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Abstract—This paper details a distributed-memory implemen-
tation of Chrysalis, part of the popular Trinity workflow used for
de novo transcriptome assembly. We have implemented changes
to Chrysalis, which was previously multi-threaded for shared-
memory architectures, to change it to a hybrid implementation
which uses both MPI and OpenMP. With the new hybrid imple-
mentation, we report speedups of about a factor of twenty for
both GraphFromFasta and ReadsToTranscripts on an iDataPlex
cluster for a sugarbeet dataset containing around 130 million
reads. Along with the hybrid implementation, we also use PyFasta
to speed up Bowtie execution by a factor of three which is also
part of the Trinity workflow. Overall, we reduce the runtime of
the Chrysalis step of the Trinity workflow from over 50 hours to
less than 5 hours for the sugarbeet dataset. By enabling the use
of multi-node clusters, this implementation is a significant step
towards making de novo transcriptome assembly feasible for ever
bigger transcriptome datasets.

I. INTRODUCTION

High throughput sequencing technologies are making a

big impact in many areas of life sciences. The most well-

known technique is genome sequencing, whereby an organ-

ism’s whole complement of DNA is sequenced. Reference

genomes are being generated for an increasing number of

organisms, including some extinct species [1]. Variation within

a species is now being considered [2], including hypervariation

in cancers [3]. Nevertheless, sequencing is applied in many

other areas of life sciences including transcriptomics, ChIP-

Seq, metagenomics, etc.

In this work, we have focussed on transcriptomics in which

a library of cDNA derived from a sample of RNA is se-

quenced. The aim is to sequence the mRNA corresponding

to transcribed genes, and various techniques exist to select for

mRNA or remove other kinds of RNA (such as ribosomal).

Transcriptomic sequencing differs from genome sequencing

in two crucial ways. Firstly, the population of mRNA depends

1joint lead author

on the expression levels of genes in the chosen sample, and

there can be a very large dynamic range. Secondly, in higher

organisms genes are post-processed by alternative splicing to

generate multiple isoforms, which need to be distinguished.

Transcriptomics gives information on which genes are ex-

pressed in a given cell type, under given conditions, at a

given time point. The number of reads which map to a given

gene or isoform is a direct measure of the expression level.

Thus, transcriptomics is a major route to the study of gene

expression, and is rapidly replacing microarrays as the method

of choice.

As in genome sequencing, the cDNA libraries are chopped

up into millions of short reads which are then sequenced.

The computational task is then to re-assemble these sequenced

reads into a set of transcripts corresponding to gene products.

As the sequencing technology improves, this computational

step is becoming the principal bottleneck. A dataset consists

of a large set of sequenced reads (provided as a FASTA or

FASTQ file) which can have a size on the same order as for

genome sequencing. Unlike genome sequencing though, an

organism can have multiple transcriptomes corresponding to

different cell types or conditions. The recommended practice

is to sequence these together into a consensus transcriptome,

and thus the size of the dataset is multiplied by the number

of experiments considered.

Transcriptome assembly thus works on very large datasets

and can require considerable compute resources. It is a high-

performance computing (HPC) problem. Nevertheless, many

of the commonly-used bioinformatics tools were developed

for desktop applications, and most assume a shared mem-

ory architecture. Such software struggles with today’s large

datasets, taking days to run routine jobs, and often exceeding

the available memory. At the same time, the trend for HPC

is towards more parallelism, with larger numbers of lower

power nodes [4]. Adapting bioinformatics tools for multi-node

distributed memory architectures is thus essential. With a few
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notable exceptions [5][6][7], distributed memory architectures

are not well supported by existing bioinformatics tools.

We have chosen to look at the Trinity pipeline [8] which is

one of the most popular packages for transcriptomic assembly

[9]. It was originally created for de novo assembly, although

there is now a protocol for assembly against a reference

genome. De novo assembly constructs the transcriptome solely

from the available reads, and is useful when there is no

reference genome available, or if there are likely to be large

structural variations (e.g. in cancer cell lines) [10].

Trinity is a pipeline implemented in Perl which wraps a

number of underlying programs implementing different stages

of the assembly [11]. In it’s evaluation, Trinity has been

found to be accurate in transcriptome assembly under a variety

of conditions, but with high runtimes [12]. The pipeline is

very heterogenous in its computational requirements, with

early stages requiring large amounts of memory, and later

stages being more CPU-intensive. Trinity’s assembly pipeline

consists of four consecutive modules: Jellyfish, Inchworm,

Chrysalis and Butterfly. The modules are separate executables,

written in different languages. The Chrysalis step itself is

composed of separate submodules including Bowtie [13],

GraphFromFasta and ReadsToTranscripts. Previous attempts

to speed up Trinity have focused on using OpenMP threads

in a shared-memory architecture and reducing I/O operations

[14]. We present results here for the Chrysalis module, aimed

at speeding up this section of the pipeline by spreading the

load across multiple distributed nodes, working seamlessly

with the already existing OpenMP implementation. The initial

Bowtie step which maps reads to Inchworm contigs has been

parallelised by splitting the contigs across MPI processes.

