
GPU-based Steady-State Solution of the Chemical Master Equation

Marco Maggioni, Tanya Berger-Wolf, Jie Liang
Department of Computer Science, Department of Bioengineering

University of Illinois at Chicago
Email: {mmaggi3,tanyabw,jliang}@uic.edu

Abstract—The Chemical Master Equation (CME) is a
stochastic and discrete-state continuous-time model for macro-
molecular reaction networks inside the cell. Under this theoret-
ical framework, the solution of a sparse linear system provides
the steady-state probability landscape over the molecular
microstates. The CME framework can in fact reveal important
insights into basic principles on how biological networks
function, having critical applications in stem cell study and
cancer development. However, the exploratory nature of system
biology research involves the solution of the same reaction
network under different conditions. As a result, the application
of the CME framework is feasible only if we are able to solve
several large linear systems in a reasonable amount of time.

In recent years, GPU has emerged as a cost-effective
high performance architecture easily available to bioscientists
around the world. In this paper, we propose an efficient GPU-
based Jacobi iteration for steady-state probability calculation.
We provide several optimization strategies based on the prob-
lem structure with the aim of outperforming the conventional
multicore implementation while minimizing the GPU memory
footprint. We combine an ELL+DIAG sparse matrix format
with DFS ordering to leverage the diagonal density. Moreover,
we devise an improved sliced ELL sparse matrix representation
based on warp granularity and local rearrangement.

Experimental results demonstrate an average double-
precision performance of 14.212 GFLOPS in solving the CME
(a speedup of 15.67x compared to the optimized Intel MKL
library). Our implementation of the warp-grained sliced ELL
format outperforms the state-of-the-art in terms of SpMV
performance (a speedup of 1.24x over clSpMV). Moreover, it
shows consistent improvements for a wider set of application
domains and a good memory footprint reduction. The results
achieved in this work provide the foundation for applying the
CME framework to realistic biochemical systems. In addition,
our GPU-based steady-state computation can be generalized to
operation on stochastic matrices (Markov models), achieving
good performance with matrix structures similar to biological
reaction networks.

Keywords-GPU; sparse linear algebra; chemical master
equation; system biology; Jacobi iteration; computational bi-
ology;

I. INTRODUCTION

Networks of interacting biomolecules are at the heart of
the regulation of cellular processes, and stochasticity plays
important roles. The Chemical Master Equation (CME) [1]
is a stochastic and discrete-state continuos-time formulation
that provides a fundamental framework to model biochemi-
cal reaction networks inside the cells. In general, an accurate
solution to the CME can reveal important insights into

basic principles on how biological networks function and
how they respond to various environmental perturbations,
having critical applications in stem cell study and cancer
development.

Under the CME framework, a stochastic characteriza-
tion of the biochemical system is provided by a time-
varying probability landscape over microstates representing
the detailed chemical amount of each and every molecular
species. The stationary behavior at the limit can be analyzed
to identify biologically meaningful macrostates. This step
involves the solution of a sparse linear system of equations
representing stochastic microstate transitions. Despite the
assumption of small copy numbers in a cell, the CME
framework poses a computational challenge when applied
to realistic systems due to an exponential growth in the
number of microstates [2]. Moreover, the exploratory nature
of system biology research involves the study of the same
reaction network under different conditions (e.g. varying the
intrinsic rate of one of the involved reactions). The compu-
tational demands may become overwhelming and, hence,
practically infeasible for computer architectures based on
a limited number of parallel processing elements such as
conventional multicore CPUs. This observation motivates the
use of high performance computer architectures to solve the
steady-state probability landscape problem.

Over the past years, GPUs have evolved from an
application-specific processors dedicated to 3D visualization
into a more general purpose parallel platform available for
scientific computing. Bioscientists around the world can
easily have access to this high performance architecture
due its cost-effectiveness. As a consequence, the solution of
increasingly complex scientific problems can be computed in
practice, advancing science in novel directions. The station-
ary analysis of biochemical reaction network can certainly
benefit of the high floating-point throughput and memory
bandwidth peaks offered by modern GPU architecture like
Fermi [3]. Specifically, the availability of a large memory
bandwidth permits to mitigate the bandwidth-bound nature
of sparse linear algebra operations necessary to calculate
the CME solution. Due to the centrality of linear algebra
in scientific and engineering computations, a large research
effort has been dedicated to improve efficiency and memory
representation compactness of GPU-based Sparse Matrix-
Vector multiplication (SpMV) [4, 5, 6, 7, 8]. This body of

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.271

579



work can be taken as foundation for implementing the Jacobi
iteration [9], a well-known and easy-to-parallelize iterative
method for solving linear systems.

In this paper, we propose an efficient GPU-based Jacobi
iteration for steady-state probability landscape calculation.
Similarly to what done in [10] for graph mining, we analyze
the structure of problems arising from the CME and we
provide several optimization strategies with the aim of out-
performing the conventional multicore implementation while
minimizing the GPU memory footprint. First, the transition
matrix can be efficiently represented using the ELL format
[4] due to a limited number of possible reactions for each
microstate. Second, it is possible to take advantage of
reversible reactions in order to improve the diagonal density
of the transition matrix. Specifically, the DFS ordering of
the microstates exposes a densely populated band composed
by the main diagonal and its two immediate neighbors. We
can leverage this structure by separately storing the dense
diagonals using the DIA format [4]. In this paper, we also
propose a novel sparse matrix representation that optimizes
the sliced ELL format presented in [5]. The basic idea is
to reduce as much as possible the overhead associated with
the data structure. This goal is achieved by following two
strategies. First, the slice size is chosen in order to match
the execution block in hardware (warp). Second, we apply
a local rearrangement that uniforms the number of nonzeros
within each slice and improves the data structure efficiency
without deteriorating the cache locality. This warped-grained
sliced ELL can be also combined with the DIA optimization,
at least when the local rearrangement does not decrease too
much the diagonal density.

