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Abstract—Emerging next-generation sequencing technolo-
gies have opened up exciting new opportunities for genome
sequencing by generating read data with a massive throughput.
However, the generated reads are significantly shorter com-
pared to the traditional Sanger shotgun sequencing method.
This poses challenges for de novo assembly algorithms in terms
of both accuracy and efficiency. And due to the continuing
explosive growth of short read databases, there is a high
demand to accelerate the often repeated long-runtime assembly
task. In this paper, we present a scalable parallel algorithm
– HiPGA to accelerate the de Bruijn graph-based genome
assembly for high-throughput short read data. In order to make
full use of the compute power of both shared-memory multi-
core CPUs and distributed-memory systems, we have used a
parallelized file I/O scheme as well as a hybrid parallelism
for the whole assembly pipeline. Evaluations using three real
paired-end datasets and the Yoruba individual dataset show
that compared to two other well parallelized assemblers:
ABySS and PASHA, HiPGA achieves speedups up to 7 while
delivering comparable accuracy on 64 CPU cores of a compute
cluster.

Keywords-Genome Assembly; de Bruijn Graph; Short Read
Data; MPI; Multi-threading.

I. INTRODUCTION

In the past few years, a number of new-generation DNA

sequencing technologies have been introduced. Compared

to the traditional Sanger shotgun technique, these new tech-

nologies are able to generate a huge amount of read data

at lower cost [14], [16]. Examples of already available such

technologies are sequencers from 454 Life Sciences/Roche,

Solexa/Illumina, and Applied Biosiciences/SOLiD. How-

ever, the length of generated reads is significantly shorter

compared to the Sanger method. For example, the Illumina

Genome Analyzer can generate up to 200 million (unpaired

or paired) reads in a single run with a read length of 50–150.

There have been many well optimized methods and tools

to do assembly for Sanger shotgun sequencing (i.e., read

lengths of around 500bps and 6-to-10-fold coverage). How-

ever these methods generally do not scale well for high-

coverage short read data. Thus, there is a high demand for

scalable assembly tools that can deal with high throughput

* Weiguo Liu is the corresponding author.

short read data. Consequently, several such tools have been

introduced recently. SSAKE [19], SHARCGS [6], VCAKE

[9], PE-Assembler [1], PASQUAL [12] and Taipan [17]

are based on the k-mer extension approach. However, this

approach is inaccurate for assembling repeat regions. In

order to resolve repeats, the de Bruijn graph-based approach

to assembly has been introduced in [15], which was then

implemented in the Euler assembly package. Euler-SR [4],

[3] is a further extension of Euler to assemble short read

data. Other published de Bruijn graph-based short read

de novo assemblers include ALLPATHS [2], Velvet [20],

ABySS [18], SOAPdenovo [11], YAGA [8], and PASHA

[13].

In this paper, we present HiPGA – a high performance de

Bruijn graph-based genome assembler for high-throughput

short read data. In order to overcome the large-scale file

I/O bottleneck and make full use of the compute power

of both shared-memory multi-core CPUs and distributed-

memory systems, we have used a parallelized file I/O scheme

as well as a hybrid parallelism for all stages of the as-

sembly pipeline. Experiments show that our implementation

achieves much better performance compared to two other

well parallelized assemblers: ABySS and PASHA. And

HiPGA also shows better scalability as the number of CPU

cores increases.

The rest of this paper is organized as follows. In Section

II, we introduce the de Bruijn graph-based genome assembly

method and give a brief summary of the previous work on

parallelization of short read assembly on different architec-

tures. Section III presents our method to accelerate the whole

assembly pipeline. Performance is evaluated in Section IV.

Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we first briefly describe the de Bruijn

graph-based genome assembly method and the four stages

involved in its pipeline. Then, we introduce the previous

work on accelerating short read assembly.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.68

576



Table I
A SEQUENTIAL EXECUTION PROFILING (IN SECONDS) OF THE FOUR STAGES OF PASHA USING DIFFERENT SHORT READ DATASETS ON AN INTEL

XEON E5650 2.67GHZ (BASED ON THE CODE FROM [13]).

