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Abstract—Computational challenges for the one-to-many
and many-to-many protein structure comparison (PSC) prob-
lem are a result of several factors: constantly expanding
large-size structural proteomics databases, high computational
complexity of pairwise protein comparison algorithms, and
the multitude of pairwise comparison approaches used in
the field. Advances in processor architectures, such as many-
core CPUs, have enabled them to support parallelism making
them of interest in speeding up PSC techniques. We present
rckAlign, an implementation of the popularly used TM-align
PSC algorithm, designed for the Single-Chip Cloud Computer
(SCC), an experimental processor created by Intel Labs. We
developed a skeleton library, rckskel, and implemented a
master-slaves variant of TM-align to exploit the parallelism
offered by the SCC. We evaluated rckAlign on the SCC and
compared it with existing TM-align software running on a dual-
core AMD CPU (2.4 GHz) and on a single-core Intel P54C
Pentium CPU (800 MHz). We observed an 11-fold speedup
relatively to the former and a 44-fold speedup relatively to the
latter. A key aspect of the performance of rckAlign on the
SCC, is the almost linear speedup achieved with the number
of SCC cores used as slaves. The method presented can easily
be applied to other PSC algorithms and extended to running
multiple PSC algorithms within the same SCC chip.

Keywords-Protein structure comparison, TM-align, Many-
core processors, Parallel algorithms, Master-slaves parallel
computing.

I. INTRODUCTION

The three-dimensional structure of a protein is known

to have a strong correlation to its function [1]. Further,

beyond evolutionary relationships encoded in the sequence,

structure of proteins presents evidence of homology even

in sequentially divergent proteins. Homology and functional

similarity, due to their importance in applications such

as drug design, have led pairwise protein structure com-

parison (PSC) to become an important research topic in

computational biology over the last two decades. A newly

discovered protein structure is typically compared with all

known structures in order to ascertain its functional behavior.

The faster this task can be performed the faster biologists and

medical researchers can determine possible applications for

the new protein. Improving the efficiency of protein structure

comparison therefore is highly relevant to the field. The

objective of the task is to retrieve a ranked list of proteins,

where structurally similar proteins are ranked higher.

A typical task in bioinformatics is comparison of the

structure of a protein with a database of known protein

structures, one-to-many PSC, or when a set of multiple

proteins is of interest, comparison of their structures to a

whole database of known protein structures, many-to-many

PSC. The unit operation in both these forms of PSC is the

comparison of structures of a pair of proteins. Computational

demand of the one-to-many and many-to-many PSC problem

are a result of factors such as: exponential growth of

structural proteomics databases, pairwise protein structure

comparison is computationally intensive and several pair-

wise comparison approaches are typically of interest to the

researcher.

Distributed computing solutions lend themselves to ad-

dressing some of these issues [2]. Using distributed se-

tups computation heavy tasks can be broken down into

smaller units, to be processed independently on different

nodes, before combining the results to report to the user

[2]. However, approaches leveraging distributed computing

architectures do not address the problem of parallelizing

pairwise structure comparison. Most PSC algorithms used

in the domain continue to be serial and this highlights the

possibility of further speed-ups by exploiting processor level

parallelism. Modern many-core processor architectures can

prove to be useful for exploiting available parallelism at this

algorithmic level.

Several methods are used in the PSC domain and the

current trend is to generate consensus results by combining

them. The level at which parallel processing can be used

in different methods depends on the underlying algorithms,

making it important for the hardware platform employed to

be flexible in terms of the resources allocated to the problem.

Many-core processors can provide this flexibility, while

retaining key elements of standard programming models,

thus becoming of interest for the PSC domain. Furthermore,

many-core processors provide a means for small research
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setups to accelerate everyday tasks without depending on

access to large-scale and expensive distributed computing

infrastructures.

Algorithmic skeletons [3] allow a programmer to develop

algorithms without specifying architecture dependent details.