The use of GPUs to solve large Markov models, a topic
close to the research presented in this paper, has been dis-
cussed in previous literature. The authors of [11] implements
a GPU-based Jacobi iteration. Besides being limited by
an out-of-date GPU architecture, their work is based on
the general CSR format [12] and does not propose any
optimization strategy. Analogously, the authors of [13] do
not introduce any significant contribution other than testing
well-known GPU-based SpMV kernels on some matrices
derived from Markov models. The novelty of this paper
lies in specific GPU optimization strategies to achieve better
performance and memory footprint. Moreover, we propose
the first practical implementation of the CME stochastic
framework. The ability to study realistic cellular reaction
networks opens up a new direction of biological computing
that will be, without exaggeration, every bit as important as
molecular dynamics simulation. The specific contributions
of this work are the followings:
• An efficient GPU-based Jacobi iteration for steady-state

probability calculation of biological reaction networks,
which can be generalized to operation on stochastic
matrices (Markov models). On a dataset of transition
matrices derived from biological models, we were able

to reach an average double-precision performance of
14.212 GFLOP/s and a speedup of 15.67x compared to
the optimized Intel MKL library [14].

• An improved sliced ELL sparse matrix representation
based on warp granularity and local rearrangement. We
are able to show that this optimized format outperforms
the state-of-the-art in terms of SpMV performance on
matrices arising from the CME framework (a speedup
of 1.24x over clSpMV [15], a framework capable of
selecting the best representation of any sparse matrix).
Considering a wider set of application domains, the
warp-grained ELL format has consistent improvements
compared to the original sliced ELL format. More-
over, it minimizes the footprint of the underlying data
structure (a relevant factor due to the limited memory
available on current GPU devices).

The structure of the paper is as follows. Section II
introduces the theoretical background of the CME. Section
III presents a brief description of the GPU architecture.
Section IV introduces the Jacobi iterative method. Section
V provides a detailed analysis of the problem structure and
devises some domain-specific GPU optimizations whereas
Section VI describes the novel warp-grained ELL format.
Performance results of the various optimization strategies are
then given in Section VII. Finally, Section VIII is devoted
to conclusions.

II. THE CHEMICAL MASTER EQUATION

In the theory of the Chemical Master Equation, the dy-
namics of a biochemical reaction system, in a small volume,
is represented by a discrete-state continuous-time Markov
process and is characterized by a probability distribution as
function of time. The CME basically describes the change of
probability of different microstates connected by reactions.

A. Stochastic framework

The state space of the CME is represented by a de-
tailed amount of each and every of the m molecular
species in the biochemical reaction network. The microstate
of the system at time t is then defined as x(t) =
{x1(t), x2(t), ..., xm(t)} ∈ Nm and the overall state space
is the set X of all possible combination numbers X =
{x(t)|t ∈ (0,∞)}. A fundamental characterization of the
system is given by the collection of probabilities P(t) ∈
[0, 1]|X | for each of the microstate at time t. P(t) is defined
as the probability landscape.

The transition rates between microstates (xj
k−→ xi) con-

nected by the k-th reaction are determined by the intrinsic
reaction rate rk and by reactants involved

Ak(xi,xj) = Ak(·,xj) = Ak(xj) = rk

m∏
i=1

(
xi
ci

)

580



where ci is the copy number of species i needed to perform
the reaction (Ak(xi,xj) > 0 when two microstates are con-
nected by the k-th reaction, Ak(xi,xj) = 0 otherwise). In
principle, the transition xj −→ xi between two microstates
can correspond to different reactions, so the overall reaction
rate is

A(xi,xj) =
∑
k∈R

Ak(xi,xj)

The discrete Chemical Master Equation can then be
written as
dP(x, t)

dt
=
∑
x′ 6=x

[
A(x,x′)P(x′, t)−A(x′,x)P(x, t)

]
where P(x, t) is the probability in continuous time of a dis-
crete microstate. The gain and loss of probability associated
with each microstate is a balance between the incoming and
the outcoming reaction rates. The CME can also be written
in a more compact form by defining the rate constant for
leaving the current state A(x,x) as

A(x,x) = −
∑
x′ 6=x

A(x′,x)

Consequently, the probability landscape variation can be
described in the following matrix-vector form

dP(t)

dt
= AP(t)

where A ∈ R|X |×|X| is a sparse reaction rate matrix formed
by the collection of all A(xi,xj).

B. Steady-state probability landscape

The stationary behavior of this stochastic model can
provide biological insight about the underlying biochemical
reaction network. Given the reaction rate matrix A, the
steady-state probability landscape P over the microstates is
directly derived from the CME as

dP(t)

dt
= AP = 0

Intuitively, the steady-state corresponds to the condition
dP(t)
dt = 0. Therefore, we can derive P by solving the

correspondent system of linear equations AP = 0.
We can show an example of the CME stochastic frame-

work use. We consider the well-studied genetic toggle
system [16], a network composed by two genes A and B
arranged in mutual inhibition. This model is depicted in
Figure 1. The intuitive bistable behavior would see one
gene synthesizing its protein (gene “on”) while the other
is inhibited (gene “off”). The analysis of the steady-state
probability landscape should provide an insight of such
bistability. Hence, we can solve the linear system AP = 0
in order to derive the landscape shown in Figure 2. In this
example, the CME stochastic framework is able to provide
a connection between the microstate probability distribution

Figure 1. Model of a toggle switch [17]

Figure 2. Steady state probability landscape of a toggle switch [17]

and the macroscopic behavior of the biochemical reaction
network. Specifically, the probability is concentrated around
the states with mutual inhibition (“on/off” and “off/on”)
where only copies of one protein (nA or nB) are present.