Parts of GraphFromFasta and ReadsToTranscripts which were

written in OpenMP for shared memory have been changed to

a hybrid implementation using MPI across distributed nodes,

and OpenMP threads within a node.

We have tested the MPI-enabled hybrid version across a

number of datasets, comparing the quality of the resulting

transcript as well as the time taken. Repeated runs of the

shared-memory version of Chrysalis show a distribution of

metrics of the transcriptome, due to the stochastic nature of

some of the assembly steps. The results from the MPI-enabled

version also show a distribution, which overlaps the shared-

memory distribution and is not significantly different.

In Section II, we summarise the algorithms underlying

the different components of the Trinity pipeline, along with

benchmarking of Trinity to illustrate the computational re-

quirements. Next, in Section III we give a detailed description

of our MPI parallelisation scheme and its implementation, and

Section IV gives details of our validation method. Results are

given in Section V, and we conclude in Section VI with an

outlook on future improvements.

II. EXISTING ALGORITHMS AND IMPLEMENTATION

De-novo transcriptome assembly does not depend on a

reference genome, instead depending on the redundancy of

short reads to find sufficient overlaps between the reads. It

subsequently uses these overlaps to assemble a set of tran-

scripts corresponding to expressed genes. For a comprehensive

overview of the transcript reconstruction methods for RNA-

seq, please refer to [15].

A. Trinity modules

The Trinity assembler is a heterogenous workflow com-

prised of modules (or software programs), which when run one

after the other through a single Perl script (Trinity.pl), produces

the reconstructed transcriptomes as the final output. In recent

years, Trinity has been converted to a modular platform, using

third-party tools that can be swapped in and out in future

releases. The software modules exchange data through files;

the files being output from one software module are then

consumed by the following module. It is to be noted that

Trinity also includes tools such as RSEM [16], edgeR [17] etc.

that take the output of the Trinity workflow and estimate levels

of gene expression, in particular for differential expression

analysis. We do not include the description of those tools in

this paper. For information on these tools, please refer to [18].

As mentioned earlier, Trinity’s assembly pipeline consists of

four consecutive modules: Jellyfish, Inchworm, Chrysalis and

Butterfly. We provide a description and the function of each

component below: for more details, please refer to [8].

• Jellyfish: The first step in the Trinity workflow is Jelly-

fish, which is a tool for fast, memory-efficient counting

of k-mers (substrings of length k) in DNA [19]. Jellyfish

can read FASTA and multi-FASTA files, outputting it’s

k-mer counts in a binary format. In the Trinity workflow,

jellyfish count which outputs the counts of k-mers is

followed by jellyfish dump, which converts the binary

format into text format. The output of the two Jellyfish

commands are thus files containing information on all

k-mers extracted from the short reads with their counts.

Jellyfish can output a single or multiple files depending on

the available memory of the system. Jellyfish’s output can

be extremely voluminous - for example for the sugarbeet

dataset for which we provide benchmarking results, the

RNA-seq fasta file size is 15 GB, while the Jellyfish

output is greater than 100 GB. Another application for

k-mer counting that uses less memory than Jellyfish is

DSK [20]; however this is not part of the Trinity pipeline

yet. Jellyfish’s output is consumed by Inchworm, the next

step in the Trinity pipeline workflow.

• Inchworm: Jellyfish’s output of k-mers and k-mer counts

is read by Inchworm as a first step. Since Jellyfish’s

output can be voluminous, the reading of the k-mers into

Inchworm can also take a substantial amount of time.

Inchworm constructs a hash table object consisting of

pairs or duals - the duals are comprised of the k-mers

along with the read abundance of the kmer. Constructing

the hash table object from the k-mer file using mul-

tiple OpenMP threads can be both time and memory

intensive - since Inchworm keeps this entire hash table

object in memory, Inchworm’s memory footprint can be

extremely high. This hash table object is subsequently
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sorted in order of decreasing k-mer abundance. Inchworm

examines each unique k-mer starting from the most

abundant, and generates Inchworm contigs using a greedy

extension based on (k-1)-mer overlaps. These contigs are

subsequently written to disk. Inchworm thus goes through

the following steps:

– Constructs a k-mer dictionary from all sequence

reads removing likely error-containing k-mers, and

sorts them in decreasing order of abundance.