By nesting and combining skeletons desired level of paral-

lelism can be introduced into different PSC methods. Using

algorithmic skeletons allows programs to fully exploit the

parallelism afforded by many-core processor architectures,

while retaining the flexibility needed for experimenting with

the level of parallelism and shared tasks (such as rotation

of structures). While several algorithmic skeleton libraries

have been developed over the last two decades [3], [4], few

provide support for features such as type safety and to the

best of our knowledge none has been targeted specifically

for many-core processor architectures.

In this work we propose a framework for porting PSC

algorithms to the Single-Chip Cloud Computer (SCC) exper-

imental processor [5], which is a 48-core “concept vehicle”

created by Intel Labs as a platform for many-core software

research. We used the framework to port the popularly

used TM-align algorithm [6] for the SCC and found that

significant speedup can be achieved by efficiently utilizing

the parallelism afforded by the processor. To the best of our

knowledge this is the first implementation of PSC algorithms

for many core processor architectures. The scalability of the

many-core processors, in terms of cores, makes the speedup

obtained by our method competitive with GPU based parallel

implementations of TM-align [7]. Moreover, the method

employed for porting TM-align can easily be applied to

other PSC algorithms and extended to running multiple PSC

algorithms in the same SCC processor chip.

The rest of the paper is organized as follows: In Section II

we present the state-of-art of the PSC domain with emphasis

on the modern trends. We develop a view of the source

of complexity in the domain which results in the increased

computational demand. We also briefly discuss the advent of

Network-on-Chips (NoCs) and their application in scientific

research. An overview of the Intel SCC from hardware

and software perspectives is provided in Section III. In

Section IV we present the framework for porting PSC

algorithms and its implementation in porting TM-align for

the SCC. Experimental results are presented and discussed

in Section V.

II. BACKGROUND AND RELATED WORK

Several methods have been developed to address the

problem of protein structure comparison. Methods used vary

greatly not only in the algorithmic techniques employed but

also the similarity metrics used. A good overview of PSC

methods, algorithms and metrics, can be found in [8], [9].

Of specific interest in this work is the TM-align [6] PSC

method. The algorithm compares structures of proteins using

TM-score rotation matrix and dynamic programming. Three

kinds of initial alignments are used: dynamic programming

based Secondary Structure Element alignment, gap less

structure matching and dynamic programming alignment

using scoring matrices obtained in the previous two align-

ments. A heuristic iterative algorithm is applied to the initial

alignments in order to obtain the final one.

Due to the growing size of protein structure databases [10]

and the need for building consensus methods, Multi-Criteria

PSC (MC-PSC), the computational need in protein structure

comparison has rapidly increased. This computational need

has been met by developing faster heuristic algorithms and

leveraging modern distributed architectures such as clusters

and grids [2]. A pseudo-code representation of the one-

to-all protein structure comparison problem using multiple

comparison methods is shown in Algorithm 1.

Data:

q: query protein structure,

M : all protein structure comparison methods,

D: database of known protein structures

for k in M do
for i in D do

compute(in n, using method k, protein pair [i,
q])

end
end

Algorithm 1: A pseudo-code (adapted from [2]) for multi-

method protein structure comparison. Each node n performs a

pairwise comparison of proteins (i,q) using one of the methods (k)

belonging to all methods of interest M . The method essentially

finds a free compute node and passes the ’job’ to the node.

The approach expands to any number of computational nodes

available.

The predominant approach, which is making grid com-

puting available for PSC and MC-PSC, is showcased in

[11]–[18]. Application of processor technologies such as

Field Programmable Gate Arrays (FPGAs) and Graphics

Processing Units (GPUs) to the broader field of structural

proteomics can be found in [7], [19], [20].

Multi-core processor architectures have also grown in

availability with dual and quad core processors becoming

mainstream in desktops and servers [21]. A key advantage

of many-core architectures is the availability of familiar

programming models, languages and tools. Initiatives such

as Many Integrated Core Architectures (MIC) from Intel,

make CPU architectures with super computing capability

packaged on a single chip available for scientific computing

purposes.

