
executed. Figure 2 shows an excerpt of the SciDock 
specification for Babel, its first activity. 
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<SciCumulus> 
<database name="scicumulus" server="ec2-50-17-107-164.compute-
1.amazonaws.com " port="5432"/> 

<SciCumulusWorkflow tag="SciDock" description="Docking" 
exectag="scidock" expdir="/root/scidock/"> 

<SciCumulusActivity tag="babel" 
templatedir="/root/scidock/template_babel/" 
activation="./experiment.cmd"> 

<Relation reltype="Input" name="rel_in_1" filename="input_1.txt"/> 
<Relation reltype="Output" name="rel_out1"filename="output_1.txt"/> 
<File filename="experiment.cmd" instrumented="true"/> 

</SciCumulusActivity> 
</SciCumulusWorkflow> 
</SciCumulus>

Figure 2. An excerpt of XML specification for the SciDock Babel activity 

As observed in Figure 2, templates do not have the actual 
values of the parameters used, as they use tags. Tags are 
replaced by actual values dynamically during the execution, 
as executions are ready to be started as presented in Figure 3.  

Figure 3. Activity specification in SciCumulus for the first activity Babel 

Once defined, workflows can be reused/modified as
several images in Amazon AWS (ami-77f6381e, ami-
4550c42c, ami-742bf91d), where workflows were deployed. 

There are several advantages in using SciCumulus that 
are not available in other workflow engines. Scientists can 
query the provenance database to help in workflow 
configuration, reusing previous related workflows to model a 
new one. These queries can be as simple as “Obtain statistics 
related to SciDock executions” as presented in Query 1 
(Figure 10) or “Retrieve names, sizes and locations of 
SciDock files with the extension ‘.dlg’” of Query 2 (Figure 
11); or more complex by mixing these simple ones with e.g.
the extraction of domain information i.e. contained in files. It 
is worth noticing that SciCumulus allows for runtime 
provenance query, which is a unique feature, yet it allows for 
user steering and anticipating results. 

The second benefit is the scheduling cost model of 
SciCumulus. Since SciDock activities have heterogeneous 
execution time distribution, SciCumulus can schedule short-
term activities to less powerful VMs and long-term activities 
to more powerful VMs. In addition, SciCumulus is able to 
scale the amount of VMs up and down according to 
performance behavior. For example, Vina is computing 
intensive and demands more computing power. By 
monitoring or querying Vina's execution history in the 
provenance database, SciCumulus scales up the amount of 
VMs to improve the performance. 

The third benefit is related to fault tolerance. Each 
execution of SciDock contains about 10% of activity 
execution failures. These faulty executions have to be 
aborted and SciCumulus has to restart each activity. Since it 

has all information stored in the provenance repository it 
does not need to restart the entire workflow. It is easy to find 
and re-execute only the failed activities. 

V. EXECUTING SCIDOCK AND RESULT ANALYSIS

In this Section we present an evaluation of the parallel 
execution of SciDock using SciCumulus cloud workflow 
engine. Section A presents the environment setup whereas 
Section B presents the experiment setup and SciDock 
execution. Section C presents a performance evaluation and 
Section D briefly discusses biological issues.

A. Environment Setup 
SciCumulus engine is based on an algebraic approach 

[51] where each activity receives a relation as input and 
processes each tuple independently. By storing the 
workflows definition related to its provenance data 
execution, powerful domain queries can be defined. For 
example, for each parameter, SciCumulus records all steps 
and files associated to the executed activities with this 
parameter in the provenance database. These records can be 
queried, which allows for a systematic analysis of the 
experiment in partial, or as a whole, after its completion. 