– Selects the most frequent k-mer in the dictionary to

seed a contig assembly.

– Extends the seed in each direction by finding the

highest occuring k-mer with a k-1 overlap as shown

in Figure 1.

– Extends the sequence in either direction until it is

not extended further, reporting the linear contig.

– Repeats these steps with the next abundant k-mer

until the entire dictionary is exhausted.

In summary, Inchworm reads in the massive k-mer file

written by Jellyfish, does a greedy extension of the kmers

in decreasing order of abundance (consisting of the steps

above), and then writes a comparatively much smaller file

of contigs.

• Chrysalis: Chrysalis clusters minimally overlapping con-

tigs obtained from Inchworm into separate sets of con-

nected components, followed by construction of de Bruijn

graphs for each component. Chrysalis itself is composed

of two separate modules - GraphFromFasta and Read-
sToTranscripts - which specifically do the following:

– GraphFromFasta clusters related Inchworm contigs

into so-called components. It does this by weld-

ing pairs of contigs together if read support exists,

and subsequently clustering Inchworm contigs using

these welds and building de Bruijn graphs for each

component. Both of these steps are already paral-

lelized with OpenMP threads, but since each possible

pair of Inchworm contigs has to be compared, this

process can still be extremely compute-intensive.

– ReadsToTranscripts assigns each read to the compo-

nent with which it shares the largest number of k-

mers, as well as determining the regions within each

read that contribute k-mers to the component.

Apart from the components mentioned above, Trinity also

uses Bowtie (a third-party tool) to align input reads to

Inchworm contigs.

• Butterfly: Butterfly reconstructs feasible full-length linear

transcripts by reconciling the individual de Bruijn graphs

generated by Chrysalis with the original reads and paired

end data. Each Chrysalis component or graph can pro-

duce several linear transcripts, which in most cases will

correspond to alternative splicing of the gene product.

B. Benchmarking of Original Trinity

To understand the basic characteristics of Trinity perfor-

mance, we measured memory usage and runtime of each

Fig. 1. Seed extension by k-mer with (k-1) overlaps.

step in Trinity using the Collectl tool [21] distributed with

Trinity. To perform this run, Trinity was compiled using GNU

compilers and the performance evaluated using a sugarbeet

RNA-seq dataset kindly provided by Rothamsted Research,

UK. The dataset is 15 GB in size on disk and contains

129.8 M reads, with two subsets of 9 GB (79.2 M single

end and left reads) and 6 GB (50.6 M right reads). Our

sugarbeet dataset is larger than a typical test dataset in order

to illustrate the computational challenges. Nevertheless, it is

only representative of a routine RNA-Seq experiment, and

much larger datasets are now being generated by sequencing

facilities. Since Trinity already came with support for multiple

OpenMP threads, this initial run was done using 16 threads on

a single iDataPlex node at the Hartree Centre, UK. A single

iDataPlex node at the Hartree Centre comprises 2x 8 core 2.6

Ghz Intel SandyBridge processors, with 256 GB of memory.

Figure 2 shows the results of this original Trinity run, showing

the RAM usage on the Y-axis with the runtime (in hours) along

the X-axis.

Fig. 2. Measurement of RAM usage (Y-axis) and the runtime (X-axis) of
Trinity workflow run using single node of 16 cores and 256 GB of memory
for the sugarbeet dataset.

As can be seen from Figure 2, it is clear that even for sugar-

beet dataset, the runtime of the entire Trinity pipeline is close

to 60 hours. Chrysalis is seen as the most time-intensive phase

of the Trinity pipeline. The Chrysalis phase itself is composed

of several sub-steps: Bowtie, GraphFromFasta, ReadsToTran-

scripts, FastaToDebruijn and QuantityGraph. Most of the run-

time in Chrysalis is in three steps: Bowtie, GraphFromFasta

and ReadsToTranscript, which appear in the same order in the

Chrysalis step. For this reason, we decided to focus our par-

allelization efforts mainly on these three components. Graph-

FromFasta and ReadsToTranscripts are already parallelized for

a shared-memory architecture with OpenMP threads. Thus, our
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efforts were focused on a distributed memory implementation

of these components, that works with the existing OpenMP

implementation. For Bowtie, we leverage PyFasta [22], that

can be used to split the target sequences amongst the MPI

processes, thus not requiring any source code changes. In the

next Section III, we include details on our parallelization, with

the subsequent computational speedups reported in Section V.