With multiple cores appearing on a single chip, fast inter-

core communication becomes important. Two broad strate-

gies, through which inter-core communication is performed,

are: (a) using a single communication bus, and (b) using

an interconnection network. Due to the scope for supporting
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Figure 1. Intel SCC System Overview [5]. A view of the SCC chip
showing routers (R), memory controllers (MC) and 24 tiles.

large number of cores the use of networks for inter-core

communication is gaining in popularity [22]. The resulting

many-core processors use Networks on Chip (NoC) [23] as

an approach for the communication subsystem.

Attempts have been made to utilize many-core architec-

tures in bioinformatics applications [24]. The majority of

the applications attempted belong to the pairwise or multiple

sequence comparison category. The NoC based implementa-

tion of the sequence alignment algorithm by Needleman and

Wunsch [25] developed in [26], shows significant speedup

potential. Despite the flexibility and parallel processing

capabilities, NoCs have not yet been extensively exploited

in bioinformatics [26] and to the best of our knowledge no

protein structure comparison algorithms have been ported

for a many-cores processor.

III. INTEL SINGLE-CHIP CLOUD COMPUTER

The “Single-chip Cloud Computer” (SCC) [27], is an

experimental Intel architecture microprocessor containing

48 cores integrated on a silicon CPU chip [27], [28]. It

has multiple dual x86 core tiles arranged in a 6x4 grid,

memory controllers and 24-router mesh network, depicted

in Figure 1. The technology used is scalable to support more

than 100 cores on a single chip [29]. The cores on the chip

can run separate operating systems acting like independent

computational nodes that communicate with other nodes

over a packet-based network.

A. Hardware Architecture

The SCC resembles a cluster of computer nodes capable

of communicating with each other in the same way as a

cluster of independent machines. Salient features of the SCC

hardware architecture relevant to programming the chip are

listed in Table I.

Figure 2, shows details of individual tiles on the SCC

many-core processor. Each core of the SCC has L1 and

L2 caches. In the SCC architecture, the L1 caches (16KB

each) are on the core while the L2 caches (256KB each)

Table I
SALIENT FEATURES OF THE SCC CHIP BY INTEL.

Core architecture 6x4 mesh, 2 Pentium P54c (x86) cores per tile
Local cache 256KB L2 Cache, 16KB shared MPB per tile
Main memory 4 iMCs, 16-64 GB total memory

Figure 2. Each of the 24 tiles in the SCC processor contains 2 cores
with L1 and L2 caches and a message passing buffer (MPB). The SCC
layout and tile architecture showing routers (R), memory controllers (MC),
mesh interface units (MIU), cache controllers (CC), and second generation
Pentium processor cores (P54C) with their front side bus (FSB) [30].

are on the tile next to the core with each tile carrying 2

cores. Further, each tile also has a small message passing

buffer (MPB), of 16KB, and is shared among all the cores on

the chip. Hence, with 24 tiles, the SCC provides a message

passing buffer of size 384KB. The SCC therefore provides

a hierarchy of memories usable by application programs for

different purposes including processing and communication.

The Mesh Interface Unit (MIU), connecting the tiles to the

mesh, builds packets from data to put it in the mesh and

unpacks data coming in from the mesh.

B. Software Architecture

From a programmers perspective the SCC provides a

super computing environment where the paradigm shift from

standard programming is small. Programming a standard x86

core and using Message Passing Interface for fast message

exchange between processes is currently employed widely

for cluster programming [30]. The cores of the SCC are

visible to host machine to which the SCC is attached,

Management Console PC (MCPC), with names of the form

rck00, rck01..., rck47. In order to facilitate development,

a minimal programming library RCCE [31], a compact,

lightweight communication environment written in C, is

available with a basic API for MPI. The main features of

the RCCE library are:

• RCCE supports message passing APIs and allows map-

ping tasks onto many-core chips.

• RCCE usage requires parallel programming experience

with an understanding of the underlying SCC hardware.

With the help of RCCE it is possible to build full scale

application programs for the SCC chip. The simple message

passing environment provided by the RCCE makes it easy
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to build systems with one-sided communication, such as is

sufficient for parallelizing algorithms. Software for the SCC

can be compiled using the Intel C/C++ compiler or the GNU

C/C++ compiler (gcc). Since the cores on the SCC are x86

type the compilation must be performed for a 32 bit system.

