
A Speculative HMMER Search Implementation on GPU

Xiaoqiang Li, Wenting Han, Gu Liu, Hong An, Mu Xu, Wei Zhou, Qi Li
School of Computer Science and Technology

University of Science and Technology of China
Hefei, China

Key Laboratory of Computer System and Architecture
Chinese Academy of Sciences

Beijing, China
lixq520@mail.ustc.edu.cn, han@ustc.edu.cn, {gliu, han, xumu, greatzv, liqi1982}@mail.ustc.edu.cn

Abstract—Due to the exponentially growing bioinformatics
databases and rapidly popular of GPU for general purpose
computing, it is promising to employ GPU techniques to
accelerate the sequence search process. Hmmsearch from
HMMER bioinformatics software package is a wildly used
software tool for sensitive profile HMM (Hidden Markov
Model) searches of biological sequence databases. In this paper,
we implement a speculative hmmsearch implementation on
NVIDIA Fermi GPU and apply various optimizations to it. We
test the enhancements in our GPU implementation in order to
demonstrate the effectiveness of optimization strategies. Result
shows that our speculative hmmsearch implementation achieves
up to 6.5x speedup over previous fast single-threaded SSE
implementation.

Keywords-HMMER 3.0; GPU; memory optimization; specu-
lative;

I. INTRODUCTION

In recent years, the graphics processing units (GPUs) have
become popular not only in traditional scientific computing
domain but in more general purpose computing domains
because of the tremendous computing power compared with
traditional CPU and the being more mature GPU devel-
opment tools such as NVIDIA’s Compute Unified Device
Architecture (CUDA) [2]. With the peak single precision
floating point computing power exceeding 1 Tflops for
recent NVIDIA GPUs and a reasonable thermal design
power (TDP), the Gflops/watt is much higher than traditional
CPU cluster, that is, the GPU computing is much greener
than CPU computing. And more and more modern computer
system ranging from personal computer to high performance
computing server are equipped with one or more GPUs. By
leveraging the computing capacity of GPU and traditional
multicore CPU, performance of many program increase
extremely. However, not all applications are easily ported to
GPU and get higher performance than CPU because there
are some restrictions on the applications that can execute
efficiently on GPUs. Parallelization of program onto GPU
will reveal these restrictions and help to improve the GPU
architecture. In this paper, we propose techniques to reduce
the influence of these restrictions and apply them to the par-
allelization of the HMMER’s hmmsearch sequence database

search tool on NVIDIA Tesla C2050 GPU. Hmmsearch is a
sequence search application that search a sequence database
for matches to an profile Hidden Markov Model (HMM) and
is particularly well suited for many-core architectures due
to the embarrassingly parallel nature of sequence database
searches.

We demonstrate a variety of optimization strategies for
hmmsearch, which is also useful for other GPU applications.
In this paper, We make the following contributions:

∙ We find the possibility to unroll the outer loop of
hmmsearch kernel and execute the unrolled loop spec-
ulatively. Apply many optimizations to minimize the
number of device memory access and produce a highly
optimized implementation that is faster than current
SSE implementation.

∙ Locate some restrictions of the GPU hardware that may
harm performance of applications running on it.

This paper is organized as follows: section II introduces
the backgrounds of GPU computing and HMMER search;
section III is the related work; our implementation is de-
scribed in section IV; section V gives the result and discus-
sion. We also show the performance comparison between
our implementation and latest SSE implementation; section
VI are the conclusion.

II. BACKGROUND

A. GPU Programming

In this section we describe the NVIDIA Tesla C2050 [1]
GPU based on the new generation Fermi [3] architecture.
With 1.03Tflops peak single precision floating point per-
formance, C2050 has 3GB graphic memory which is also
called device memory and 14 stream multiprocessors (SM).
A new unified L2 cache is added into Fermi architecture
for the device memory to improve performance of memory
system. Each SM has 32 stream processors, 32KB registers
and 64KB configurable memory. The 64KB configurable
memory can be configured as 48KB shared memory and
16KB L1 cache or 16KB shared memory and 48KB L1
cache. Though there are 32KB registers, total amount of

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/IPDPSW.2012.91

729

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/IPDPSW.2012.91

729

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/IPDPSW.2012.91

735

registers that a thread can used is 63, even if there are few
threads.