Genome K-mer Graph Contig Scaffolding Overall
Datasets Generation Construction Generation
Bacillus 109.27 (19.85%) 138.53 (25.16%) 136.94 (24.88%) 165.75 (30.11%) 550.49

Bordetella 83.71 (19.12%) 112.62 (25.73%) 111.24 (25.41%) 130.14 (29.73%) 437.71

E.coli 155.59 (21.41%) 181.24 (24.94%) 178.78 (24.60%) 211.20 (29.06%) 726.81

read

AGTCCA

CCACCA

CCAAGT

k-mer (k=4)

AGTC GTCC TCCA

CCAC CACC ACCA

CCAA CAAG AAGT

CCAC CACC ACCA

CCAA CAAG AAGT

AGTC GTCC TCCA

de bruijn graph

Figure 1. Illustrations of constructing the preliminary de Bruijn graph
from k-mer set.

A. Genome Assembly using de Bruijn Graphs

The de Bruijn graph-based assembly method, introduced

in [15], is very suitable for representing the short read

overlap relationship. It uses k-mer as vertex, and read path

along the k-mers as edges on the graph. The graph size is

thus determined by the genome size and repeat content of the

sequenced sample rather than the high redundancy of deep

read coverage [11]. Hence, this method greatly reduces the

memory consumption and increases the assembly efficiency

in practice.

Once the k-mer set is ready, the de Bruijn graph-based

assembler will start constructing a preliminary de Bruijn

graph. That is, it will create an edge between two vertices (k-

mers) if and only if they have a suffix-prefix overlap of k−1
bases. Fig. 1 gives an illustration of how the preliminary de

Bruijn graph is built from a set of k-mers. Then, based on

this preliminary de Bruijn graph, a set of operations will be

done to generate the final scaffolds. Generally, the pipeline

of the de Bruijn graph-based assembly method consists of

four stages which are shown in Fig. 2. We briefly describe

each stage in the following. More details can be found in

[5] and [11].

Stage 1: This stage generates k-mers from short reads. Each

k-mer is defined as a contiguous sequence of k bases.

Stage 2: Stage 2 first constructs the preliminary de Bruijn

graph. Then a set of operations will be done to simplify the

generated graph. These operations include: (a) clipping the

short tips, (b) removing low-coverage paths, and (c) merging

bubbles. At the end of Stage 2, a set of linear chains are

generated.
Stage 3: Based on the previously generated linear chains,

Stage 3 outputs the unambiguous sequence fragments as

contigs.
Stage 4: Stage 4 realigns reads onto contigs and uses the

paired-end information to merge contigs into scaffolds.

reads k-mer

generation

k-mers de Bruijn graph

construction

linear

chains

Stage 2

contig

generation

Stage 2

contigs

scaffolding

Stage 4

scaffolds

Stage 1

Figure 2. The typical assembly pipeline.

PASHA is one of the well parallelized de Bruijn graph-

based short read assembler. It has been reported that com-

pared with other assemblers such as Velvet and SOAPden-

ovo, PASHA can deliver better accuracy while achieve the

fastest execution speed [13]. PASHA also follows the 4-stage

assembly pipeline shown in Fig. 2. A sequential execution

profiling of PASHA for different short read datasets (These

datasets include Bacillus, Bordetella, and E.coli with acces-

sion numbers DRR000002, ERR007648, and SRR001665

in the NCBI Sequence Read Archive (SRA).) shows the

breakdown of runtime in Table I. From Table I we can see

that in order to achieve good speedups, all four stages need

to be efficiently parallelized. We have also profiled the file

I/O and compute time of PASHA for assembly these datasets

(see Table II). From Table II we can see that the file I/O

dominates the runtime of each stage. So in order to achieve

better assembly efficiency, we should try to reduce the file

I/O time.
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Table II
A SEQUENTIAL EXECUTION PROFILING (IN SECONDS) OF THE FILE I/O AND COMPUTE TIME OF PASHA USING DIFFERENT SHORT READ DATASETS

ON AN INTEL XEON E5650 2.67GHZ (BASED ON THE CODE FROM [13]).