A program written using RCCE is typically expected

to belong to the Single program multiple data (SPMD)

computing model. Detailed analysis of the memory address

space resolution can be found in [30]. From the programmers

view each instance of the program runs on a different core of

the SCC. Message passing is employed, using the RCCE, in

order to synchronize the processes. RCCE also provides the

programmer with constructs for creating a shared memory

space that multiple cores can access.

To the best of our knowledge the parallel processing

capabilities of the SCC have not been leveraged for compu-

tational proteomics applications. The work presented here is

the first attempt at porting PSC algorithms to the architec-

ture.

IV. FRAMEWORK FOR PORTING PROTEIN STRUCTURE

COMPARISON ALGORITHMS FOR MANY-CORE

PROCESSORS

In this section we present the framework we used for

porting a popular PSC algorithm, TM-align, to many-cores

processor technology. The approach can be extended to MC-

PSC as discussed later in Section V. Typically PSC involves

one-to-all or all-to-all comparisons of protein structures.

Each pairwise structure comparison is an independent unit

operation. Several pairwise comparison operations can there-

fore be performed in parallel if the computing resources are

available. Many-core processors provide several computing

elements, connected by a high speed network allowing

distribution of jobs.

We propose the use of a master-slaves parallel imple-

mentation of the PSC algorithm, where the master process

is responsible for loading the structures to be compared

and distributing the pairwise comparison jobs to the slave

processes. In a many-core processor system, where the cores

are connected by a high speed interconnection network, the

data transfer overhead is relatively small. By limiting data

loading to a single process we avoid bottlenecks, created due

to multiple processes accessing the same data concurrently.

The slave processes perform pairwise structure comparison

on structure data received from the master and return results

of processing to the master. The slave processes continue the

cycle until they receive a terminate signal from the master.

This simple strategy, where the master process polls the slave

processes in a round-robin manner, allows efficient use of the

computing resources available to perform pairwise protein

structure comparisons.

The rckskel library

In order to facilitate development of PSC algorithms

targeted for the SCC, we built a C library. The library

provides convenient wrappers for common operations, such

as environment initialization, testing how many cores are

available to the program, setting debug levels and finaliza-

tion, performed by all applications built with the RCCE.

Further, we found that higher level constructs which hide

the details of the inter-process communication, e.g. polling

and waiting, would simplify introducing parallelism in PSC

algorithms. To retain the flexibility offered by RCCE, in

combining processes running on different cores to form a

pipeline or to perform parallel execution, we decided to use

algorithmic skeletons [3] for building the library.

The library we developed, called rckskel (rck Skeleton

Library), is a small parallel programming library which

implements algorithmic skeletons in addition to providing

convenient wrappers for common RCCE related tasks. A

list of skeleton functions implemented in rckskel follows:

• SEQ: This is a task sequencing construct where a list

of tasks, which may contain sub-tasks, are assigned to

a set of processing elements but will be executed only

in the order in which they were given. This construct

is typically useful for defining the leaf node opera-

tions in a hierarchy of operations. Parameters to the

function include, ue count (the number of processing

elements), ue ids (the specific processing elements),

check ready (function to be used for checking if a

processing element has been initialized) and task count
(the number of sub-tasks). The dots at the end of the

function definition denote a variable argument list of

tasks. This construct runs the jobs on the corresponding

processing elements sequentially. Once the last batch of

jobs is submitted it returns to the calling code, without

waiting for them to complete.

void SEQ(int ue_count, int *ue_ids,
int (*check_ready)(int),
int task_count,...);

• PAR: This is a task mapping construct where each

task, which may contain sub-tasks, is assigned a set

of processing elements and the sub-tasks are processed

in parallel. This construct assigns the jobs to the corre-

sponding processing elements and returns to the calling

code, without blocking till the jobs are completed. The

calling code will need to call the COLLECT construct

if it needs to wait for the jobs to finish.

void PAR(int ue_count, int *ue_ids,
int (*check_ready)(int),
int task_count, ...)