CUDA using a Single Instruction Multiple Threads
(SIMT) programming model to program NVIDIA GPU. The
GPU hardware enables creating thousands of threads with
little cost, and programmers need to create as many threads
as possible to obtain higher performance. But number of
threads supported on each SM is limited by the number
of registers, which means that SM with more registers
performs better. The doubled register number on a SM of
Fermi architecture brings larger thread capability, and also
brings improvement to kernels that is bounded by register
number. Threads are partitioned into thread blocks that is
mapped to and executed on SMs. Thread block is further
partitioned into warps of 32 threads. There are two warp
schedulers on each SM and each warp scheduler chooses
a warp from a block to execute each cycle. Warps are
dynamically partitioned from thread blocks by hardware and
are transparent to programmer.

The memory hierarchy exposed to programmer by CUDA
is complex. Many different kind of memory are exposed to
programmer, including registers, shared memory, constant
memory, texture memory and device memory. Registers are
allocated by compiler and total number is limited. Shared
memory is both readable and writable to threads mapped
to its SM. The size of constant memory is 64KB and it is
read only. The texture memory space is much larger than
the constant memory. Both constant and texture memory
space reside in device memory and have caches on chip.
The latency of device memory is much larger than on chip
memory. So a new unified 768KB L2 cache for device
memory is added in Fermi architecture.

The memory access pattern to Device memory can signif-
icantly impact its bandwidth. If all memory access requests
of different threads within a warp fit in 128 byte with start
address being a multiple of 128, only one cache/memory
transfer is needed. This situation with best performance
is called fully coalesced memory access. If the distance
between end address and start address is larger than 128
or the start address is not a multiple of 128, there will
be more than one cache/memory accesses. In general, the
more transactions are necessary, the more unused data are
transferred, reducing the instruction throughput accordingly.
So, we need to carefully arrange the input data to utilize this
memory system property.

B. HMMER search

HMMER developed by Sean Eddy [18], [22] is a wildly
used profile hidden Markov model (HMM) search tool.
A HMM is a probabilistic finite state machine, and used
to represent a sequence pattern. A group of such protein
sequences is called a protein family, and a profile HMM,
which is typically constructed from a multiple alignment
of those sequences, is used to model a protein family.

Figure 1. HMMER 3 execution pipeline, with profile data

The function of HMMER’s hmmsearch tool is to search a
sequence database for matches to an HMM.

The main procedure of hmmsearch is shown in algorithm
1, which is simple. The program reads a profile HMM
and a sequence database as its inputs. It repeatedly reads
one sequence from the sequence database and sents it to
a process pipeline “p7 Pipeline” to process until all the
sequences in database are processed.

The work flow of process pipeline “p7 Pipeline” is shown
in figure 1: all sequences sent to the pipeline will processed
by three filters. About 2% of all sequences will pass first
filter and be sent to the next filter, and 0.1% sequences will
reach the third filters. And profile result shows that first filter
occupies 75% of total execution time and the second filter
occupies 22%. Therefore, we concentrate on offloading the
first filter of process pipeline onto GPU to accelerate the
whole hmmsearch program.

Parallelism analysis: all sequences read from the input
database are processed independently and can be processed
parallel.

The pseudo-code of filter 1 is shown in listing 2, where
L is the length of sequence and Q depends to the length
of HMM. We can find some characteristics of MSVFilter
algorithm:

∙ The working set is large and there is almost no data
reuse. The data accessed is far from each other, which
makes the cache system perform badly;

∙ Different iterations of outer loop depends on its former
iterations, that is, the algorithm should only be executed
serially.

dp[i][k] = rsc[k] + max(dp[i-1][k-1], xmb[i-1])
xme[i] = max(dp[i][k]) k=1...Q-1
xmj[i] = max(xmj[i], xme[i])
xmb[i] = max(arg2, xmj[i])
xmb[i] = max(0, xmb[i]-arg3)

Listing 1. Formulas implemented by MSVFilter

The dependency is explicitly shown in listing 1. The
calculation of dp[i][k] depends on xmb[i-1], which depends
on the maximum of all dp[i-1][k], where k ranges from 0
to Q-1.