Amazon EC2 was chosen for our case study since it is 
very reliable and one of the most popular cloud computing 
environments. Therefore, some of the implementation 
decisions presented in this Section are specific for Amazon 
EC2. Current version of SciCumulus was developed using 
Java version 6.15. The components of the distribution and 
execution layers were implemented using MPJ (MPI for 
Java) [52]. Provenance data is stored using PostgreSQL 
relational database version 8.4.6. SciCumulus uses a shared 
file system, FUSE-based file system backed by Amazon S3 
(s3fs 1 ), to manipulate input and output files. To setup a 
virtual cluster, we used Amazon’s Application Programming 
Interface to create and scale VMs in the cloud. A custom 
image (AMI) for the execution instances was built (AMI ID: 
ami-596f4d30). 

There are several types of VMs in Amazon EC2, such as 
micro, large, extra-large, high CPU extra-large instance, and 
Quadruple Extra Large Instance. We used m3.xlarge and 
m3.2xlarge, as in Table 1. Each VM instance uses Linux 
Cent OS 5.5 (64-bit) and it was configured with libraries like 
MPJ and the bioinformatics applications. All instances had 
the same image, which was used to execute SciCumulus. We 
chose US East-N. Virginia location to instantiate all VMs. 

TABLE 1. CHARACTERISTICS OF USED VMS

Instance Type # cores Physical Processor

m3.xlarge 4 Intel Xeon E5-2670

m3.2xlarge 8 Intel Xeon E5-2670

                                                          
1 https://code.google.com/p/s3fs/
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B. Experiment Setup 

Our experiments use a dataset of 238 receptors (PDB format) 
of the CP clan named Peptidase_CA (CL0125) as input, with 
42 CP-specific ligands (SDF format) (Table 2), all-out 
10,000 receptor-ligands. Receptors and ligands were 
extracted from RCSB-PDB [35] (Table 2).

TABLE 2. RECEPTORS AND LIGANDS OF CLAN PEPTIDASE_CA (CL0125)

238 Receptor in PDB format
1AEC 1AIM 1ATK 1AU0 1AU2 1AU3 1AU4 1AYU 1AYV 1AYW 1BGO 1BP4 1BQI 1BY8 
1CJL 1CPJ 1CQD 1CS8 1CSB 1CTE 1CVZ 1DEU 1EF7 1EWL 1EWM 1EWO 1EWP 1F29 
1F2A 1F2B 1F2C 1FH0 1GEC 1GLO 1GMY 1HUC 1ICF 1ITO 1IWD 1JQP 1K3B 1KHP 
1KHQ 1M6D 1ME3 1ME4 1MEG 1MEM 1MHW 1MIR 1MS6 1NB3 1NB5 1NL6 1NLJ 1NPZ 
1NQC 1O0E 1PAD 1PBH 1PCI 1PE6 1PIP 1POP 1PPD 1PPN 1PPO 1PPP 1Q6K 1QDQ 
1S4V 1SNK 1SP4 1STF 1THE 1TU6 1U9Q 1U9V 1U9W 1U9X 1VSN 1XKG 1YAL 1YK7 
1YK8 1YT7 1YVB 2ACT 2AIM 2AS8 2ATO 2AUX 2AUZ 2B1M 2B1N 2BDL 2BDZ 2C0Y 
2CIO 2DC6 2DC7 2DC8 2DC9 2DCA 2DCB 2DCC 2DCD 2DJF 2DJG 2F1G 2F7D 2FO5 
2FQ9 2FRA 2FRQ 2FT2 2FTD 2FUD 2FYE 2G6D 2G7Y 2GHU 2H7J 2HH5 2HHN 2HXZ 
2IPP 2NQD 2O6X 2OP3 2OUL 2OZ2 2P7U 2P86 2PAD 2PBH 2PNS 2PRE 2R6N 2R9M 
2R9N 2R9O 2VHS 2WBF 2XU1 2XU3 2XU4 2XU5 2YJ2 2YJ8 2YJ9 2YJB 2YJC 3AI8 
3BC3 3BCN 3BPF 3BPM 3BWK 3C9E 3CBJ 3CBK 3CH2 3CH3 3D6S 3E1Z 3F5V 3F75 
3H6S 3H7D 3H89 3H8B 3H8C 3HD3 3HHA 3HHI 3HWN 3I06 3IEJ 3IMA 3IOQ 3IUT 
3IV2 3K24 3K9M 3KFQ 3KKU 3KSE 3KW9 3KWB 3KWN 3KWZ 3KX1 3LFY 3LXS 3MOR 
3MPE 3MPF 3N3G 3N4C 3O0U 3O1G 3OF8 3OF9 3OIS 3OVX 3OVZ 3P5U 3P5V 3P5W 
3P5X 3PBH 3PDF 3PNR 3QJ3 3QSD 3QT4 3RVV 3RVW 3RVX 3S3Q 3S3R 3TNX 3U8E 
3USV 4AXL 4AXM 4DMX 4DMY 4HWY 4K7C 4KLB 4PAD 5PAD 6PAD 7PCK 8PCH 9PAP  