• COLLECT: This is a task collection construct where

a list of processing elements is polled, till all elements
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return the results of their processing. The function to be

applied to the data returned can be specified and may

perform operations on the returned data, e.g. storing

in an array for later use. The function does not block

waiting on processing elements in order but rather

performs a busy round-robin loop.

void COLLECT(int ue_count,
int *ue_ids, int (*collector)(int));

• FARM: This is a master-slaves task execution con-

struct. A controlling task is created which ensures

the execution of the tasks given until they complete.

The master process in this setup runs on one of the

cores of the SCC. This is the highest level construct

currently implemented and takes care of ensuring that

all processing elements are available before starting the

processing and that all processing is completed when

it returns. A task tree is generated from the parameters

of the function depending on the sub-tasks. If no tasks

have been specified FARM works as a PAR followed

by a COLLECT. The tasks in the tree are processed

as specified, in parallel or in sequence, using the PAR,

SEQ and COLLECT constructs described above.

void FARM(int ue_count, int *ue_ids,
int (*check_ready)(int),
int task_count, ...);

A template for a master-slaves implementation utilizing

rckskel is shown in Figure 3. The function name RCCE APP
is the entry point for applications built with RCCE. The

division of master and slave related code, after the com-

mon variable declaration and environment initializations, is

highlighted by the if block, as typical for SPMD-style code.

The MASTER ID is defined globally with a default value of

0, which implies that the first core available to the program

will be used to run the master process. The master processing

starts with creation of a FARM task where application spe-

cific methods, master send job and master receive result,
are supplied. These are application specific because the data

structure used by different applications vary.

The jobs to be processed, as well as the SCC cores on

which the jobs should be run (ue ids) are also specified

in the task definition. The jobs are run using the FARM
execution construct. The check ready method supplied is

used to start distribution of a job to a slave when the slave

becomes ready. The slave processing proceeds by waiting

in a busy loop, receiving data from the master process and

returning results once the processing is complete, until it

receives a terminate message.

The client receive job method contains a blocking wait

on the master and application specific processing of data.

The results are returned to the master in an application

specific data structure of type RESULT BLOCK.

Figure 3. Template C code for setting up master-slaves processing using
rckskel. The user defined function client receive job, blocks waiting for
a job from the master. On receiving a job, it executes a user defined function
for ex. a PSC method.

The rckskel library is implemented on top of RCCE

making it directly usable for building software applications

that can be run on the SCC. It provides easy to use data

structures for wrapping tasks and defining the SCC cores

(processing elements) to be used. Message passing between

processes running on different cores is performed using the

RCCE send and RCCE recv functions, hence no shared

memory allocation operation is performed. In its current

form, the master process performs a round-robin polling of

children processes it controls.

From a programmer’s perspective, it is important to clarify

the difference between ’task’ and ’job’ as used in rckskel. A

job refers to an application specific data structure describing

the processing to be performed e.g. a pairwise PSC is a

job and would specify the structures of the proteins to be

compared and the method called for comparing them. A

task refers to a collection of jobs, or other tasks e.g. one-vs-

all PSC is a task. Similarly, multiple one-vs-all PSC tasks

(many-vs-all PSC) would also constitute a task, forming a

hierarchy of tasks. Thus the task data structure is used to

capture jobs to be processed, the manner in which they must

be processed (serial or parallel) and the computing resources

available (SCC cores) to them. Allocation of a core to a

job is performed dynamically, but the cores available are

restricted to those supplied to the task. Thus allocating a

sensible number of cores, based on the number of jobs, is

left to the software implementation.
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Figure 4. Outline C code showing implementation of the
client receive job job function used in rckalign. The function is used
as shown in Figure 3

The rckAlign application

We developed a port of the TM-align algorithm, called

rckAlign, for Intel’s many-core SCC processor using the

rckskel library. The parallel algorithm developed makes use

of the master-slaves implementation provided by the library.

The implementation contains a single master process which

generates a list of jobs, each involving a single pairwise

protein structure comparison. The jobs are then processed

in parallel on all the slave processes available to the master.

The first core supplied to the program is used to run the

master process and all subsequent cores are used to run slave

processes.