730730736

Algorithm 1: pseudo-code of hmmsearch

Input: A profile HMM and a sequence DB
while((seq=ReadOneSequenceFromDB)!=0){

p7_Pipeline(HMM, seq)
}

Algorithm 2: pseudo-code of p7 Pipeline

score1 = MSVFilter(HMM, seq)
if score1 > F1

score2 = P7ViterbiFilter(HMM, seq)
if score2 > F2

score3 = P7Forward(HMM, seq)
if score3 is significant

seq is match

for (i = 1; i <= L; i++) {
//prepare data for the for inner loop
input[0] = dp[i-1][Q-4]
input[1] = dp[i-1][Q-3]
input[2] = dp[i-1][Q-2]
input[3] = dp[i-1][Q-1]

//read row i-1 of dynamic programming
matrix to calculate row i

for (k = 0; k <Q; k++) {
//calculate one element
temp = max(input[k%4], xmb)
temp = min(255, temp+arg1)
temp = max(temp-rsc[k], 0)
xme = max(xme, temp)
//prepare data for next loop

iteration
input[k%4] = dp[i-1][k]
//write result to row i of dp matrix
dp[i][k] = temp

}
...
//prepate data for next iteration. Note

that xmb depends on xme which is the
maximum of all elements in row i of
dp matrix. This is the dependency
between outer loop iterations

xmj = max(xmj, xme)
xmb = max(arg2, xmj)
xmb = max(0, xmb-arg3)
...

}

Listing 2. Pseudo-code of MSVFilter

III. RELATED WORK

HMMER3 [22] implements a new probabilistic model of
local sequence alignment and a new heuristic acceleration
algorithm. Combined with efficient vector-parallel imple-
mentations on modern processors, HMMER3 gains roughly
100-fold speedup relative to previous versions of HMMER.

There has been a great deal of work on optimizing
HMMER 2 for traditional parallel computers [13]–[16]. J.
P. Walters and etc. [15], [16] developed a MPI HMMER 2
implementation on cluster, which will get near liner speedup
when the number of nodes is less than 64. There are many
parallel implementation on novel hardware such as FPGA
[6]–[9], GPUs [4], [5], [10], [23], network processor [11]
and Cell/B.E. Processor [12]. The first GPU implementation
of hmmsearch is ClawHMMER [4] by D. R. Horn. They
implement on an ATI graphic card, which is different from
ours. GPU-HMMER [5] is the first implementation on
NVIDIA GPU. Their target GPU is NVIDIA 8800 GTX
of G80 architecture and HMMER 2.3.2, while ours is a
Fermi architecture GPU with many differences and newest
HMMER 3.0. Their optimization mainly focus on memory
system such as coalesced memory access and utilize faster
texture and constant memory instead of device memory.
However, we focus on to reduce memory access operation
by making full use of registers, to cover data transfer time
between host and GPU by calculation, to reduce pressure
to memory system by speculatively executing the kernel. P.
Yao [10] introduced a load balanced GPU implementation
of hmmsearch. They concentrate on using idle CPU cores
to offload part of calculation that the GPU is not good at
and to presort the input sequences to balance load between
different GPU threads. Not much effort is done to optimize
their kernel implementation, while in this paper we mainly
focus on optimizing the GPU kernel.

Both [9] and [23] are works that parallelizing HMMER
3.0. Work [9] is done on FPGA platform and [23] chooses
GPU as their platform. The different between [23] and our
work is that different computing division methods are used:
they use one block to calculate the score of one sequence
while we use one thread to do the same work. Though
bandwidth is the key to achieve high performance, their
method cannot reduce read or write operations to the device
memory, while our speculative method can do, resulting a
faster implementation.