A reliable stochastic model of the reaction network re-
quires a complete identification of the microstates. The
corresponding state space X considers all the possible
combination numbers and grows exponentially with the
number m of molecular species. A rough bound for this
state space size is given by |X | ≤ km, where k is the
maximum copy number for each species. However, it might
be argued that the structure of the reaction network limits the
microstates effectively reachable from an initial condition.
This intuition has been used in [17] to produce a minimal
and comprehensive state space X . Specifically, it is possible
to identify a graph structure where microstates are nodes
and reactions are edges. A DFS visit starts from an initial
microstate and produces the reachable subspace X , along
with the associated reaction rate matrix A.

The concrete application of the CME stochastic frame-
work is not a trivial task. First, the arising linear systems
are intrinsically ill-conditioned posing numerical problems
during the solution. Second, the size n = |X | quickly
poses a practical feasibility issue for computer architectures
with limited parallelism. Last, bioscientists usually study a
reaction network under different conditions. Considering that

581



each combination of the parameters generates a different
linear system, the total amount of computation may become
excruciatingly large.

III. GPU ARCHITECTURE

The architecture of modern GPUs has evolved into a
general purpose parallel platform optimized for computing-
intensive data processing. The idea of hardware multithread-
ing is central for this architecture. In brief, the availabil-
ity of a large pool of threads ready to execute (coupled
with fast context switching) can keep functional units busy
and hide memory accesses. Hence, the use of large and
complex cache memories becomes less crucial and more
silicon area can be dedicated to implement computational
cores. In this subsection we describe the key aspects of
NVIDIA Fermi architecture [3]. We refer to this particular
architecture because our experimental results are based on
the CUDA programming model [18] and on the specific
NVIDIA GTX580 device .

A GPU is composed by a number of processing units
called Streaming Multiprocessors (SMs), each one contain-
ing a set of simple computing cores known as Streaming
Processors (SPs) or CUDA cores. Referring to GTX580,
we have 16 SMs with 32 SPs each for a total of 512
cores (a potential parallelism of 512 operations for clock
cycle). The execution of instructions within SMs follows the
single-instruction multiple-thread (SIMT) model with warp
granularity (32 threads). Whenever threads within the same
warp needs to execute a different branch of instructions,
we have a divergence and the execution is serialized with
intrinsic performance decreasing.

SMs are connected to a random access memory through
a cache hierarchy. This global memory has high bandwidth
(192 GB/s for GTX580) but high latency (up to 800 clock
cycles). The cache hierarchy is organized on two levels. A
coherent L2 cache (768 KB) is shared among all the SMs
and provides a mean to reduce the global memory bandwidth
usage (whereas latency is not improved). Each SM also
has a local on-chip memory (64KB) with low latency and
very high bandwidth (≈ 3.15 TB/s). This fast memory can
be split (16KB + 48KB) to work as L1 cache (hardware
managed) or as shared memory (software managed). In
addition, each SM has a large register file composed by 215

32-bit registers (used in pairs in case of double-precision
arithmetic) with very low latency and very high bandwidth
(≈ 9.24 TB/s). Fast context switching between warps is
possible by statically assigning different registers to different
threads. A crucial factor for GPU efficiency is the memory
access pattern. The Fermi architecture is indeed optimized
for regular accesses. In more detail, the memory requests
within a warp are converted into L1 cache line requests
(128 bytes). Hence, memory performance is maximized only
when memory addresses can be coalesced into a single 128-
byte aligned transaction (opposed to inefficient scattered

accesses).
Despite the availability of a large memory bandwidth,

algorithms with low arithmetic intensity are able to achieve
only a fraction of the theoretical performance peak. The
Fermi architecture implements a fused multiple-add (FMA)
instruction for which two floating point operations are ex-
ecuted in a single cycle. Considering a bandwidth of 192
GB/s and the need of loading double-precision operands
from global memory, we can perform at most 12 GFLOPS
(each FMA needs 4 doubles, or 32 bytes). This perfor-
mance is way below to the Fermi architecture theoretical
peak (≈ 789 GB/s). It might be also argued that gaming-
oriented GPUs (such a GTX580) have a performance edge
over computing-oriented GPUs (such as Tesla) for double-
precision sparse linear algebra. In more detail, GTX580
offers a larger bandwidth despite having a double-precision
performance peak locked at one-quarter of the chip’s peak
potential (≈ 197 GFLOPS). Hence, it can potentially offer
a better performance for bandwidth-limited algorithms such
as sparse linear algebra.

CUDA is an abstract parallel computing architecture and
programming model based on few concepts. First, there
exists a hierarchy of concurrent lightweight threads to model
the computation according to a data-parallel model. In brief,
the algorithm should be expressed in such a way each data
element is processed by an independent lightweight thread.
All threads execute the same program on different data.
Threads are logically grouped into equally sized blocks.
Cooperation and synchronization within blocks are allowed
by the means of shared memory and primitives. Finally,
blocks are grouped into a grid for covering all the data
to process. This hierarchy represents an abstraction of the
underlying GPU architecture. Specifically, blocks represent
abstract SMs capable to run all the threads simultaneously.
However, a block is permanently assigned to one of the
available SMs and executed as warps in an arbitrary order.
This approach assures scalability since CUDA code can be
compiled and executed on devices with different number of
multiprocessors. Referring to GTX580, each SM can manage
up to 1536 threads (forming up to 48 warps). Considering
all the SMs, it is possible to reach a massive parallelism
with up to 24576 simultaneous threads. We define occupancy
as the number of active threads compared to the maximum
capacity. This metric is important in order to provide an ef-
fective hardware multithreading. Intuitively, a large number
of warps ready to execute is useful to hide memory latency.
However, active threads depend by a combination of blocks
assigned to a SM and size of such blocks. Given an hardware
limit of 8 blocks per SM, the choice of block size becomes
critical. First, the block size should be a multiple of the
warp size in order to avoid partially unused warps. Second,
the block size should be big enough in order to cover the
maximum SM occupancy with exactly or less than 8 blocks.
Third, a very large block may not be always a good choice.