42 Ligand in SDF format
042 074 0D6 0E6 0I5 0IW 0LB 0LC 0PC 0QE 186 1RV 1ZB 23Z 25B 2CA 2HP 3FC 
424 4MC 4PR 599 59A 73V 74M 75V 76V 77B 78A 935 93N ACE ACT ACY AEM ALD 
APD  

This input dataset is composed by different sizes of 
receptors. To evidence the advantages of adaptation with 
respect to compounds size, we fixed the docking program, 
i.e. independently of the compound size we processed the 
entire set with AutoDock with and without Vina (Figure 4). 
� Scenario I - Executes AD4 for docking analyses using the 

dataset categorized as small receptors 3D structures. 
� Scenario II - Executes Vina for docking analyses using the 

dataset categorized as large receptors 3D structures.  

Figure 4. Molecular Docking Experiment Scenarios 

For the molecular docking analysis, each input PDB-SDF 
pair is processed using the following versions of programs: 
Babel 1.6 [52]; AutoDock 4.2.5.1 [39] MGLTools 1.5.6 
python scripts; a custom python script (for activity 6b), 
AutoGrid 4.2.5 [39]; AutoDock 4.2.5.1 [39]; and AutoDock 
Vina 1.1.2 [40]. All programs were configured with default 
parameters. 

According to Chang et al. [53], there is a clear 
association between molecular docking predictions of 
AutoDock (AD4) and AutoDock Vina (Vina). In terms of the 
reported scoring values (i.e. FEB, RMSD), it is expected that 
conformations assigned by both programs would tend to be 
similar. Also, it seems that Vina is more scalable in 
addressing more difficult docking problems (i.e. larger, more 
flexible compounds) than AD4. Moreover Vina’s other 
strengths include streamlined parameters and much faster 
docking performance.

C. Performance Evaluation of SciDock 
Before discussing the overall performance of SciDock we 

analyze the time to execute each activity of the workflow. 
Analyzing the provenance repository of SciCumulus we 
show, in Figure 5, the histogram of the execution time for all 
executions of SciDock activities. This histogram can be 
generated using a simple SQL query such as: 

SSELECT extract ('epoch' from (t.endtime-t.starttime))  
FROM hworkflow w, hactivity a, hactivation t 
WHERE w.wkfid = a.wkfid 
AND a.actid = t.actid 
AND w.wkfid = % ID OF THE WORKFLOW % 
ORDER BBY t.endtime

Based on this query result, it is possible to calculate the 
average (1,703.5 seconds) and standard deviation (108.3 
seconds) for the activities execution time. The main 
advantage of having such distribution of execution times is 
that the workflow engine (i.e. SciCumulus) is able to 
distribute compute intensive executions (i.e. long term 
executions) to more powerful VMs. On the other hand, 
SciCumulus dispatches less intensive executions (i.e. short 
term executions) to less power VMs.  