IV. OUR HMMSEARCH IMPLEMENTATION AND

OPTIMIZATIONS

A. Our hmmsearch implementation

In this section we describe our implementation of hmm-
search and optimizations to the first filter of p7 Pipeline. We
provide details and performance results of various optimiza-
tions to hmmsearch version 3.0. All tests were performed on
a machine consisting of a 2.13GHz Intel Xeon E5506 quad-
core processor with 12 GB main memory and 1 NVIDIA

731731737

Figure 2. Work flow of our hmmsearch implementation

Tesla C2050 GPU. The CUDA version is 4.0. The host
compiler is GCC version 4.4.5.

As shown in figure 2, our hmmsearch implementation
works as follows: There are 1 data prepare thread, 1 GPU
control thread and 3 worker threads. The data prepare thread
reads sequence from database, does some preprocess such
as digitize and puts the result sequences into blocks. All
sequence blocks are stored in one global queue. The GPU
control thread continuously gets a block from global queue,
extracts necessary data into arrays, copies these arrays into
device memory and then waits until GPU finishes computing
the score of all sequences in the block. After that, it copies
result to host memory and put the block into the input queue
of worker thread. The responsibility of three worker thread
is to fetch a sequence block from the global queue and
calculate the score of sequences in these blocks. First filter
of p7 Pipeline is calculated by both CPU and GPU, and
then the last two filters of pipeline are calculated by the
three CPU worker threads simultaneously. When the end of
sequence database reached, data prepare thread will enqueue
an empty block to signal the GPU control thread and 3
worker threads to return.

The GPU kernel speculatively computes the score of
sequences. There will be wrong result when speculation is
incorrect. All sequences that have incorrect score are marked
as to be recalculated by GPU kernel. And worker threads
will detect these sequences and recalculate their scores.

B. Optimizations to our implementation

The following optimizations are used to optimize the
computing kernel running on GPU.

∙ A lot of ordinary optimizations such as coalesce access
to dp array stored in global memory; put the rsc array
into texture memory and adjust its arrangement to
make full use of texture cache; asynchronously transfer
data to device memory to cover data transfer time and
kernel execution time. Because the host need only write
device memory on GPU, we use write-combined flag
to optimize the data transfer speed between host and
GPU [19]. Asynchronously call the computing kernel to
simultaneously do the calculation on GPU and calcula-
tion on host, which will hide the operation with shorter

execution time and reduce the total execution time.
Pre-sorting the input database to moderate the load
imbalancing problem caused by the different sequence
length processed by threads in a block. The longest
sequence is put at the front of database to reduce
execution time when there are not enough sequences in
the last block. We put these wildly used optimizations
together to evaluate them as one optimization.

∙ Use int type to substitute the uchar4 type. To convert
the SSE version of programs to CUDA kernel, the
uchar4 is an intuitive type to replace the 16-way vector
type of SSE. However, the uchar4 type is only a defined
structure in CUDA and not natively supported by the
underlying hardware, which result in an inefficient
implementation. While the 32-bit int type is natively
supported on NVIDIA Fermi architecture, we use int
type as default to store intermediate result and almost
all calculations are carried on int type.

∙ Unroll the outer loop of listing 2. There are depen-
dencies between different iterations of outer loop in
listing 2. Rows of dynamic programming matrix (dp in
listing 2) are calculated by the loop one by one. One
loop need the result of the former one to calculate a
new xmb value which is needed to calculate its own
row of dynamic programming matrix. So, unrolling of
outer loop directly has no benefit except more registers
are occupied, unless we can speculatively execute the
second loop. We found that the xmb variable in listing
2 does not change frequently between two continuous
loop. In fact, the xmb variable will not change in the
calculation of almost all the sequences. In all our test
cases, there are at most 1% sequences in the calculation
of which the xmb variable changed. For this reason, we
unroll the outer loop 2 times and execute the second
iteration speculatively. The pseudo-code of the unrolled
loop is shown in listing 3. The xmb variable will be
stored in a separated register before execution and
checked after execution. If xmb is changed by the first
iteration, the sequence will be tagged as to recalculate,
otherwise, the next two iterations will be executed.
The host will copy the recalculation information when
the calculation of one chunk of sequences have been
finished. The recalculation information is then checked
to choose sequences that need be recalculated and the
recalculation is carried out in host CPU. As shown
in listing 3, after unrolling, Q reads and Q writes
operations to device memory are saved for every two
loop.