582



For example, a block size of 1024 threads cannot achieve
full occupancy since only one block fits the SM. Moreover,
a block size of 512 threads provides full occupancy but the
hardware should wait the completion of 16 warps before
allocating a new block. Intuitively, a block size of 256 may
provide slightly better performance because full occupancy
is associated with a better block turnover.

IV. JACOBI ITERATION

The Jacobi iteration is a simple but easy-to-parallelize
stationary iterative method to solve a system of linear
equations. The main idea behind this approach is to construct
an iteration matrix M that is applied, step after step, to
improve an approximate solution. Assuming b = 0, the
Jacobi iteration is defined as

x(k+1) = Mx(k) = −D−1(L+U)x(k)

where L, D and U are respectively the strictly lower
triangular, the diagonal and the strictly upper triangular
part of the original matrix A. Moreover x(k+1) and x(k)

represent the iterative solution at step k + 1 and k.
The convergence of the Jacobi method is not guaranteed

in general and depends by the spectral radius ρ(M). Specifi-
cally, the condition necessary and sufficient for convergence
is

ρ(M) < 1

where the converge rate is fast only when ρ(M) is close to
zero. Despite this drawback, the Jacobi iteration is a very
popular technique due to the intrinsic level of parallelism
available to speed up the convergence to the solution.
This useful aspect can be highlighted by the following
component-wise formulation

x
(k+1)
i =

1

aii

[
−
∑
j 6=i

aijx
(k)
j

]

where it is clear that any component x(k+1)
i can be calculated

independently from the others. Moreover, it might be argued
that the Jacobi iteration is computationally similar to SpMV
except for a division involving the diagonal nonzero.

The Jacobi iteration starts from an initial solution x0

and continues until convergence is detected. Since the right-
hand side vector is b = 0, we normalize the infinity norm
‖r(k)‖∞ of the residual vector respect to the matrix norm
‖A‖∞ and the solution norm ‖x(k)‖∞. Then, we check if
this normalized value is less than some predefined error ε

‖r(k)‖∞
‖A‖∞ · ‖p(k)‖∞

≤ ε

A practical stopping criterion should also limit the number
of iterations and consider when the error is no longer

decreasing or decreasing too slowly (stagnation). Applying
the following formula

‖r(k+1)‖∞ − ‖r(k)‖∞
‖r(k)‖∞

≤ ε

we can monitor the error variation between successive
iterations. It might be argued that the calculation of the
residual vector r(k+1) is approximatively as expensive as
the Jacobi iteration. Therefore, it is reasonable to check the
stopping criterion only once every several iterations.

The calculation of the steady-state probability landscape
requires that the dense vector x is a probability vector.
In other words, ∀i, xi ≥ 0 and ‖x‖1 = 1. The Jacobi
iteration should be able to keep this property during the
solution process. Given an initial probability vector x0, the
first condition always holds since the reaction rate matrix is
composed by all positive nonzeros except for the diagonal.
However, the second condition for being a probability vector
may be violated during the iterations. Therefore, we need to
periodically normalize x(k) in order to produce a probability
vector.

We should briefly mention alternative iterative methods
such as those based on Krylov-subspace. Despite these linear
algebra methods usually guarantee a faster convergence, we
preferred to use the Jacobi iteration due to numerical stabil-
ity reasons. Specifically, the linear system arising from the
CME stochastic framework are ill-conditioned and singular.
In fact, we performed some preliminary studies on using
GMRES (Generalized Minimal RESidual) [19] for solving
the steady-state problem but we observed no convergence.
Hence, we primarily focused on the Jacobi iteration.

V. DOMAIN-SPECIFIC GPU OPTIMIZATIONS

The goal of this section is to provide an efficient matrix
format representation for the CME domain and to propose
some optimizations to improve the performance of the
associated Jacobi iteration. As mentioned, we build upon
the foundation knowledge about SpMV on GPU, due to its
computational similarity with the Jacobi iteration.

We can observe that reaction rate matrices arising from
biochemical networks have a bounded number of nonzeros
per row. In fact, there is a limited set of reactions that can
trigger the transition from the current microstate to another
one. Moreover, it is reasonable to assume that most of the
microstates have enough copy numbers to allow all the
possible reactions. Therefore, the number of nonzeros per
row is reasonably regular and always close to the maximum.
For such case, the ELL sparse matrix representation has
been shown to be efficient [4]. This format is particularly
well-suited to vector architectures. The basic idea of these
formats is to compress a sparse n×m matrix using a dense
n × k data structure, where k is the maximum number
of nonzeros per row. In more detail, the sparse matrix is
stored in memory by the means of two n× k dense arrays,

583



one for nonzero values and one for column indices (row
indices remain implicit as in a dense matrix). Hence, zero-
padding is necessary for rows with less than k elements.
The structure of the SpMV computation, using ELL-derived
formats, follows the data-parallel model. In fact, a thread is
assigned to each row in order to compute one element yi
of result vector y. Moreover, simple strategies are used to
optimize the memory access pattern. The n×k dense arrays
are stored in column-major order for coalescing and padded
to n′ = d n

warpe · warp for 128-byte aligning.
The efficiency of the ELL data structure can be measured

as e = nnz
n′×k where nnz is the amount of nonzeros in the

original matrix. This metric evaluates the amount of zero
padding necessary to fill the dense ELL matrices. Assume
that each thread will iterate k times (no a priori knowledge
about of the effective number of nonzeros in its row). When
efficiency is e ≈ 1, there is practically no wasted bandwidth.
On the other hand, low efficiency will imply a lot of wasted
bandwidth loading padding values. However, it is possible to
mitigate this latter inefficiency by introducing a conditional
statement. Let take the following code snippet as an example