Figure 5. Number of ocurrences of SciDock 

Such heterogeneous time distribution leads to a 
heterogeneous execution time of SciDock activities as shown 
in Figure 6 where we present the execution time distribution 
per activity considering 16 cores execution. We note that the 
last activity of the workflow is the most computing intensive. 
SciCumulus adapts the execution accordingly. Following, we 
present performance results of the entire execution of 
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SciDock with AD4 and Vina for each one of the 
aforementioned scenarios. 

Figure 6. Execution time per Activity 

For each activity of SciDock, presented at Section III, we 
first measure the performance of all programs on a single 
VM to analyze the local optimization before adding more 
VMs. We measured the scalability of SciDock using a 
combination of m3.xlarge and m3.2xlarge VMs up to 32, 
totalizing 128 virtual cores. As the number of VMs increases 
(and consequently the number of virtual cores), the Total 
Execution Time (i.e. TET) of SciDock with AD4 and Vina 
executions decreases (Figure 7).

Figure 7. Total execution time of SciDock 

The highest performance efficiency was obtained using 2 
cores and the gains are very encouraging. For example, when 
SciDock with AD4 processes 10,000 receptor-ligand pairs, 
the TET was reduced from 12.5 days (using 2 cores) to 11.9 
hours (using 128 cores) and for SciDock with Vina the TET 
was reduced from approx. 9 days (using 2 cores) to 7.7 hours 
(using 128 cores). 

To evaluate the behavior of performance gains according 
to the number of virtual cores, we used the speedup metric 
(Figure 8). In clusters and supercomputers, the speedup value 
is impacted by serial portions of the code and communication 
between processors, while in the cloud, besides these factors, 
we have to consider others such as heterogeneity of the 
environment, performance fluctuations due to the 

virtualization and high communication latency [54]. 
However, even with cloud performance fluctuations, When 
using 16 cores SciDock is approximately 13 times faster than 
the best-performing workflow execution on a single core. 

Figure 8. Speedup of SciDock 

There is always a gain by adding more virtual cores, from 
32 up to 128 cores for both SciDock with AD4 and Vina, but 
the speedup presents a small degradation in both executions 
since the VMs are heterogeneous and load balancing 
becomes more complex, thus introducing more overhead in 
the activity distribution by SciCumulus. However, from 2 to 
32 cores, the speedup was near linear in both SciDock with 
AD4 and Vina. This result indicates that acquiring more than 
32 VMs may not bring the expected benefit, particularly if 
financial costs are involved (since m3 VMs in Amazon are 
expensive types).

We also observed that, when the number of activity 
executions becomes extremely large, SciCumulus introduces 
an overhead to manage the distribution of activities. 
Consequently, some VMs may remain idle. This happens 
because SciCumulus has a native weighted cost model 
associated with a greedy scheduling algorithm. When we 
increase the amount of activities to execute and the number 
of available VMs, the greedy algorithm tends to require more 
time to process the scheduling plan at runtime since the 
search spaces increases exponentially. This behavior can be 
seen in Figure 9 where the efficiency of SciDock decreases as 
the number of VMs increases from 32 to 128 cores. 

Figure 9. Efficiency of SciDock 
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Overall, our performance analyses were facilitated by the 
information obtained by querying SciCumulus provenance 
repository after the workflow termination. The provenance 
repository of SciCumulus is based on the W3C PROV and 
PROV-Wf [55] models. Due to that, the following query was 
executed to extract the desired information: 
Query 1: “Obtain the TET, statistical averages and biological 
information related to the SciDock executions”.

By querying provenance repository, it is possible to 
extract the execution time for all executions of activities of 
SciDock. This information is very useful in special in large-
scale experiments, as scientist have the possibility to know 
how experiments are running, or if any execution fails. 
Scientist can steer at runtime. It is possible that the error is 
related with the size of the receptor or ligand or by the 
presence of an atom (e.g. Hg) that cannot be recognized by 
the docking programs. Figure 10 shows the result of Query 1.  