732732738

for (i = 1; i <= L; i+=2) {
input[0] = dp[i-1][Q-4]
input[1] = dp[i-1][Q-3]
input[2] = dp[i-1][Q-2]
input[3] = dp[i-1][Q-1]

old_xmb = xmb;
for (k = 0; k <Q; k++) {

//loop iteration i
temp = max(input[k%4], xmb)
temp = min(255, temp+arg1)
temp = max(temp-rsc[k], 0)
xme = max(xme, temp)
input[k%4] = dp[i-1][k]

// dp[i][k] = temp //no longer needed

//loop iteration i+i
temp2 = max(dp[i][k], xmb)
temp2 = min(255, temp2+arg1)
temp2 = max(temp2-rsc[k], 0)
xme = max(xme, temp2)

// input[k%4] = dp[i-1][k] //no longer
needed
dp[i][k] = temp2

}
...
xmj = max(xmj, xme)
xmb = max(arg2, xmj)
xmb = max(0, xmb-arg3)
if(xmb!=old_xmb){

recalculated = 1
break; //this thread will exit, and

score will be recalculated
}
else{

score is correct and execute next two
loop iterations

}
...

}

Listing 3. Pseudo-code of the unrolled loop using speculative execution
technology

V. RESULT AND DISCUSSION

We choose 6 HMMs of length 63, 112, 215, 423, 830,
1774. All the HMM are taken from Pfam database [17].
And the input sequence database is NCBI NR [21] database
with more than 15.2 million sequences. The length of all
sequences varying from 5 to 41943. We launch our kernel
using the configuration of 28 blocks with 512 threads each.
The block number is 28 because there are 28 warp scheduler
on Tesla C2050 GPU. 512 threads per block is maximum
number that supported by hardware because of the register
limitation.

Figure 3 is the performance improvement of different
kernel optimizations. “Basic” version is converted from SSE
implementation manually, all ordinary CUDA optimization
technologies shown in the first item of subsection IV-B are
used in this configuration. The “Optimization 1” version
is the configuration that apply the optimizations shown in

 0

 100

 200

 300

 400

 500

63 112 215 423 830 1774

T
im

e(
s)

HMM size

Effect of Optimizations

Basic
Optimization 1
Optimization 2

Figure 3. Performance improvement of kernel optimizations

 0

 200

 400

 600

 800

 1000

 1200

 1400

63 112 215 423 830 1774

T
im

e(
s)

HMM size

GPU Speculative vs. Serial CPU(SSE)

CPU(SSE)
GPU Speculative

Figure 4. Execution time of first filter

the second item of subsection IV-B to “Basic” version. The
“Optimization 2” version is our final version, which is the
result of applying the optimizations shown in the last item
of subsection IV-B to “Optimization 1” version.

The result is the same as we expected: “Optimization
1” runs faster than “Basic” version because the int type is
natively supported while the uchar4 is not; “Optimization
2” runs faster than “Optimization 1” because about half read
and write operations to device memory are reduced. Though
half access operations to device memory are reduced, less
than half execution time is reduced. That is because there
are not enough active threads, which means there are not
enough active warps per cycle, and hence on-chip resource
utilization is low.

As shown in figure 4, though there are many hardware
restictions, speed of GPU is much faster than that of SSE
version running on CPU, because the higher peak perfor-
mance provided by GPU hardware.

As shown in figure 5, when HMM size is small, speedup
is low. The reason is that to calculate the score of sequences
against a small HMM, not much time is need, while the data

733733739

 0

 500

 1000

 1500

 2000

 2500

63 112 215 423 830 1774
 0

 2

 4

 6

 8

 10
T

im
e(

s)

S
pe

ed
up

HMM size

GPU Speculative vs. Serial CPU(SSE)

CPU(SSE)
GPU Speculative

Speedup

Figure 5. Final speedup compared to serial SSE HMMER

prepare thread need much time to prepare input sequences
for p7 Pipeline. When the HMM size increases, time needed
to calculated score of all sequences increase too, resulting
in the increasing of the part that are parallelly executed on
GPU. However, when HMM size changes from 423 to 830
the speedup decreases. The answer is shown in table 1: the
recalculate count increases about 4.4x and passed MSVFilter
count increased 1.4x, which introduce much work for GPU
control thread.