III. PARALLELIZATION OF TRINITY WORKFLOW

As can be seen from the previous description of Trinity

modules and benchmarking results, Trinity software is meant

for usage only on a shared-memory machine. To improve the

performance of the Trinity workflow, we focused on the most

compute-intensive parts of Trinity which includes Bowtie,

GraphFromFasta and ReadsToTranscripts.

We also had to be careful that our additional MPI code

works well with the existing OpenMP code that is already

being used for most of the time-intensive loops in Chrysalis;

thus the OpenMP sections had to be changed to a hybrid

model using MPI across multiple nodes, and OpenMP within a

node. In the subsections below, we describe the changes made

for the MPI implementation of Bowtie, GraphFromFasta and

ReadsToTranscripts. We detail our parallel implementations

below in the order that they are run in the Chrysalis workflow.

A. MPI implementation of Bowtie

The main objective of Chrysalis is building Inchworm

bundles where each bundle is a cluster of Inchworm contigs.

The Inchworm contigs in the same bundle are used for full

reconstruction of transcripts. To build Inchworm bundles,

Chrysalis first aligns input reads to Inchworm contigs using

Bowtie. Based on the output from Bowtie alignment, the

subsequent step searches pairs of Inchworm contigs of which

both ends are to be combined for the construction of scaffold,

provided that some of input reads are aligned onto single end

of each contigs. This output is later combined with “welding”

pairs of Inchworm contigs from GraphFromFasta for full

construction of Inchworm bundles. More details of “welding”

pairs of Inchworm contigs are described in the following

section.

Bowtie already has an option for using multiple threads

simultaneously on a single node to achieve a faster alignment

speed. However, with millions of input reads, it can require

several hours of runtime as shown in Figure 3. To speed up

the alignment process, we ran Bowtie on multiple nodes by

splitting the target sequences of Bowtie, i.e. the Fasta file

of Inchworm contigs. The Fasta file was partitioned using

the PyFasta python module, which evenly splits the target

sequences amongst the rank nodes for parallel alignment

processing. Each node then produces an alignment output file

in SAM format, and the files from all nodes are merged into

a single file at the end of the job. Our approach is different

from [23], which did not use MPI, but looked at different

partitioning of reads and genomes over nodes. Our partitioning

of the Inchworm contigs over nodes is a special case of their

more general study.

B. MPI implementation of GraphFromFasta

GraphFromFasta contains two compute-intensive loops. The

first loop goes through each Inchworm contig; first, it finds

all possible k-mers from the current contig, and subsequently

it harvests ”welding” subsequences which match sub-regions

of other contigs. The size of the welding subsequence is 2k
consisting of the seed k-mer and left- and right-flanking k

2 -

mers. That is, the first loop decides if common subsequence

exists to ”weld” two Inchworm contigs into the same Inch-

worm bundle at the end of GraphFromFasta. The loop is

already multi-threaded with OpenMP threads; since the work

done per Inchworm contig is not uniform (depending on the

contig, either it is welded with other nchworm contigs or

not), the OpenMP scheduling policy is dynamic. Each thread

gets multiple Inchworm contigs, working on them until they

run out, at which point they again get multiple contigs. The

“chunksize” or the number of Inchworm contigs processed

by each OpenMP thread is proportional to the number of

Inchworm contigs divided by the number of threads.

Our focus was to change this loop into a hybrid loop, with

additional speedup coming from the use of multiple nodes,

each running multiple OpenMP threads. In the beginning, we

pre-allocated chunks of Inchworm contigs to each MPI pro-

cess. However, this did not give us a good speedup, especially

when using the multiple threads. Our current implementation

uses a “chunked round robin” strategy with each MPI process

getting a chunk, distributing to its multiple threads, and then

working on the next chunk. Mathematically, in the outer loop,

chunk i consisting of n Inchworm contigs is allocated to MPI

rank p if i(modulo)p = 0. The chunk consisting of n contigs

is subsequently divided amongst the OpenMP threads in an

inner loop. A contig’s data is thus accessed by the sum of the

index of the chunk with the index of the contig within the

chunk. The OpenMP scheduling strategy is kept as dynamic

as in the original loop. We had to be careful with such a

strategy however, as there might be the case that some MPI

processes might still try to get a full chunk, even though the

number of Inchworm contigs left is less than the chunk size.

Thus, the end index of the inner thread loop might have to

be changed depending on how many Inchworm contigs are

left for the MPI process. Figure 3 shows our “chunked round

robin” distribution strategy.

Once all the MPI processes are done, they have a vector

of the “welding” subsequences, which have to be pooled

together on each rank from every rank before the second loop.