SSELECT a.tag,  
min(extract ('epoch' from (t.endtime-t.starttime))), 
max(extract ('epoch' from (t.endtime-t.starttime))), 
sum(extract ('epoch' from (t.endtime-t.starttime))), 
avg(extract ('epoch' from (t.endtime-t.starttime))) 

FROM hworkflow w, hactivity a, hactivation t 
WHERE w.wkfid = a.wkfid 
AND a.actid = t.actid 
AND w.wkfid =432 
GROUP BBY a.tag 

Based on this information scientists evaluate the time 
required for processing docking for each receptor-ligand pair 
and analyze the influence of the receptor or ligand sizes in 
docking execution time. Moreover TET (Figure 7), speedup 
(Figure 8) and efficiency (Figure 9) can be calculated by using 
Query 1's resulting data. 

Figure 10. Result of the Query 1 

By using steering in HPC docking executions, scientists 
can explore at runtime their experiment executions. 
Following we present some benefits identified by running 
SciDock with SciCumulus.  

In docking experiments, there is an extensive set of 
ligands and receptors, to form the dataset (receptor-ligand 
pairs) for the docking experiment. Both receptor and ligands 
belonging to CP enzymes were mapped and extracted from 
the PDB-RCSB database.  

After the initial SciDock executions, a particular behavior 
was observed: there are several activities with abnormal 
execution time (they remain in looping state) when 
processing specific ligands. For those activity executions, no 
error messages were generated by the docking program, since 
they remain in looping state waiting for the intervention of 

the scientist. Using SciCumulus we dynamically detected 
these errors and aborted/adapted them at runtime. 
Simultaneously, we queried the SciCumulus provenance 
database by searching all “problematic” ligands that could 
present the same behavior, thus avoiding generating the same 
errors in future. 

Another similar error captured by querying the 
SciCumulus provenance database was identified, but now 
related to receptors. The third activity (Receptor preparation) 
consumes approximately 10 seconds, but in some cases these 
executions remained, yet again, in looping state and did not 
stop until the scientist’s interaction. It was observed that 
inside those receptors the “Hg” molecule is present. Then, 
after this discovering, it was added one routine in 
SciCumulus that recognizes the presence of these Hg in 
receptors. Then those activity executions were identified and 
aborted before their execution. Specific biological analyses
also benefited from SciCumulus's provenance as follows. 

D. Biological Analysis 
NTDs specially affect populations around the world with 

low socioeconomic status, thus we need new inhibitors for 
those diseases. CP [30] enzymes are known to have 
important pathogenicity factors of protozoan parasites, which 
indicates that they are potential targets for rational 
antiparasitic drug design. Clan Peptidase_CA (CL0125) is 
the most representative CPs’ clan with 46 members. CL0125 
is the chosen CP clan in our experiments. Thus, 238 CP 
receptors with 42 CP-specific ligands, all-out 10,000 
receptor-ligand pairs (

Table 2) were used to execute the molecular docking and 
scoring processes. We evaluate the result details for the first 
1,000 receptor-ligand pairs (238 CP receptors with 4 CP-
specific ligands: 042, 074, 0D6, 0E6) as presented in Table 3. 

Table 3 shows results for all molecular docking processes 
using SciDock with AD4 and Vina. Our evaluation (1) 
examines values of RMSD, (2) examines Free Energy of 
Binding (FEB), (3) rank the orientations-conformations 
according to their FEB [56] scores, and (4) rank the total 
number of negative FEB or FEB (-). The smaller (most 
negative) the FEB value, the better the binding of the ligand 
into the receptor-binding pocket. RMSD values usually with 
1.5 or 2 Å (depending on ligand size) have performed 
successfully. Nevertheless, there is no consensus about what 
is the reasonable range for FEB and RMSD values [57]. 