Profiled by Compute Visual Profiler [20] provided by
NVIDIA, we found that the average active warp per cycle
is about 15, while there are 28 warp scheduler. That is to
say, about half of compute capability is not used. This is
because register file of Fermi architecture is too small for
this application, which makes hmmsearch become a memory
bound application on GPU. A feasible way to increase
performance without modifying hardware is to decrease the
per thread register file usage, which enables GPU to support
more active threads to cover long latency device memory
access operation.

Our implementation mainly reduce execution time in two
aspects. First, host CPU and GPU execute in an asyn-
chronous way, which means that the one that has longer
execution time covers the other one. Second, the kernel
execution time saved by various optimizations to the kernel.

The final result of our implementation is shown in Figure
5, we can see that the maximum speedup compared to the
serial version is more than 6.5x.

HMM size 63 112 215 423 830 1774
Recalculate count(%) 0.37 0.53 0.12 0.23 1.02 0.92
Passed MSVFilter(%) 2.34 3.75 3.1 4.64 6.48 5.82

Table I
PERCENTAGE OF RECALCULATE AND PASSED MSVFILTER

VI. CONCLUSION

We have presented the details of our hmmsearch imple-
mentation on new generation NVIDIA GPUs. We show that
the hmmsearch is a memory bound application on GPU
and try to minimize the memory access operation of each
loop iteration using speculative loop unrolling and other
assistant technologies. Performance result shows that the
hmmsearch achieves excellent performance improvement, up
to 6.5x speedup compared to the serial implementation. The
optimization technologies used to optimize hmmsearch such
as loop unrolling, storing intermediate results into registers,
making full use of texture memory, coalescing memory
access and pipelining are also useful in parallelizing other
applications onto GPU.

In the practice of parallelizing hmmsearch onto GPU, we
have some experiences in programming GPU: First, const
memory and texture memory are fast when accessed in
a cache friendly pattern and should be considered as the
position to store constant data first, even though there are L2
cache for device memory. Because the 768KB L2 cache is
too small for 3GB device memory and thousands of threads,
the constant data automatically loaded into L2 cache by
hardware is probably replaced by other “hotter” data. While
stored in constant or texture memory, the data uses a separate
cache that cannot be affected by access to device memory.
Second, making fully use of registers may greatly improve
performance. The register is fastest in all kind of memories
in GPU architecture and the 32KB capacity per SM is
large enough for many applications. Third, to achieve high
performance, coalesced memory access to shared memory,
constant memory, texture memory and device memory is
important.

And some perspective on GPU hardware: first, the size
of shared memory is small. Shared memory per stream
processor of Fermi architecture is even smaller than pervious
architecture, 1.6KB per stream processor compared previous
2KB per stream processor. Second, maximum number of
registers one thread can use is small, which is limited to 63
in Fermi architecture. When thread number is small and per
thread register requirement is large, just like hmmsearch, this
hardware configuration cannot satisfy the need of program-
mers. Third, total number of registers is not large enough.
As a result, one SM cannot support sufficient active threads
to run on it, which limit the average active warps on GPU
and hence the final speedup. Finally, arithmetic operations on
char4 and other similar data types are not natively supported
by current GPUs, which will limit the speedup of GPU
implementation compared to the SSE implementation.

VII. ACKNOWLEDGMENTS

This work is supported financially by the National Basic
Research Program of China under contract 2011CB302501,
the National Natural Science Foundation of China grants

734734740

60970023, the National Hi-tech Research and Develop-
ment Program of China under contracts 2012AA010902
and 2012AA010303, the National Science & Technology
Major Projects 2009ZX01036-001-002 and 2011ZX01028-
001-002-3.

REFERENCES

[1] NVIDIA. http://www.nvidia.com/docs/IO/43395/NV DS
Tesla C2050 C2070 jul10 lores.pdf

[2] NVIDIA. CUDA C programming guide. NVIDIA, 4.0 edition,
2011.