do ub l e temp = 0 ;
f o r ( i n t i =0 ; i<k ; ++ i ){

do ub l e v a l u e = v a l u e [ i ∗n+ t ] ;
i f ( v a l u e ! = 0 )

temp += v a l u e ∗ x [ column [ i ∗n+ t ] ] ;
}

Listing 1. ELL SpMV code snippet

As we can see, we avoid two memory accesses (column
indices and dense vector x) when we load a padding value.
Moreover, the possible divergence between adjacent threads
does not create serialization since the else branch does not
have any instruction. Therefore, there is a uniform execution
among all the warps (except the last one when n′ 6= n). The
structure and the ordering of the sparse matrix determine
the data locality of vector x accesses. The recent Fermi
GPU architecture provides a memory hierarchy available to
mitigate the sparse memory access inefficiency. A straight-
forward way to fully take advantage of such feature is to
configure the local on-chip memory in order to implement
48 KB of L1 cache (instead of the standard 16 KB).

The ELL format defines a precise arithmetic intensity for
double precision. Given a FMA instruction, we need to load
from memory the corresponding nonzero (8 bytes for the
value and 4 bytes for the column) and to perform a sparse
access to vector x. Assuming no cache, this latter access will
correspond to additional 8 bytes. The estimated performance
peak for sparse linear algebra on GPU is then obtained
by multiplying the arithmetic intensity 2

8+4+8 = 2
20 with

the available memory bandwidth (192 GB/s for GTX580).
Hence, we obtain a performance peak of 20.6 GFLOPS with
assumption of no cache. On the other hand, the additional 8
bytes contribution is not counted when we assume a perfect
caching mechanism. In such case, the theoretical perfor-

mance peak increases to 34.4 GFLOPS. The comparison
with these two peaks gives an idea about the efficiency of
the underlying memory system as well as about the data
locality of the particular matrix structure. Moreover, we
can conjecture that gaming boards such as GTX580 can be
successfully used for sparse linear algebra despite an inferior
double precision peak potential (≈ 197 GFLOPS) compared
to computing-oriented GPUs.

The analysis of reaction rate matrices arising from bio-
chemical networks suggests further optimization strategies
specific to this domain. By definition, the diagonal elements
are A(x,x) = −

∑
x′ 6=xA(x

′,x). Therefore, the diagonal
D is densely populated by nonzeros and can be stored as a
separate dense vector as shown in Figure 3(b).

(a) Sparse matrix

(b) ELL with separate diagonal

(c) DIA+ELL

Figure 3. Optimizing ELL format with diagonals

This separate representation does not require to store
column indices for the diagonal elements. Therefore, the
data structure size decrease by 4n bytes. Moreover, the use
of a separate diagonal is useful for the Jacobi iteration.
Specifically, the coefficients aii are readily available to
perform division instead of being in an arbitrary position
within the ELL structure.

584



In general, diagonal structure can be leveraged using
a sparse matrix representation known as DIA [4]. We
can observe that biochemical reaction networks include
reversible reactions for which it is possible to jump back
and forth between two adjacent microstates. If we enumerate
these with two adjacent indices, we will expose a densely
populated band composed by the main diagonal and its
two immediate neighbors (respectively {−1} and {+1}).
It might be also argued that a DFS visit of the state
space X creates chains of such reversible microstates and,
hence, intrinsically arranges densely populated subregion
around the diagonal band. Considering that the enumeration
algorithm [17] already uses a DFS visit to create the reaction
rate matrix, we can directly take advantage of this diagonal
structure without any additional reordering as shown in
Figure 3(c). .

The DIA sparse format is combined with the ELL format
to store d diagonals of the sparse matrices as d contigu-
ous dense vectors (adding alignment padding if necessary).
A list of offset is used to identify the current position
from the main diagonal ({0}, {−1} and {+1}). The DIA
format produces contiguous memory accesses to vector x,
although alignment only happens for offset multiple of 16.
The combined format ELL+DIA is convenient in terms of
memory efficiency only if the nonzero density within the
diagonal band is greater than 0.66. This threshold derives
from the memory required for storing a nonzero using the
DIA format (8 bytes) and using the ELL format (12 bytes).
The ELL+DIA format is well suited for the Jacobi iteration.
The idea is to store the diagonal {0} using the first column
of the DIA matrix and use the remaining part (as well as
the ELL structure) to calculate −

∑
j 6=i aijx

(k)
j .

VI. WARP-GRAINED ELL FORMAT

The sliced ELL sparse matrix format [5] has been de-
signed to improve the efficiency of the basic ELL data
structure. This format is based on the idea of partitioning
the matrix into slices representable with local ELL data
structures. This approach has the practical advantage of
reducing the zero-padding of each slice (which now depends
on a local k dimension). The sliced ELL format needs
additional data structures. First, we need an array K of size
dns e (where s is the slice size) in order to keep track of
local ki values. Second, we need another array of same size
in order to identify the starting location in memory of each
local ELL structure.

It is easy to see that a finer granularity decreases the
amount of zero-padding values. On the other hand, this also
decreases the SM occupancy. In more detail, the original
sliced ELL formulation does not make a distinction between
slice size s and block size b (in the CUDA programming
model). Suppose, s = warp. This slice size will give the
best solution in terms of data structure efficiency. However,
the hardware SMs will be seriously underutilized. Being

limited by a maximum of 8 blocks for SM, we will be
able to run only 256 threads (8 warps) simultaneously which
represents only 1

6 of the SM capability. Here we propose the
use of warp-grained slices by decoupling slice size (set to
s = warp) from CUDA block (set to b = 256). Typically,
each thread (corresponding to a row in ELL representation)
can explicitly calculate its warp index (which also translates
to the slice number). This allows us to decouple the slice size
and the block size, achieving both data structure efficiency
and full SM occupancy. This fine-tuned sliced ELL format
has a warp-level lockstep execution determined by the
longest row. Moreover, the format can drastically reduce the
memory footprint compared to the original ELL format, as
clearly illustrated in Figure 4.