In order to develop the parallel implementation, we first

ported TM-align software to a pure C implementation. The

Fortran code of TM-align was converted to C using the

F2C converter [32]. The resulting code had a dependency

on the F2C library and was therefore cleaned up manually

to remove all dependencies. This required altering the data

types, as well as implementing four basic math functions:

max, min, dabs and abs. Additionally, the I/O operations

were changed to use C functions. We compared the output

of the C implementation with that of the Fortran implemen-

tation and found matching results. The C implementation

of TM-align was used to generate the baseline results used

in the performance comparisons reported in Section V. A

master-slaves parallel implementation of the C code, using

the rckskel library and the template described in Figure 3

was then generated.

As evidenced by Figures 3 and 4, using the rckSkel library

a typical PSC method can easily be parallelized, enabling it

to exploit the parallelism offered by the SCC. The rckSkel
FARM function together with the user written functions

shown in these figures, allow the main PSC algorithm to be

implemented serially (in the function tmalign) and ensure

maximum resource utilization. No further code-complexity

is introduced regardless of the number of SCC cores used

by the software at run time.

V. RESULTS AND DISCUSSION

In this section, we describe the experiments performed, to

validate the performance characteristics of rckAlign, present

the experimental results and discuss them. Comparisons of

the parallel and serial implementations of the TM-align

PSC method were performed by running all-vs-all tasks and

recording the execution times. The speedup achieved, as

compared to the existing serial software, was measured as

a function of the number of cores used in the many-cores

processor architecture.

A. Experimental systems

We benchmarked rckAlign by performing all-vs-all PSC

experiments using the SCC. The first baseline for bench-

marking was obtained by running the same all-vs-all PSC

experiment with the existing TM-align software using a 2.4

GHz AMD CPU with 3 GB RAM, running Debian Stable.

The second baseline was running the algorithm on a single

core of the SCC i.e. an P54C Intel Pentium core at 800 MHz,

running SCC Linux. It must be noted that currently available

TM-align software and the C port used in our experiments

are serial implementations and do not take advantage of

multi-core systems. All software, both for the PC and the

SCC, was compiled using the GNU C Compiler version 4.7.

B. Datasets

The all-vs-all PSC experiments were performed for two

protein domain datasets. The datasets were generated by

using the first chain of the first model for the Rost and

Sander dataset (RS119) [33] and for the Chew-Kedem

dataset (CK34) [34]. While the Rost and Sander dataset

contains 119 protein structure chains, the Chew-Kedem

dataset contains only 34. These datasets have previously

been used in performance comparison of PSC methods [2],

[35].

C. Experiment I

We compared rckAlign running on the SCC and the

existing TM-align software used in a distributed manner, to

perform all-vs-all comparison for the CK34 dataset. In the

distributed TM-align version, a controlling master process

is run on the SCC host machine (MCPC). The host process

creates a list of jobs and distributes them to individual cores

of the SCC. Each process is responsible for loading its own

structure data. Issuing a job to a core is performed using the

pssh remote execution command available on the MCPC.

On the other hand, when using rckAlign the data is loaded

by the master process and slave processes receive the data

for pairwise structure comparison from the master process

using the SCC network. Results of the experiment are shown

Figure 5 with detailed values presented in Table II.

As observed in Figure 5 and Table II, rckAlign achieves

faster processing times than when the master process is

running on the MCPC. There are two main reasons for
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Table II
COMPARISON OF PARALLEL rckAlign TO DISTRIBUTED TM-ALIGN IN AN

ALL-VS-ALL PSC TASK USING THE CK34 DATASET. ALL TIMES ARE IN

SECONDS.

Slave Cores Algorithm
rckAlign TM-align

1 2027 5212

3 689 1704

5 420 854

7 305 569

9 238 511

11 196 452

13 168 382

15 148 332

17 132 293

19 120 262

21 109 238

23 101 218

25 94 202

27 88 187

29 83 175

31 79 168

33 73 174

35 71 173

37 68 145

39 65 143

41 62 132

43 60 126

45 59 122

47 56 120
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Figure 5. Performance comparison of parallel rckAlign with that of
distributed TM-align software (C port) for the Chew-Kedem dataset (CK34)
as the number of slave cores used is increasing.

this behavior: (a) disk access through the Network File

System (NFS) creates a bottleneck when multiple processes

are trying to access the data, and (b) high environment

Table III
TIME REQUIRED FOR THE BASELINE ALL-VS-ALL PSC TASK USING

TM-ALIGN (C PORT) ON TWO DIFFERENT PROCESSORS AND DATASETS.
ALL TIMES ARE IN SECONDS.