As a first step, the vector of the subsequences are packed

into a single sequence for MPI communication. Consequently,

each MPI process then exchanges the size of this packed

sequence to every other rank for subsequent communication

using MPI Allgatherv which pools together the sequences on

every rank. At the end of the first loop, every rank, thus has a

pool of sequences combined from every other rank. This pool

of sequences is subsequently used for the second loop.

The second compute-intensive loop finds pairs of Inchworm

contigs sharing any “welding” subsequence harvested from

569



���������	�
��

�������	���

�������	���

�������	��

�������	�
�

�������	���

����������������

�������
���

�������
���

�������
���

�������
���

�������
���

�������
���

����	�����

�������	���
��

�������
���
�������	��
��������������
����������	�

�

Fig. 3. Chunked round robin strategy for hybrid MPI + OpenMP code with
4 MPI processes and 2 OpenMP threads as an example.

the first loop. Our “chunked round-robin” strategy for the

distribution of Inchworm contigs is also used in this loop.

The output of the second loop is the list of indices for

pairing Inchworm contigs for “welding”, which is pooled

on every rank in a similar way as in the first loop. First,

the integer values for pairing indices are packed into single

integer array for MPI communication. Subsequently, each

MPI process exchanges the size of this integer array to other

ranks for communication which is then used for pooling the

pairing indices together on every rank. Since only integer

arrays are exchanged, the second loop uses substantially less

communication compared to the first loop where vectors of

strings are exchanged between rank nodes.

C. MPI implementation of ReadsToTranscripts

ReadsToTranscripts assigns each input read to the Inchworm

bundle against which the largest number of its constituent k-

mers align. Since ReadsToTranscripts works with the input

reads file which can be extremely large, ReadsToTranscripts

does not try to load the entire input reads file into memory,

but instead relies on a streaming reads model. This is opposite

to GraphFromFasta; since GraphFromFasta only works with

the Inchworm contig file which can be much smaller, it

reads the entire file into memory. ReadsToTranscripts uploads

chunk of input reads from the file into memory depending

on a command-line parameter max mem reads which decides

the number of input reads uploaded into memory at a time.

These reads are inserted into a vector of strings, which is

then used in the compute-intensive part of the loop. This

part links each input read to the Inchworm bundle for which

the largest number of its possible k-mers are aligned. This

compute intensive loop is also OpenMP enabled with the set

of uploaded input reads distributed over the OpenMP threads.

For a hybrid implementation, it was obvious that we

needed to parallelize the uploading of the short reads across

the multiple MPI processes. One of our strategies was to let

only a master node or rank read the sequences and distribute

to the other “slave” nodes. However, this strategy involves

relatively heavy communications between master and slave

nodes which leads to a bottleneck particularly as the number

of slave nodes increases. Our second updated implementation

allowed every rank to read the max mem reads by counting

the number of chunks of the max mem reads uploaded

into memory by a MPI process. If this count value is not a

multiple of the rank, then the MPI process simple discards

the uploaded input reads, and then reads another chunk of the

input reads. This process continues until the count value is a

multiple of the process’s rank, at which point the reads are

distributed amongst the OpenMP threads of this MPI process.

This approach does make every process read redundant data

(each process in fact reads the entire file), but excludes the

necessity of MPI communication.

At the end of ReadsToTranscripts, a file with information on

the reads aligned to the Inchworm contigs is written by each

process. There is a final command at the end by the master

node which combines the multiple files into a single file with

a simple cat command. We have found the overhead of this

concatenation step to be fairly low; another option is merging

the data at the root process from all the processes and only

let the root process write the final output.

Our current software methodology works as follows:

Trinity.pl which is the Perl script that calls all the Trinity

components has been extended with an argument for the

number of processes (nprocs). This argument is then used

in the command-line for the Chrysalis executable, which

calls GraphFromFasta and ReadsToTranscripts separately

from within it’s source code. If the source code is compiled

with MPI support primitive enabled, the command line for

GraphFromFasta and ReadsToTranscripts is prepended with

a suitable MPI runtime mechanism (such as mpirun -np
nprocs) that allows both of these software modules to be

run with multiple processes. In Section IV, we show the

validation methodology of our parallel implementation. In

Section V, we show the performance results obtained by the

MPI enabled GraphFromFasta and ReadsToTranscripts, as

well as the distributed version of Bowtie.

IV. VALIDATION OF PARALLEL TRINITY

To show that the hybrid parallelized Trinity produces equiv-

alent results in the reconstruction of transcripts to the original

version of Trinity, we performed two sets of validation tests.