TABLE 3. RESULTS OF MOLECULAR DOCKING PROCESSES FOR SCIDOCK

Ligand
Total Number of 

FEB (-)
Average FEB (-)

(kcal/mol)
Average RMSD 

(Å)
SciDock

AD4
SciDock

Vina
SciDock

AD4
SciDock

Vina
SciDock

AD4
SciDock

Vina
042 79 91 -4.9 -4.5 55.4 10.3
074 76 83 -5.9 -4.7 57.3 9.1
0D6 65 70 -8.4 -5.7 53.5 9.7
0E6 67 111 -7.2 -5.2 53.1 9.5

Docking outputs (Table 3) show good average of FEB, 
which means that receptors conformation leads to a favorable 
ligand association. SciDock with AD4 resulted in FEB scores 
that range from -4.9 to -8.4 kcal/mol and SciDock with Vina 
from -4.5 to -5.7 kcal/mol. We also observe that RMSD 
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scores for SciDock with Vina are the lowest. Regarding the 
total number of negative FEB, it represents favorable 
receptor-ligand interactions. From a total of 1,000 docking 
experiments, SciDock with Vina generates 355 FEB (-) and 
SciDock with AD4 287 FEB (-). The remaining ones (not 
negative FEB) are related to non-favorable ligand-receptor 
interactions or others docking experiments that do not 
converge to a favorable interaction. 

Our results reinforce a previous virtual screening study 
that compare the programs AutoDock 4 (AD4) and 
AutoDock Vina (Vina) [53]. According to Chang et al. [53],
there was a clear association between the predictions from 
AD4 and Vina. In terms of FEB, it is expected that the 
conformations reported by both programs would also tend to 
be similar. Also, it seems that Vina is more scalable in 
addressing more difficult docking problems (i.e. larger, more 
flexible compounds) than AD4. Moreover, Vina has other 
strengths such as streamlined parameters and a much faster 
docking performance. Finally, Vina’s authors state that, for 
their study, docking each library lasted approximately 10 
times longer with AD4 when compared to Vina. However, 
this claim was not based on an experiment designed for HPC. 

For all molecular docking processes (Table 3), the 
average RMSD is not well acceptable (i.e. RMSD > 4 Å). 
We analyzed the top ten best interactions. We observed 
acceptable FEB values for SciDock with AD4 and Vina.
However RMSD for SciDock with AD4 continues to be too 
high. The best three interactions (receptor-ligands) are 
2HHN-0E6, 1S4V-0D6 and 1HUC-0D6, which can be 
associated to potential drug target for protozoan CPs.
However, these receptor-ligand associations should be 
refined and reinforced using alternative approaches, such as:
(i) testing other receptor or ligand conformations; (ii) 
redocking, molecular dynamics or QSAR analyses; (iii) 
testing others algorithms, programs or parameters. 

Finally, we presented a biological analysis overview 
focused mainly in the information obtained by querying 
SciCumulus provenance repository after the workflow ends.
By querying the provenance database, it is possible to obtain 
the TET, statistical averages, and several docking parameters 
with resultant files as those reported in Query 1. In Query 2, 
we extract some biological results contained in molecular 
docking outputs e.g. ‘.dlg’ files.  

Query 2: “Retrieve the names, sizes and locations of 

files with the extension ‘.dlg’ (containing docking

parameters and results), which were produced for all 
SciDock workflow executions. Recovering also, which 
workflow and activities produced those files”.

Query 2 is crucial for real-time monitoring of SciDock 
workflow execution. The result of Query 2 is presented in 
Figure 11, and allows scientists to find files that are being 
generated by SciDock. Query 2 helps biological analysis in 
real-time. For instance, scientists may use graphical tools to 
verify the resulting structure obtained after the docking 
(contained in ‘.dlg’ files). These ‘.dlg’ files contain the 
binding affinity values between ligands and target receptors 
and also which one is the best ligand (e.g. E06) for each 
receptor (e.g. 2HHN), based on a prediction method for 

positioning the ligand to the binding site. One example of 
the visualization of this ‘.dlg’ file is presented on Figure 12.