Processor Datasets
CK34 RS119

AMD Athlon II X2
250 2.4 GHz

406 7298

Intel P54C Pentium
800 MHz

2029 28597

setup costs incurred while issuing remote processing. The

SCC-MCPC setup provides NFS access to disks installed

in the MCPC for the Linux system running on each

individual core. When processes running on several cores

try to access the data stored in the shared partition of the

MCPC disk a bottleneck is created, by the MCPC disk

controller, resulting in overall increase in processing time.

This situation is not encountered when all the protein

related data is loaded by a single process as is the case

for rckAlign. Further, the master process running on the

MCPC starts a new process for each pairwise comparison,

which has its environment setup cost, thus increasing

further the total processing time. Results of the comparison

thus validate the superiority of the approach where the

master process runs on one of the SCC cores rather

than on the host PC machine. Additional overhead cost

is also avoided in rckAlign because all processes, master

and slaves, are initialized once for a given number of slaves.

D. Experiment II

The times required for performing the all-vs-all compar-

isons for the two datasets using the serial implementation of

TM-align were measured, both for the AMD Athlon II X2

250 2.4 GHz processor and for the P54C Intel Pentium SCC

Core at 800 MHz. The times obtained for the SCC core were

used as the baseline for calculating the speedup achieved

by rckAlign running in parallel on the SCC. For running

on a single SCC core, the TM-align program was modified

slightly, to load all the protein structures to be compared at

the start in order to be equivalent to the way rckAlign works.

Results of the experiment are presented in Table III. When

comparing baselines performance (using one core) the faster

AMD CPU outperforms as expected the much slower Intel

P54C core.

The speedup achieved by the parallel rckAlign implemen-

tation on the SCC was measured for both datasets CK34

and RS119. This experiment was designed to measure the

speedup achieved as a function of the number of slave

processes used as well as the size of the datasets. The master

process loads all the domains to be processed and creates

a list of jobs with all pairs (all-vs-all). The master process

then distributes N jobs among the N slaves and the results
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Table IV
PERFORMANCE OF RCKALIGN IN AN ALL-VS-ALL PSC TASK ON THE

CK34 AND RS119 DATASETS.

Slave
Cores

CK34 RS119

Speedup Time
(sec)

Speedup Time
(sec)

1 1 2029 1 28597

3 2.94 689 2.96 9654

5 4.82 420 4.91 5818

7 6.66 305 6.95 4114

9 8.52 238 8.94 3195

11 10.34 196 10.97 2605

13 12.09 168 12.95 2208

15 13.74 148 14.88 1921

17 15.36 132 16.76 1705

19 16.89 120 18.64 1534

21 18.53 109 20.59 1389

23 20.03 101 22.52 1270

25 21.56 94 24.52 1166

27 23.02 88 26.49 1079

29 24.52 83 28.45 1005

31 25.72 79 30.37 941

33 27.68 73 32.32 885

35 28.43 71 34.21 836

37 29.75 68 36.14 791

39 30.97 65 38.01 752

41 32.60 62 39.74 719

43 33.59 60 41.49 689

45 34.45 59 43.40 659

47 36.17 56 44.78 640

are gathered by polling the slaves in a round-robin manner.

The distribution of jobs and collection of results is carried

out until all jobs have finished. Communication between the

master and the slaves is carried out using functions available

in the rckskel API. The number of active slaves was varied

from 1 to 47 in order to assess the impact of increasing the

number of cores available for parallel processing. Results of

the experiment are shown in Figure 6 with detailed values

presented in Table IV.

Figure 6 shows that the speedup achieved by rckAlign
is increasing almost linearly with the number of cores

available for running slave processes. This is a result of the

low cost of exchanging data between processes running on

cores connected by a high speed interconnection network.