These tests indicate that there is no significant difference in

the output between both versions of Trinity. It should be noted

that Trinity produces slightly indeterministic [18] output, in

which the outputs from multiple runs using the same input

data set can be slightly different, and therefore we do not

expect identical results between both versions of the code.

The first test is an all-to-all sequence alignment approach, in

which all reconstructed transcripts from the hybrid parallelized

Trinity were aligned to those from the original Trinity using

the Smith-Waterman algorithm, as implemented in the FASTA

program [24]. Due to the indeterministic nature of Trinity,

multiple results from ten repeated runs for each version of

Trinity (OpenMP-only and MPI+OpenMP) were obtained. In

addition to aligning transcripts between the different versions

of Trinity, we also aligned transcripts from the different runs
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of the original Trinity, in order to understand the expected

level of variation in the output. The alignment results using a

whitefly data set downloaded from the internet [25] comprised

of a total of more than 420,000 reads with left and right reads

of approximately 210,000 each are shown in Figure 4. They

show no significant difference between the two versions of the

code according to a two sample t-test, thus indicating that the

output from the hybrid-parallelized Trinity has equal quality

to the one from original version of Trinity.

Fig. 4. Alignment of the reconstructed transcripts from parallelized Trinity
to the ones from original Trinity using Smith-Waterman algorithm in FASTA
program using whitefly dataset. The results are categorized into three groups;
(a) 100% identical match for full length, (b) less than 100% identical match
for full length and (c) less than 100% identical match for partial length.
The distribution of identities/similarities of aligned sequence pairs in (c) is
described in (d). “Parallel” represents the sequence alignment of two sets
of reconstructed transcripts from parallelized Trinity and original Trinity,
respectively. “Original” represents the alignment of two sets of reconstructed
transcripts from original and original Trinity.

The second test involves measuring the number of re-

constructed transcripts identified as known transcripts. The

number was simply measured by aligning the reconstructed

transcripts obtained from runs of Trinity against a set of

reference transcripts, and this number was compared between

the two versions of Trinity. The reference transcripts are

comprehensive and well-annotated sets of transcript sequences,

obtained from the Trinity FTP site for the Schizophrenia and

Drosophila datasets. The Schizophrenia dataset consists of 9.2

million left reads and 6.15 million right reads, for a total of

15.35 million reads with a size of about 8 GB on disk. The

Drosophila dataset consists of 50 million left and right reads,

with a total size of about 10 GB on disk. Four related numbers

were counted in this test:

• The number of genes of which at least one reconstructed

isoform was aligned in full length onto one of the

reference transcripts (see graphs (a) and (c) of Figure 5).

• The number of reconstructed isoforms aligned in full

length onto one of the reference transcripts (see graphs

(b) and (d) of Figure 5).

Fig. 5. Alignment of reconstructed transcripts from both versions of Trinity
to the reference transcripts; number of fully reconstructed genes/isoforms in
full-length for Schizophrenia (a, c) and Drosophila (b, d) datasets among the
reference transcripts. Note the number of reconstructed genes in full-length
represents the case that at least one isoform is reconstructed in full-length.

• The number of genes of which at least one reconstructed

isoform corresponds to a fusion of multiple full-length

reference transcripts (see graphs (a) and (c) of Figure 6).

• The number of reconstructed isoforms which correspond

to a fusion of multiple full-length reference transcripts

(see graphs (b) and (d) of Figure 6).

The “fused” transcripts considered in the last two numbers

are single reconstructed transcripts including multiple full-

length transcripts from the reference set. These transcripts

are reconstructed as end-to-end fusions in some cases due

to overlapping UTRs or other factors. These are likely false-

positive reconstructed transcripts; however, these are still

counted separately as being reconstructed transcripts due to

their full length. Comparing these four numbers indicates that

there is no significant difference in the outputs from both

versions of Trinity.

V. RESULTS

In this Section, we report the results obtained by running

the distributed memory versions of GraphFromFasta, Read-

sToTranscripts and Bowtie. The MPI enabled source code

was compiled with OpenMPI 1.6 which is an open-source

MPI implementation, using the GNU compiler version 4.4.6.

Our test hardware is an iDataPlex cluster, known as “Blue

Wonder”, comprising 512 nodes each with 2x 8 core 2.6 GHz
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Fig. 6. Alignment of reconstructed transcripts from both versions of Trinity
to the reference transcripts; number of reconstructed genes/isoforms in full-
length as “fused” transcript for Schizophrenia (a, c) and Drosophila (b, d)
datasets. Note “fused” transcript is defined as single reconstructed transcript
including transcripts from multiple genes/isoforms.