Figure 4. Sliced ELL with warp granularity

The efficiency of the warp-grained ELL can be further
improved by row reordering. This technique is potentially
able to reduce the variability of nonzeros per row within
warps. A global row reordering (equivalent to pJDS [20])
can be performed in linear time O(n) using bucket sort.
However, this approach may shuffle data-unrelated rows
close together worsening the overall data locality. Hence, we
propose a reordering strategy based on local rearrangement.
The idea is to decrease the variability without moving related
rows too far apart. Assuming that the block size is larger than
warp granularity, we order rows within the block to minimize
variability of the corresponding warp-grained slices. Last,
we can still combine the warp-grained ELL format with
the DIA format by separately storing the main diagonal,
obtaining a data structure well-suited for the Jacobi iteration.

VII. EXPERIMENTAL RESULTS

In this section we tested the proposed structure-aware
optimizations, achieving substantial and consistent improve-
ments for the CME steady-state calculation, outperforming a
multicore implementation based on the state-of-the-art. We
also evaluated the warp-grained ELL format more in general.

A. Hardware and software setup

All the experiments were performed on a NVIDIA
GTX580 GPU equipped with 3GB of GDDR5 and a total
of 512 CUDA cores. The computing platform was a quad-
socket system equipped with four 16-cores AMD Opteron

585



Linear system size Nonzeros per row Diagonal
[MB]

Biological network n nnz Disk min µ max σ σ/µ max−µ
µ

d{0} d{-1,0,+1}
toggle-switch-1 319204 1908834 34.46 3 5.98 7 0.72 0.12 0.17 1.00 0.86

brusselator 501500 2501500 47.69 2 4.99 5 0.13 0.03 0.00 1.00 1.00
phage-lambda-1 1067713 10058061 202.60 2 9.42 15 2.78 0.30 0.59 1.00 0.70

schnakenberg 2003001 14001003 289.36 2 6.99 7 0.15 0.02 0.00 1.00 1.00
phage-lambda-2 2437455 14001003 529.15 3 10.65 15 1.63 0.15 0.41 1.00 0.98
toggle-switch-2 4425151 42202701 788.40 3 9.54 11 1.06 0.11 0.15 1.00 1.00
phage-lambda-3 9980913 94469061 2088.07 2 9.47 15 2.77 0.29 0.59 1.00 0.97

Table I
SPARSE LINEAR SYSTEMS FROM SAMPLE BIOLOGICAL NETWORKS

6274 and with 128 GB of DDR3. The operating system was
64-bit CentOS 6.3 with kernel 2.6.32. The compilers used
in the implementation were gcc 4.4.6 and CUDA 4.2 (GPU
device driver 295.41).

B. Benchmarks description

For our tests, we generated a set of reaction rate matrices
from four different biological models by the means of the
optimal enumeration algorithm [17]. We chose the following
biochemical reaction networks: toggle switch [16], Brussela-
tor [21], phage lambda switch [22] and Schnakenberg [23].

Table I presents some basic information about the gen-
erated reaction rate matrices. The first part of the table
describes the linear system size in terms of microstates n,
number of nonzeros nnz and disk memory necessary to store
the sparse matrix using the Matrix Market [24] coordinate
format. The second part of the table describes the matrices in
terms of nonzeros per row (minimum, average µ, maximum
and standard deviation σ). We also calculate two derived
metrics. σ/µ represents a variability factor whereas max−µ

µ
represents a skew factor. 4 benchmarks out of 7 have low
variation and skew, meaning that the ELL format is well
suited. On the other hand, the remaining benchmarks provide
an opportunity to achieve a better performance by using the
warp-grained ELL format. The last part of the table analyzes
the diagonal structure, showing the density of the main
diagonal without and with its neighbors (where a density
greater than 0.66 indicates a structure to leverage).

C. Sparse matrix-vector multiplication

The operations performed by the Jacobi iteration differ
from SpMV by only a division. For convenience, we have
chosen to collect some preliminary data about the proposed
optimization techniques by using the ELL multiplication
kernel. For all the tests, we measured the double-precision
floating-point performance considering the average over 100
repetitions. We neglected the time needed to transfer the
sparse matrix to the GPU global memory, considering the
reasonable assumption of amortizing this one-time cost over
several iterations during steady-state calculation. First, we
identified the best block size b by exhaustive testing on

the benchmarks. As pointed out in Section III, the best
performance is achieved for b = 256 (a tradeoff between
occupancy and block turnover). Second, we tested the actual
effect of different L1-cache sizes obtaining a 6% improve-
ment on the average performance (15.132 GFLOPS with
16KB versus 16.032 with 48KB). Hence, we fixed these
optimal parameter values for the following experiments.

Table II evaluates the performance of the ELL+DIA
format. The high diagonal density (≈ 0.97 on average) can
be in fact exploited by this optimization technique. This
provides an average performance improvement of about 1
GFLOPS (or 5%) and justifies the idea of leveraging the
diagonal structure available in DFS-ordered reaction rate
matrices. In general, any matrix with such structure can gain
performance using the ELL+DIA format.