If the data transfer times were high, the master process

would become a bottleneck and core utilization would be

reduced, resulting in larger overall processing times. Since

an almost linear speedup is observed, the simple master-

slaves implementation appears sufficient to exploit the paral-

lelism offered by many-core processors to this problem. This

observation suggests that further speedup can be achieved
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Figure 6. Speedup achieved by rckAlign as the number of slave cores is
increasing (from 1 to 47) for the Chew-Kedem (CK34) and the Rost-Sanders
(RS119) datasets. The speedup reported is relative to the performance on
a single core of the SCC.

Table V
COMPARISON OF TIMES REQUIRED BY TM-ALIGN AND rckAlign FOR

PERFORMING ALL-VS-ALL PSC ON THE CK34 AND RS119 DATASETS.
ALL TIMES ARE IN SECONDS.

Dataset TM-align
AMD@2.4GHz

TM-align
Intel@800MHz

rckSkel
SCC(all cores)

CK34 406 2029 56

RS119 7298 28597 640

on many-core processors with a greater number of cores.

It should be mentioned that no load balancing was applied

to the allocation of jobs to slaves in our implementation.

It has been suggested that good load balancing approaches

can improve the performance of all-vs-all PSC [2]. We

are currently investigating if such techniques could further

improve the performance of rckAlign.

From the results in Table V we observed that rckAlign
running in the SCC at 800 MHz achieves an 11 fold speedup

over the AMD 2.4GHz processor and a 44 fold speedup

over a single Intel P54C 800 MHz processor when using the

RS119 dataset. We also observe that the larger the dataset

the higher the speedup observed. These results suggest

that many-core NoCs with fast interconnection networks

and faster processor cores than the SCC will be ideal

candidates for delivering high performance for all-to-all PSC

tasks applied to large size protein databases, as needed for

combinatorial drug design.

Comparison of the performance of rckAlign with the

serial implementations run on a single core of the SCC

and the use of the faster processor, suggest that there is

scope for achieving higher overall speedups, if the many-

core processor provides faster cores. It is possible that the

single master strategy would become the bottleneck, if slave

processes were running on faster cores or faster network.
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However, this can be tackled by implementing a hierarchy

of master processes such that a master does not become a

bottleneck for the slaves it controls.

Finally, the approach developed in this work can be

extended to the more general MC-PSC problem, since all

slave processes are not required to run the same PSC

algorithm. The basic protein structure data used by most

PSC algorithms is the same and therefore, different slave

processes can be running different algorithms on the same

data received from the master process (in algorithm specific

data structures). Such an extension of the approach would

require assessment of optimal strategies for the partitioning

of the cores dedicated to different PSC algorithms, since

the algorithm complexities may vary. However, since the

partition of cores to different tasks is implementation spe-

cific, from a software development standpoint this can be

facilitated using the library developed for this work.

VI. CONCLUSIONS

Computational challenges in the protein structure com-

parison (PSC) problem are a result of several factors:

structural proteomics databases getting larger at a very fast

pace, high computational complexity of pairwise protein

comparison algorithms and the multitude of pairwise com-

parison approaches popularly used in the field. Advances in

modern processor architectures, such as many-core CPUs,

have enabled them to support parallelism making them a

natural candidate for speeding up all-to-all PSC, an essential

operation in computational proteomics for drug design. We

have introduced a framework using algorithmic skeletons for

porting algorithms to a many-core processor architecture.

Using this framework, we have also developed a parallel

implementation, called rckalign, for Intel’s SCC many-core

processor of the popular TM-align PSC algorithm. Ex-

perimental results, comparing the performance of rckAlign
with the existing serial implementation, demonstrate that

almost linear speedup can be achieved by leveraging the

parallelism offered by many-core processors and their fast

interconnection networks.

Given the trends in the domain, future work will involve

extending the framework to support all-to-all multi-criteria

PSC and studying the performance characteristics of such a

system. Furthermore, building support for threading into the

base library will be investigated, since this can be critical

when the protein structure datasets are too large to be loaded

into memory at once.
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