Genome Datasets K-mer Generation Graph Construction Contig Generation Scaffolding Overall

Bacillus I/O 108.96 (99.72%) 103.70 (74.86%) 88.87 (64.90%) 89.51 (54.00%) 391.04 (71.03%)

Computation 54.70 (50.06%) 79.02 (57.04%) 48.07 (35.10%) 76.24 (46.00%) 258.03 (46.87%)

Overall 109.27 (19.85%) 138.53 (25.16%) 136.94 (24.88%) 165.75 (30.08%) 550.49

Bordetella I/O 83.38 (99.61%) 81.28 (72.17%) 69.59 (62.56%) 71.12 (54.65%) 305.37 (69.77%)

Computation 37.23 (44.48%) 74.16 (65.85%) 41.65 (37.44%) 59.02 (45.35%) 212.06 (48.45%)

Overall 83.71 (19.12%) 112.62 (25.73%) 111.24 (25.41%) 130.14 (29.73%) 437.71

E.coli I/O 155.28 (99.80%) 148.67 (82.03%) 125.24 (70.05%) 128.47 (60.83%) 557.66 (76.73%)

Computation 77.21 (49.62%) 86.90 (47.95%) 53.54 (29.95%) 82.73 (39.17%) 300.38 (41.33%)

Overall 155.59 (21.41%) 181.24 (24.94%) 178.78 (24.60%) 211.20 (29.06%) 726.81

B. Previous Work on Accelerating Short Read Assembly

Because of the prohibitive memory consumption and long

execution time for assembling large genomes, there have

been a lot of approaches to parallelize the de Bruijn graph-

based assembler on parallel architectures. These approaches

can be classified into two categories: 1) multi-threading,

and 2) MPI. Multi-threaded approaches run on multi-core

CPUs such as standard dual/quad-core CPUs. SOAPden-

ovo [11] is a multi-threaded implementation. It parallelizes

the compute intensive portions of the assembly pipeline

on shared-memory architectures. MPI implementations are

designed for distributed memory systems which include PC

clusters and supercomputers such as Blue Gene. Examples

include ABySS [18], PASHA [13] and YAGA [8]. And we

have also presented our preliminary work on parallelizing

the de Bruijn graph-based assembly algorithm using multi-

threading and MPI [21]. However our presented method at

that time could only do assembly for small genomes and the

supported read length is very limited (less than 40).

ABySS [18] and PASHA [13] are close to the approach

presented in this paper since they also use both the small-

scale shared-memory multi-threading parallelism and the

large-scale distributed-memory parallelism to improve the

assembly efficiency. They parallelize Stages 1 and 2 of

the assembly pipeline using both multi-threading and MPI.

However, each MPI process in them needs to repeatedly

read the short read file sequentially, which makes the large-

scale short read file I/O a bottleneck. Moreover, because

the compute-intensive Stages 3 and 4 in PASHA and Stage

4 in ABySS are parallelized only using the multi-threaded

parallelism, they can not make full use of the compute

power of the distributed-memory architectures. Our solution

overcomes these bottlenecks by using a parallelized file

I/O scheme as well as a hybrid parallelism for the whole

assembly pipeline. Experiments show that the de Bruijn

graph-based assembly can be efficiently parallelized on both

shared-memory and distributed-memory architectures using

our approach.

III. DESIGN AND IMPLEMENTATION

Based on the characteristics of the assembly pipeline, we

have designed parallel algorithms for all stages using a hy-

brid parallel scheme – the small-scale shared-memory multi-

threading scheme and the large-scale distributed-memory

scheme, to overcome the file I/O bottleneck and gain

high assembly efficiency. And this hybrid parallel scheme

makes our program suitable for both multi-core CPUs and

distributed-memory systems. Fig. 3 shows the framework of

our implementation – HiPGA. In HiPGA, the short read file

is first divided evenly into a set of smaller sized subfiles.

All distributed processes then handle Stages 1 to 4 in a

multi-threaded fashion. In Stages 1 and 2, a parallelized

file I/O scheme is used and all processes will communicate

with each other to exchange k-mers and other linkage

information. In Stages 3 and 4, all processes will calculate

and send local linkage-related information to the master

process in a multi-threaded parallel way. In HiPGA, we

have packed the large number of small sized messages into

message vector so that to decrease the message passing

overhead in distributed-memory systems. We have used parts

of the source code from Velvet and PASHA with some

algorithmic and data structure changes for implementing

HiPGA. The use of these open-source code greatly reduces

the development time of our algorithm. HiPGA supports

the standard FASTA or FASTQ dataset format for both the

single-end and paired-end short reads.