ELL ELL+DIA
[GFLOPS] [GFLOPS]

Biological network Performance Performance Speedup
toggle-switch-1 17.652 17.844 1.01

brusselator 19.308 22.218 1.15
phage-lambda-1 11.602 11.956 1.03

schnakenberg 21.694 24.213 1.12
phage-lambda-2 11.375 11.463 1.01
toggle-switch-2 19.539 19.760 1.01
phage-lambda-3 11.056 11.352 1.03

Average 16.032 16.972 1.05

Table II
ELL VERSUS ELL+DIA

Before testing the warp-grained ELL format, we evaluate
how the idea of local rearrangement affects data local-
ity. We measured the average SpMV performance with
different reordering. Specifically, we considered a random
reordering (2.783 GFLOPS), a global nonzero reorder-
ing (15.137 GFLOPS) and a local nonzero rearrangement
(16.278 GFLOPS). Not surprisingly, the global reordering
decreases the performance (about -6%) since it probably
shuffles unrelated rows close together. On the other hand,
the local rearrangement has a slightly positive effect. Table
III evaluates the performance of the warp-grained ELL
format. As we can see, we are able to obtain a consistent
average improvement of about 1.3 GFLOPS (or 8%) over
the ELL format. We can also observe a 6% improvement

586



over the original sliced ELL format due to the ideas of
warp granularity and local rearrangement. We can conjecture
that the improvement would have been even greater in
case of benchmarks with more nonzero variability (in fact,
4 benchmarks out of 7 have a pretty regular structure
and, hence, no margin for improvement). Table III also
proposes a comparison with clSpMV [15], which can be
considered the state-of-the-art for SpMV. This framework
basically represents an ensemble of many available GPU
sparse formats (precisely DIA, BDIA, ELL, SELL, CSR,
COO, BELL, SBELL and BCSR) and is capable of selecting
the best representation (or a combination of them) of any
sparse matrix. Due to the intrinsic regularity of reaction rate
matrices we avoided an unfair comparison with formats like
SCOO [25], which is explicitly designed for unstructured
matrices. Moreover, the available clSpMV implementation
does not provide double-precision. However, we tried to
draw a fair comparison by normalizing the results (e.g. if
clSpMV selects single-precision ELL format, we normalize
by 8

12 = 0.66). We can observe a substantial 24.41%
improvement. Without going into the details, this result can
be in part explained by the fact that clSpMV selects a non-
intuitive mix of sparse formats (although the diagonal band
is correctly identified in most of the cases).

ELL Sliced ELL Warped ELL clSpMV
[GFLOPS] [GFLOPS] [GFLOPS] [GFLOPS]

Biological network Performance Performance Performance Performance
toggle-switch-1 17.652 17.711 18.731 17.853

brusselator 19.308 19.156 18.859 16.399
phage-lambda-1 11.602 12.355 15.103 9.434

schnakenberg 21.694 21.694 24.213 20.203
phage-lambda-2 11.375 11.485 11.973 8.861
toggle-switch-2 19.539 20.294 20.627 17.717
phage-lambda-3 11.056 11.805 14.511 —

Average 16.032 16.346 17.320 15.078

Table III
ELL VS SLICED ELL VS WARP-GRAINED ELL VS CLSPMV

We also evaluated the memory footprint of the warp-
grained ELL format. As mentioned, this aspect is very
important for the practical feasibility since current GPU
devices have limited global memory (if compared with con-
ventional CPU systems). We observed that the warp-grained
ELL format has an average footprint of 322.45 MBytes,
much less than the 440.98 MBytes needed by the ELL
format and slightly better than CSR format (which needs
323.71 MBytes). Finally, we performed a more general test
on the warp-grained ELL format using several matrices
taken from the University of Florida sparse matrix collection
[26]. The aim was to capture the improvement over the
original sliced ELL format. Figure 5 shows the comparison
between these two formats. Each column represents the
average performance over a set of matrices arising from a
specific domain (we will make available a detailed list of the
benchmarks in a future version of this manuscript). Similarly
to what observed for molecular networks, the warp-grained
ELL format has an edge over all the matrix domains. The

average performance improvement is 12.62% and reaches
a maximum of 48.09% for the quantum chemistry domain.
This result suggests that the warp-grained ELL format can
successfully replace the original sliced ELL format.

Figure 5. Sliced ELL versus Warp-grained sliced ELL

D. Jacobi iteration

The Jacobi iteration was implemented by adding the
DIA component to each format previously presented. This
approach has two advantages. First, it allows to directly read
the diagonal element ai,i. Second, it permits to exploit the
dense diagonal structure {−1,+1}. In order to have a fair
comparison, we took as baseline a multicore implementa-
tion derived from the Intel MKL library [14] (in practice
CSR+DIA). We then used the Jacobi iteration to build a
sparse linear solver and calculate the steady-state probability
landscape of the given benchmarks. We set the error value
to ε = 10−8 and the maximum number of iterations to 106.
With these parameters, we were able to reach the stopping
criterion for all the problems but one (phage-lambda-2). The
obtained results are shown in Table IV. As we can see, the
most sophisticate implementation achieves a performance
14.212 GFLOPS, outperforming the optimized multicore
implementation by a 15.67x factor. This is definitely a good
and concrete result that supports the practical use of the
CME framework in system biology research.

CRS+DIA Warp ELL+DIA
[GFLOPS] [GFLOPS]

Biological network Iterations Residual Performance Performance
toggle-switch-1 36800 2.625e-06 1.399 15.479

brusselator 125800 1.331e-06 1.170 17.218
phage-lambda-1 453200 9.713e-06 0.730 10.323

schnakenberg 18300 2.536e-07 0.757 20.119
phage-lambda-2 1000000 9.025e-07 0.865 8.133
toggle-switch-2 21400 1.313e-05 0.783 17.772
phage-lambda-3 210600 1.288e-06 0.646 10.438

Average 0.907 14.212
Speedup 15.67x

Table IV
LINEAR SOLVER BASED ON JACOBI ITERATION

The new GPU architecture Kepler [27] introduces new
architectural features. Most notably, the available computa-
tional resources (now known as SMXs) can be kept busy

587



using the ability of launching simultaneous kernels from
multiple CPU cores with no dependencies (Hyper-Q) or
from the GPU itself (Dynamic Parallelism). However, a large
matrix size combined with the iterative nature of the Jacobi
solver already provides an efficient use of the SMs. In terms
of double precision performance, Kepler assures a increased
peak of 1.31 TFLOPS (one third of single precision) but this
improvement is not fundamental for sparse linear algebra.
In fact, we can expect more benefits from an improved
memory hierarchy (more bandwidth at each level) and from
a dedicated read-only 48KB data cache (well-suited for
caching the dense vector x).