Figure 11. Result of Query 2 

Without querying the provenance database with Query 2, 
scientists would need to browse all directories manually and 
search which pairs were docked successfully. Then they 
would need to separate and open these files to extract the 
information of molecular docking process. The provenance 
database stores all this data and its relationships on a
structured model. Thus it simplifies the querying process 
and allows for long-term analyses over experimental data.  

Figure 12. 3D structure of the complex 2HHN-0E6 obtained with SciDock. 
Receptor 2HHN and into the white box the best ligant 0E6 

Figure 12 shows the structure of the receptor 2HHN with 
the ligand E06 with the highest affinity obtained by SciDock. 
The 2HHN receptor is the “Cathepsin S in complex with 
non-covalent arylaminoethyl amide”, which have been 
implicated in a variety of important biological events and 
have also been validated as drug targets of high promise [58].
We demonstrate that, using SciDock, it is possible to test in 
silico a set of receptors and ligands of interest for drug target 
candidates. Furthermore, performance and biological data 
can be mapped and queried via SQL. 

VI. FINAL REMARKS AND FUTURE WORK

Molecular docking workflows executed by parallel 
SWfMS and HPC environments can manage a large volume 
of receptors and ligands comparisons, reducing the long 
processing time for molecular docking analyses. In this 
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paper, we proposed the SciDock workflow to execute and 
manage molecular docking data-intensive experiments 
aiming at discovering alternative drug target for NTD 
treatments. SciDock was executed with SciCumulus in 
Amazon EC2 using parallel processing. 

Our experiment evaluated 10,000 receptor-ligand pairs 
related to proteases enzymes belonging to protozoan genomic 
data. In the first 1,000 receptor-ligands pairs, SciDock 
already detected 287 and 355 favorable receptor-ligand 
interactions using AD4 and Vina, respectively. These 
interactions represent potential proteases drug targets for 
protozoan treatments. 

SciDock generated 140,000 workflow activity executions 
(10,000 executions of the 7 activities of 2 workflows) and 
data files, producing 600 gigabytes of data for each workflow 
execution. By analyzing the overall performance, through the 
provenance database, we state that SciDock obtained 
significant gains with AD4 and Vina. For example, 
executions with 32 cores reach performance improvements 
up to 95.4% for SciDock with AD4 and 96.1% for SciDock 
with Vina. Based on the TET, speedup, efficiency and 
molecular docking scoring values, we observe that SciDock 
with Vina performs better than SciDock with AD4.

Analyzing the results, we may conclude that as we 
increase the ‘cover diversity space of compounds’, this 
positively influences the chance of identifying new drugs. 
Thus, using 1,000 compound pairs involving an entire family 
of enzymes, we detected 287 and 355 favorable receptor-
ligand interactions using SciDock with AD4 and Vina. This 
scenario would have been impossible with a reduced number 
of receptor-ligand pairs, especially if we use only one 
receptor/ligand or if the input sample belongs to the 
complementary space in which no favorable interaction was 
found (i.e. 1,000 less the 287 + 355 interactions we found). 

Overall, the overhead imposed by the executions of 
SciDock with SciCumulus is compensated by the advantages 
of data parallelism without too much effort from scientists. 
SciDock results provide evidence that large computations 
involving MD experiments can benefit from SciCumulus in
HPC clouds as verified in previous publications [17,47–49].  

Finally, results presented in this paper can be extrapolated 
to the development of workflows in other areas that also 
require the exploration of large amounts of data. As future 
work, we plan to model other computing-intensive CADD 
workflows (e.g. molecular modeling, dynamics, ligand-based 
and structure-based virtual screening, 2D and 3D QSAR) to 
explore complete protozoan genomes of actual interest and to 
search new candidate drug target enzymes. 
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