A. Parallelized File I/O Scheme for k-mer Generation and
de Bruijn Graph Construction

In order to achieve a high file I/O efficiency, we have

used a parallelized file I/O scheme in HiPGA for the k-mer

generation and de Bruijn graph construction stages (see Fig.

4 and Fig. 5). Experiments show that our parallelized file

I/O scheme can greatly improve the file I/O efficiency in

practice.

In the k-mer generation stage, all subfiles are first dis-

tributed evenly to all processes. Then each process launches

m threads to extract k-mers from local subfiles in parallel.
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short read file

sub file sub file...

T0 Tm-1
... ...

P0

T0 Tm-1
...

Pn-1

k-mer file 0 k-mer file n-1...

T0 T1 T0 T1

linear chains

T0 Tm-1
... T0 Tm-1

...

P0 Pn-1

P0 Pn-1

contigs

P0 Pn-1

scaffolds

Step1

Step2

Step3

Step4

...

...

T0 Tm-1
... T0 Tm-1

......

Figure 3. The HiPGA algorithm framework. In Stages 1 and 2, all
processes will communicate with each other to exchange k-mers and other
linkage information. In Stages 3 and 4, all processes will send local linkage-
related information to the master process.

Each k-mer will be stored in one of the n local vectors

vi, where n is the total number of processes. The index

i of the vector that owns a specific k-mer is computed as

i = hk%n, where hk is a hash value calculated using a

linear congruential hash function. In our implementation,

we have defined a threshold for the maximal number of k-

mers in each vector. Once a vector reaches this threshold, a

communication procedure will be done among all processes.

In this procedure, process i will gather all k-mers in vi from

other processes. Algorithm 1 shows the pseudo code for this

procedure.

And to gain memory efficiency, the collected k-mers will

be locally distinguished and stored in the Google Sparse

Hash library (http://code.google.com/p/google-sparsehash).

After the communication procedure, all local vectors are

cleaned up and each process continues extracting k-mers

from local subfiles. At last, each process stores all the

identified k-mers in the sparse hash set into a local k-mer

short read file

subfile subfile

T0

Tm-1

...

v0 vn-1

...

P0

T0

Tm-1

...

v0 vn-1

...

Pn-1

MPI

k-mer

MPI

k-mer

...

...

k-mer file 0 k-mer file n-1...

Figure 4. Illustration of our parallelized k-mer generation and distribution.

subfile subfile

v0 vn-1

...

P0 Pn

MPI

k-mer &

related bases

MPI
...

...

k-mer &

related bases

v0 Vn-1

...

P0

T0

T1

preliminary

de Bruijn

graph
MPI

k-mer &

direction &

right base

MPI
...

k-mer &

direction &

right base

P0

T0

T1

preliminary

de Bruijn

graph

linear chain file 0 linear chain file n-1...

linear chain file 0

Figure 5. Illustration of our parallelized de Bruijn graph construction and
simplification.

file. In HiPGA, the total size of n vectors on each process

depends on the RAM available. So, our scheme works well

even only small sized RAM is available on each process.

In the de Bruijn graph construction stage, all processes

first load the previously generated local k-mer file into a k-

mer vector table. Then each process extracts k-mers and
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Algorithm 1
1: procedure EXCHANGEKMERS

2: for all processes do
3: MPI Gather the number of k-mers belong to it

4: Malloc memory for local k-mer vectors

5: Initialize the offset and receiveCount arrays

6: MPI Gather k-mers from other processes

7: Insert k-mers into the Google hash heap

8: end for
9: end procedure

corresponding left and right bases from local subfiles in

parallel. Similar to the k-mer generation stage, we also

use n local vectors to temporarily store these k-mers and

related bases. And if a local vector is full, a communication

procedure will be done among all processes to exchange

information stored in these vectors. Once all k-mers and

related bases are ready, each process will use them to search

the k-mer vector table so that to get the multiplicity and

linkage information for each k-mer. k-mers, together with

the multiplicity and linkage information, are used by each

process to generate the local preliminary de Bruijn graph.