Intel SandyBridge processors making 8,192 cores in total. Out

of these 512 nodes, 256 nodes have 128 GB of memory which

are the nodes we used for the MPI benchmarking.

The input dataset we used for the benchmarking is the

sugarbeet dataset, which is 15 GB in size on disk and contains

129.8 M reads, with two subsets of 9 GB (79.2 M single end

and left reads) and 6 GB (50.6 M right reads). The same

dataset was used in the original benchmarking of Trinity (see

Figure 2).

A. Hybrid (MPI+OpenMP) GraphFromFasta

Figure 7 shows the results of the MPI enabled hybrid

GraphFromFasta code using the sugarbeet dataset as the input.

The number of processes was varied from 16 to 192; each

node runs a single MPI process, with 16 OpenMP threads.

We started the runs with 16 nodes as the runtimes below 16

processes exceeded the maximum queue time of the parallel

jobs. This graph shows the time taken separately in loops one

and two, both of which were converted to a hybrid implemen-

tation, along with the total time taken in GraphFromFasta.

Along with the loops one and two, GraphFromFasta also

consumes time in other tasks setting up the k-mers before

the second loop and generation of the final output after the

second loop. As explained in Section III, loop one decides if a

common subsequence exists to “weld” two Inchworm contigs

into the same Inchworm bundle, while the second loop finds

pairs of Inchworm contigs sharing any “welding” subsequence

harvested from the first loop. This figure shows the lowest and

the highest time taken in the loops, amongst all the MPI ranks,

as a measure of load imbalance.

For all performance analysis, we consider the representative

time as the processes with the highest times. For loop one, at

128 and 192 nodes, using data from the nodes with the highest

time, we get a speedup of 8.31 and 11.93 compared to time of

the loop from 16 nodes. For loop two, the speedups are 7.62

and 5.64 respectively using the loop timings at 16 nodes. At

192 nodes, the speedup of loop two is primarily lower due to

load imbalance with the highest time of a process more than

three times the process with the lowest time. For loop one as

well, the highest MPI rank time is 50% higher than the lowest

MPI rank time for the same number of nodes. Some of this

load imbalance is due to the nature of the problem: there is a

very wide variation in the lengths of reconstructed transcripts

with some lengths being in tens of thousands, while others

only a few hundred characters. This leads to an imbalance in

the amount of work each node has to carry out. Currently,

we have a static partitioning strategy amongst the nodes; in

the future, we might experiment with a dynamic partitioning

strategy to reduce this load imbalance.
For the entire GraphFromFasta, the baseline performance

is the performance measured with the OpenMP only version

run with 16 threads on one node (122610 seconds). The

time taken by 16 nodes, each running 16 threads, is 27133

seconds, while with 192 nodes, each employing 16 threads,

the total runtime decreases to 5930 seconds. These runtimes

correspond to speedups of 4.5 and 20.7 respectively for the

GraphFromFasta overall. This low speedup is primarily due to

the share of the non-MPI regions accounting for a increased

percentage of the total GraphFromFasta time with increasing

nodes, for example at 16 nodes, the time taken by both the

loops comprises 92.44% of the total time of GraphFromFasta,

which falls to 57.4% at 192 nodes. Figure 8 shows the breakup

of the GraphFromFasta times into separate timings of loop 1,

2 and the non-parallel regions. As can be seen, non-parallel

regions account for an increasing percentage of the total time

of GraphFromFasta; at 128 processes, the total percentage of

time taken by the non-parallel regions accounts for 63.3% of

the total time of GraphFromFasta. At 192 nodes, the load

imbalance especially in loop 2 leads to the share of the

non-parallel regions decreasing. Our future work will also

involve parallelizing other parts of GraphFromFasta, as well

as reducing the load imbalance which will further help speed

up the overall time of execution.

B. Hybrid (MPI+OpenMP) ReadsToTranscripts

Figure 9 shows the results of the hybrid ReadsToTranscripts,

the second part of the Chrysalis module. We again use the

sugarbeet dataset as the input. We also continue the mode of

execution of running 16 threads per node, with a single MPI

rank, which has been shown to give the best performance.

We show the time taken in the main loop which was MPI-

enabled, together with the total time taken in ReadsToTran-

scripts. Besides the MPI-enabled loop, ReadsToTranscripts

also spends time in assigning k-mers to Inchworm bundles
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Fig. 7. Results of parallel (MPI+OpenMP) GraphFromFasta implementation
showing the time taken in the loops and the total time taken in GraphFrom-
Fasta with increasing number of nodes.