VIII. CONCLUSIONS

The Chemical Master Equation is a stochastic and
discrete-state continuos-time formulation that provides a
fundamental framework to model biochemical reaction net-
works inside the cells. In this paper, we proposed an efficient
GPU-based Jacobi iteration for steady-state probability cal-
culation. We provided several optimization strategies based
on the problem structure with the aim of making this the-
oretical framework feasible, outperforming the conventional
multicore implementation by a 15.67x factor.

We also devised a novel sparse format based on warp
granularity and local rearrangement that achieves a substan-
tial 24.41% improvement over the state-of-the-art for the
specific domain (and a more general 12.62% improvement
over the original sliced ELL format). We should point out
that a large body of literature has been dedicated to SpMV
optimization on GPU. As a results, it is not trivial to propose
original ideas and it is very unlikely to achieve an impressive
speedup over the state-of-the-art. However, we believe that
our work has achieved, as a secondary contribution, a very
reasonable result in terms general SpMV optimization.

This work provides the foundation and an approach for ap-
plying the CME framework to realistic biochemical systems.
In addition, our GPU-based steady-state computation can
be generalized to operation on stochastic matrices (Markov
models), achieving good performance with matrix structures
similar to biological reaction networks. We plan to extend
our approach in order to overcome the current limitation
in terms of GPU memory by moving to GPU clusters.
Moreover, we plan to further develop our GPU-based CME
stochastic framework by including transient dynamic calcu-
lation.

ACKNOWLEDGMENT

This work was supported by NSF grants IIS-106468 and
DBI-1062328, and NIH grant GM-079804.

REFERENCES
[1] D. A. Beard and H. Qian, Chemical Biophysics: Quantitative Analysis of

Cellular Systems. Cambrige University Press, 2008.
[2] J. Liang and H. Qian, “Computational cellular dynamics based on the Chem-

ical Master Equation: A challenge for understanding complexity,” Journal of
Computer Science and Technology, vol. 25, no. 1, pp. 154–168, 2010.

[3] Nvidia, “Nvidia’s next generation cuda compute architecture:
Fermi,” http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[4] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” Conference on High Performance Computing
Networking, Storage and Analysis, 2009.

[5] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning sparse
matrix-vector multiplication for GPU architectures,” High Performance Embed-
ded Architectures and Compilers, vol. 5952, pp. 111–125, 2010.

[6] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of sparse
matrix-vector multiply on GPUs,” Symposium on Principles and Practice of
Parallel Programming, vol. 45, no. 5, pp. 115–126, May 2010.

[7] F. Vázquez, J. J. Fernández, and E. M. Garzón, “Automatic tuning of the
sparse matrix vector product on GPUs based on the ellr-t approach,” Parallel
Computing, August 2011.

[8] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodrı́guez, “Optimization
of sparse matrix–vector multiplication using reordering techniques on GPUs,”
Microprocessors and Microsystems, vol. 36, no. 2, pp. 65–77, March 2011.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[10] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-vector mul-

tiplication on GPUs: Implications for graph mining,” International Conference
on Very Large Data Bases, vol. 4, no. 4, pp. 231–242, January 2011.

[11] B. R. C. Magalhaes, N. J. Dingle, and W. J. Knottenbelt, “GPU-enabled steady-
state solution of large markov models,” International Workshop on the Numerical
Solution of Markov Chains, pp. 63–66, September 2010.

[12] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms,”
High performance computing, networking, and storage conference, pp. 10–16,
2007.

[13] B. Bylina, J. Bylina, and M. Karwacki, “Computational aspects of gpu-
accelerated sparse matrix-vector multiplication for solving markov models,”
Theoretical and Applied Informatics, vol. 23, no. 2, pp. 127–145, 2011.

[14] Intel, “Math kernel library,” http://software.intel.com/en-us/articles/intel-mkl/.
[15] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL SpMV framework

on GPUs,” in Proceedings of the international conference on Supercomputing,
ser. ICS ’12, 2012.

[16] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle
switch in escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–342, January
2000.

[17] Y. Cao and J. Liang, “Optimal enumeration of state space of finitely buffered
stochastic molecular networks and exact computation of steady state landscape
probability,” BMC System Biology, vol. 2, no. 30, March 2008.

[18] Nvidia, “Cuda, parallel programming made easy,”
http://www.nvidia.com/object/cuda home new.html.

[19] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM Journal of Scientific Comput-
ing, vol. 7, no. 3, pp. 856–869, 1986.

[20] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A. R. Bishop,
“Sparse matrix-vector multiplication on GPGPU clusters : A new storage format
and a scalable implementation,” CoRR, 2011.

[21] G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. John
Wiley & Sons, 1977.

[22] Y. Cao, H.-M. Lu, and J. Liang, “Probability landscape of heritable and robust
epigenetic state of lysogeny in phage lambda,” PNAS, vol. 107, no. 43, pp.
18 445–18 450, October 2010.

[23] Y. Cao and J. Liang, “Nonlinear langevin model with product stochasticity for
biological networks : the case of the schnakenberg model,” Journal of Systems
Science and Complexity, vol. 23, no. 5, pp. 896–905, October 2010.

[24] NIST, “Matrix market format,” http://math.nist.gov/MatrixMarket/.
[25] H.-V. Dang and B. Schmidt, “The sliced coo format for sparse matrix-vector

multiplication on cuda-enabled gpus,” in International Conference on Compu-
tational Science, 2012.

[26] T. Davis, “University of florida sparse matrix collection,”
http://www.cise.ufl.edu/research/sparse/matrices/.

[27] Nvidia, “Nvidia’s next generation cuda compute architecture: Kepler
gk110,” http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

588