Since there are still spurious linkages, such as tips, low-
coverage paths, and bubbles, in the generated preliminary

de Bruijn graph, we need to further simplify them. In our

method, each process launches two threads T0 and T1 to

do the graph simplification. T0 is used to do the spurious

linkage identification and removal work. T1 is used to

exchange information such as k-mers, linkage directions,

and right bases of k-mers among processes. After the graph

simplification step, the linear chains are produced.

B. Distributed Contig Generation and Scaffolding

In order to make full use of the compute power of

distributed-memory systems, we have used both the shared-

memory multi-threading and distributed-memory parallelism

in HiPGA to implement the contig generation and scaffold-

ing stages (see Fig. 6 and Fig. 7).

In the contig generation stage, each process first produces

a k-mer & chain location graph using all k-mers in the linear

chains. Then each process aligns short reads in local subfiles

to the k-mer & chain location graph in a multi-threaded

parallel way. During this procedure, if two adjacent k-mers

in a read belong to two different linear chains, the IDs of

these two linear chains will be recorded in a local ID pair

array. After all local k-mers are aligned, each process will

send the local ID pair array to the master process. The master

process will use the information in these received ID pair

arrays to connect related linear chains into contigs.

Finally in the scaffolding stage, each process first pro-

duces a k-mer & contig location graph using all k-mers in

previously generated contigs. Then each process aligns two

pair-end short reads in local subfiles to the k-mer & contig

linear chains

T0

Tm-1

...

k-mer & chain

location graph

P0

T0

Tm-1

...

Pn-1

...
k-mer & chain

location graph

linear chains &

ID pair array

P0

preID &

nextID

preID &

nextID

preID &

nextID

contigs

Figure 6. Illustration of our distributed contig generation method.

contigs

T0

Tm-1

...

k-mer & contigs

location graph

P0

T0

Tm-1

...

Pn-1

...

contigs &

ID pair array &

mapping info

P0

preID &

nextID &

mapping info

scaffolds

k-mer & contigs

location graph

preID &

nextID &

mapping info

preID &

nextID &

mapping info

Figure 7. Illustration of our distributed scaffolding method.

location graph in a multi-threaded parallel way. Similar to

the contig generation stage, if adjacent k-mers in a pair

reads belong to two different contigs, the IDs of these two

contigs will be recorded in a local ID pair array. And the

mapping information of these two pair-end short reads, such
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as mapping locations and node identifiers, is stored in a local

file. After all local pair-end short reads are aligned, each

process will send the local ID pair array and the mapping

information file to the master process. The master process

will further connect related contigs into scaffolds.

IV. PERFORMANCE EVALUATION

HiPGA is currently implemented using standard C++ and

the MPI library provided by OpenMPI 1.4.2 [7]. We have

executed the program on a compute cluster. The cluster

comprises eight nodes and each node contains two Intel

Xeon E5650 six-core 2.67GHz CPU with 24GB shared

RAM, running the system of Red Hat Enterprise Linux

Server release 5.4. All the nodes are connected with each

other by a high-speed Infiniband switch.

Table III
SHORT READ DATASETS USED FOR OUR EXPERIMENTS.

Bacillus Bordetella E.coli Yoruba
Accession no. SRR1014757 SRR942682 SRR1002800 ERX004001

Read length 100 101 101 76

No. of reads 79,998,388 24,746,998 30,608,372 234,562,514

No. of k-mers* 234,122,021 100,377,811 106,878,246 4,362,205,386

Genome size 5,411,809 3,693,053 5,540,893 3,234,834,689

* k=29

We have assembled three paired-end short read datasets

from three different genomes and the Yoruba individ-

ual dataset. The first three paired-end read datasets:

Bacillus, Bordetella and E.coli have accession numbers

SRR1014757, SRR942682 and SRR1002800 in the NCBI

Sequence Read Archive (SRA). The reference genome of

the Bacillus dataset is Bacillus cereus with the accession

number NC 004722 in GenBank; the reference genome

of the Bordetella dataset is Bordetella holmesii with the

accession number NZ AOEW00000000; and the reference

genome of the E.coli dataset is Escherichia coli J96 with the

accession number NZ ALIN02000000. The Yoruba individ-

ual dataset contains seven sub-datasets with accession num-

bers ERR010996, ERR010997, ERR010998, ERR010999,

ERR011000, ERR011001 and ERR011002, all come from

the library MMS6. We have compared the performance of

HiPGA to two parallelized assemblers: PASHA (version

1.0.10) and ABySS (version 1.3.7). Because Velvet requires

a large amount of memory to store the read mapping

locations and paired-end information along with the graph,

we can not execute it to assemble the above mentioned

datasets with the hardware used in our tests.

The assembly quality of HiPGA, ABySS and PASHA is

compared in terms of NG50, NG80, and the maximum &

mean scaffold sizes. To compute the NG50 and NG80, first

we need to order all scaffolds by their lengths. And then we

add the lengths from the largest to the smallest until the sum

equals or exceeds 50% and 80% of the reference genome

size respectively. In this paper, we use the same reference

genome size to calculate the NG50 & NG80 scaffold size

for all assemblers. For the first three paired-end short read

datasets, we only consider scaffolds with the length ≥ 150

bases and for the Yoruba individual dataset, we only consider

scaffolds with the length ≥ 100. The genome coverage is

computed from the results obtained from aligning scaffolds

to their reference genomes using BLAT version 35 [10]. And

in our experiments, if not specified, the parameter ’k=29’
(that is the k-mer size is 29) will be used for all of these

three assemblers.

Table IV
ASSEMBLY RESULTS FOR BACILLUS ON 8 CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 232 236 46,632

Sum (bps) 5,269,941 5,297,869 5,419,381

Max 204,503 206,734 126,582

Mean 22,715 22,448 20,341

NG50 41,644 41,623 32,835

NG80 20,467 23,971 15,575

Genome coverage 97.38% 97.89% 99.02%

Time (in minutes) 72 170 220

Table V
ASSEMBLY RESULTS FOR BORDETELLA ON 8 CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 92 86 184

Sum (bps) 3,452,634 3,452,948 3,462,289

Max 164,187 163,775 123,943

Mean 33,849 40,150 23,749

NG50 77,064 82,835 29,330

NG80 37,675 32,938 16,304

Genome coverage 93.49% 93.50% 93.75%

Time (in minutes) 30 61 70

Table VI
ASSEMBLY RESULTS FOR E.COLI ON 8 CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 65 66 133

Sum (bps) 5,143,160 5,143,080 5,133,924

Max 1,235,423 739,214 405,566

Mean 79,120 77,925 83,259

NG50 326,170 325,964 145,158

NG80 107,334 118,569 75,373

Genome coverage 92.82% 92.82% 92.65%

Time (in minutes) 38 74 83

First, we use Bacillus, Bordetella and E.coli to eval-

uate different assemblers in terms of assembly quality and

execution speed. Because the last two stages of PASHA and
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the last stage of ABySS can only run on a single node, we

first evaluate these three assemblers on 8 CPU cores of a

cluster node. The parameters of all assemblers have been

carefully tuned to gain the highest quality of each dataset.

In our test, HiPGA uses four processes (each one has two

threads) for all stages; PASHA uses four processes (each one

has two threads) for the first two stages and uses 8 threads

for the last two stages; ABySS uses four processes (each

one has two threads) for the first three stages and uses 8

threads for the scaffolding stage. Table IV, V, VI report the

assembly quality and performance comparison of HiPGA,

ABySS, and PASHA. From them we can see that in our

tests, HiPGA achieves speedups up to 3.1 while producing

comparable accuracy compared to ABySS and PASHA.

In order to compare the scalability of HiPGA, ABySS, and

PASHA on the cluster, we have run them using different

number of CPU cores. Fig. 8 shows the execution time

of them using up to 64 CPU cores on the cluster. From

it we can see HiPGA has a much better scalability when

the number of CPU cores increases. And because ABySS

and PASHA parallelize partial stages only using the multi-

threaded parallelism, their scalability on the cluster is very

limited. Table VII, VIII, IX show the assembly quality and

performance comparison of HiPGA, ABySS, and PASHA

using 64 CPU cores. From them we can see that HiPGA

achieves much better performance (with speedups up to

7) while producing better or similar accuracy compared to

ABySS and PASHA.