Fig. 8. Breakdown of GraphFromFasta times showing the times taken in
loop 1, 2 and non-parallel regions. All times are normalized to 100%.

as well as concatenation of the separate files from every

process. The assignment of k-mers to Inchworm bundles is

OpenMP-enabled, and we have not converted this to a hybrid

implementation yet.

At 32 nodes, the total runtime of ReadsToTranscripts takes

less than 20 minutes: thus, this step of Chrysalis does not

represent as significant a computational overhead as Graph-

FromFasta and Bowtie. The scalability of the MPI loop is

almost linear, from about 3123 seconds on 4 nodes to less

than 373 seconds on 32 nodes, representing a speedup of

8.37. At 32 nodes, the percentage of time spent in the MPI

loop represents less than 20% of the total time spent in

ReadsToTranscripts with the remaining time primarily taken

in the OpenMP-enabled assignment of k-mers to Inchworm

bundles. On a single node, the ReadsToTranscripts, using 16

threads took a total runtime of 20190 seconds. At 32 nodes,

we thus achieve a overall speedup of 19.75 for the entire

ReadsToTranscripts execution.
A very small percentage of the time is taken in the con-

catenation of the files from the multiple processes: this time

stays constant (below 15 seconds) atleast up to 32 processes.

As in Figure 7, we have also shown the processes with the

highest and lowest times (373 and 310 seconds) spent in the

loop: thus, compared to GraphFromFasta, the load imbalance

in ReadsToTranscripts is much lower.

Fig. 9. Results of parallel (MPI+OpenMP) ReadsToTranscripts implemen-
tation showing the time taken in the main loop and the total time taken in
ReadsToTranscripts with increasing number of nodes.

C. MPI Implementation of Bowtie
Figure 10 shows the results of a scaling experiment for the

parallelized Bowtie again using the sugarbeet input dataset.

This run was also completed using 16 threads, with one MPI

rank per node. Since Bowtie with multiple nodes requires

splitting the Fasta file of Inchworm contigs, we include

runtimes for Fasta file splitting using PyFasta and the actual

runtime for MPI-Bowtie, as well as the total Bowtie runtime.

The figure shows that the splitting of the Fasta file using

PyFasta took more runtime than the subsequent Bowtie step,

partially due to the fact that PyFasta is a single thread process.

We consider this step as a possible overhead to be worked

on for better performance. In summary, we got a speedup of

a factor of three when Bowtie was implemented in parallel

using 128 nodes compared to single node implementation

which took slightly more than 8 hours.

Overall, the Trinity workflow execution with the parallel

Bowtie, GraphFromFasta and ReadsToTranscripts is shown in
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Fig. 10. Results of parallel Bowtie implementation showing the time taken
in Bowtie and time taken by PyFasta to partition the Fasta file.

Figure 11. We again used the Collectl tool to collect statistics

from the run, using 16 nodes, each running a single MPI

process with 16 threads. This figure, compared to Figure 2,

shows the substantially lower time taken in Chrysalis workflow

using the sugarbeet dataset as the input.

Fig. 11. Parallel Trinity run using 16 nodes, each with 16 cores and 128
GB of memory. Running instances of Inchworm/Jellyfish are not recorded for
MPI-parallelized Trinity

VI. CONCLUSIONS AND FUTURE WORK

Our efforts have so far focused on a distributed-memory

implementation of Chrysalis components GraphFromFasta and

ReadsToTranscripts, with the goal of producing an MPI im-

plementation working seamlessly with the OpenMP threads

that is already part of both the software modules. Overall for

the sugarbeet dataset, we have reduced runtimes of Graph-

FromFasta and ReadsToTranscripts by over a factor of 20.

The speedup comes essentially from the ability to use multi-

node architectures, as widely available in traditional clusters,

rather than relying on a single high-performance workstation.

This fundamental change will allow Trinity to tackle the ever-

increasing datasets that are being collected. We will continue

our work by focusing on the non-parallelized regions of

Chrysalis, as well as continue to investigate more optimal ways

to partition the workload amongst the distributed nodes.

Reduction of the memory footprint of de novo transcriptome

assembly is another active area of research we are pursuing.

This covers the large memory footprint of the Inchworm

module, as well as the per-node memory requirements of the

MPI version of Chrysalis. Optimizing usage of NVRAM (non-

volatile RAM) for the Trinity workflow and exploring MPI-

I/O for RNA-Seq data are other areas where we are looking

into. Overall, our focus is not just to optimize the individual

components of the de novo pipeline, but to optimize the de
novo workflow as a whole for a high-performance computing

environment.
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