Table VII
ASSEMBLY RESULTS FOR BACILLUS ON 64 CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 233 236 392

Sum (bps) 5,260,094 5,297,239 5,388,145

Max 204,504 206,739 125,521

Mean 22,814 22,637 22,834

NG50 41,623 41,644 32,712

NG80 23,727 20,467 15,659

Genome coverage 97.19% 97.88% 99.56%

Time (in minutes) 27 151 189

To compare the performance of HiPGA, ABySS, And

PASHA for processing large genomes, we have conducted

experiments using the Yoruba individual dataset. For the

whole genome of Yoruba individual dataset, the number of

k-mers (k=29) is 4,362,205,386 and the size of the simplified

de Bruijn graph is about 5GB. Because the last two stages

of PASHA and the scaffolding stage of ABySS can only

execute on a single node which has only 24GB RAM,

PASHA and ABySS are unable to complete the assembly

procedure for the whole genome of Yoruba individual. In

our experiments, we only use the first three sub-datasets of

the Yoruba individual dataset. The number of reads in the

Table VIII
ASSEMBLY RESULTS FOR BORDETELLA ON 64 CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 103 93 184

Sum (bps) 3,451,818 3,452,818 3,453,186

Max 163,782 163,676 121,482

Mean 37,127 37,127 28,415

NG50 77,624 87,624 29,124

NG80 44,746 42,796 17,092

Genome coverage 93.49% 93.49% 93.50%

Time (in minutes) 8 42 51

Table IX
ASSEMBLY RESULTS FOR E.COLI ON 64 CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 66 67 135

Sum (bps) 5,142,768 5,142,067 5,124,237

Max 1,230,241 739,214 404,243

Mean 85,964 80,335 84,153

NG50 325,964 325,823 144,131

NG80 108,569 118,568 78,343

Genome coverage 92.81% 92.80% 92.48%

Time (in minutes) 10 60 63

first three sub-datasets is 95,420,416 and the corresponding

number of k-mers (k=29) in the preliminary de Bruijn graph

is 2,482,802,325. We have used 64 CPU cores in our tests.

Table X shows the assembly results. From it we can see

that HiPGA also achieves the fastest execution speed while

delivering comparable accuracy compared to ABySS and

PASHA.

Table X
ASSEMBLY RESULTS FOR THE YORUBA INDIVIDUAL DATASET ON 64

CPU CORES.

HiPGA PASHA ABySS
No. of scaffolds 1,546,244 1,557,368 2,021,375

Sum (bps) 571,606,978 575,784,992 583,259,736

Max 69,592 69,589 59,261

Mean 376 376 329

NG50 424 420 403

NG80 247 248 235

Time (in minutes) 96 234 391

Fig. 9 shows the runtime of each stage of HiPGA and

PASHA for processing the Yoruba individual dataset. From

it we can see that each stage of HiPGA achieves much better

performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented HiPGA – a paral-

lelized de Bruijn graph-based genome assembler for high-
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Figure 8. Runtime comparison using up to 64 CPU cores for assembling the Bacillus, Bordetella, and E.coli datasets.
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Figure 9. Stage runtime comparison of HiPGA and PASHA on 64 CPU
cores for assembling the Yoruba individual dataset.

throughput short read data. In order to make full use of

the compute power of both shared-memory multi-core CPUs

and distributed-memory systems, we have used a parallelized

file I/O scheme as well as a hybrid parallelism for the four

stages of the assembly pipeline. Evaluations using three real

paired-end small genome datasets and the Yoruba individual

large genome dataset show that compared to two other

well parallelized assemblers: ABySS and PASHA, HiPGA

achieves speedups up to 7 while delivering comparable

accuracy on 64 CPU cores of a compute cluster.

The exponential growth of short read datasets demands

even more parallel and distributed assembly solutions in the

future. Because the performance of many-core architectures

grows much faster than the performance of standard multi-

core CPUs, our future work includes designing efficient

parallel assembly algorithms on many-core architectures

such as GPUs and MIC.
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