[3] NVIDIA. http://www.nvidia.com/content/PDF/fermi white
papers/NVIDIA Fermi Compute Architecture Whitepaper.
pdf, version 1.1, 2009.

[4] D. R. Horn, M. Houston, and P. Hanrahan. ClawHMMER:
A Streaming HMMer-Search Implementation. International
Conference for High Performance Computing, Networking,
Storage and Analysis(SC), 2005.

[5] J. P. Walters, V. Balu, S. Kompalli, and V. Chaudhary. Eval-
uating the use of GPUs in Liver Image Segmentation and
HMMER Database Searches. IEEE International Symposium
on Parallel & Distributed Processing (IPDPS), 2009.

[6] Y. Sun, P. Li, G. Gu, Y. Wen, Y. Liu, and D. Liu. Accelerating
HMMer on FPGAs Using Systolic Array Based Architecture.
IEEE International Symposium on Parallel & Distributed Pro-
cessing (IPDPS), 2009.

[7] T. Takagi and T. Maruyama. ACCELERATING HMMER
SEARCH USING FPGA. International Conference on Field
Programmable Logic and Applications, 2009.

[8] R. P. Maddimsetty, J. Buhler, R. D. Chamberlain, M. A.
Franklin, and B. Harris. Accelerator Design for Protein Se-
quence HMM Search. International conference on Supercom-
puting, 2006.

[9] N. Abbas, S. Derrien, S. Rajopadhye, and P. Quinton, Ac-
celerating HMMER on FPGA using Parallel Prefixes and
Reductions, International Conference on Field-Programmable
Technology (FPT), 2010.

[10] P. Yao, H. An, M. Xu, G. Liu, and Y. Wang. CuHM-
Mer: A Load-Balanced CPU-GPU Cooperative Bioinformatics
Application. International Conference on High Performance
Computing and Simulation (HPCS), 2010.

[11] B. Wun, J. Buhler, and P. Crowley. Exploiting Coarse-Grained
Parallelism to Accelerate Protein Motif Finding with a Network
Processor. International Conference on Parallel Architectures
and Compilation Techniques(PACT), 2005.

[12] J. Lu, M. Perrone, K. Albayraktaroglu, and M. Franklin.
HMMer-Cell : High Performance Protein Profile Searching
on the Cell/B.E. Processor. IEEE International Symposium on
Performance Analysis of Systems and software(ISPASS), 2008.

[13] J. P. Walters, R. Darole, and V. Chaudhary. Improving MPI-
HMMER’s Scalability With Parallel I/O. IEEE International
Symposium on Parallel & Distributed Processing (IPDPS),
2009.

[14] S. Isaza, E. Houtgast, F. Sanchez, A. Ramirez, and G.
Gaydadjiev. Scaling HMMER Performance on Multicore Ar-
chitectures. International Conference on Complex, Intelligent
and Software Intensive Systems (CISIS), 2011.

[15] J.P. Walters, B. Qudah, and V. Chaudhary. Accelerating the
HMMER Sequence Analysis Suite Using Conventional Proces-
sors. 20th International Conference on Advanced Information
Networking and Applications(AINA 2006), 2006.

[16] J. Landman, J. Ray, and J.P. Walters. Accelerating HMMer
searches on Opteron processors with minimally invasive recod-
ing. In Proceedings of HiPCOMB, 2006.

[17] Pfam database: http://pfam.sanger.ac.uk/

[18] S. R. Eddy. Profile Hidden Markov Models. Bioinformatics,
14(9), 1998

[19] NVIDIA. CUDA Toolkit Reference Manual. NVIDIA, Ver-
sion 4.0, 2011.

[20] NVIDIA. Compute Visual Profiler User Guide. NVIDIA,
Version 4.0, 2011.

[21] NCBI. The NR database. ftp://ftp.ncbi.nih.gov/blast/db/
FASTA/nr.gz, 2011.

[22] S.R. Eddy, A new generation of homology search tools based
on probabilistic inference. Genome Informatics, 23:205211,
2009.

[23] S. Quirem, F. Ahmed, and B. K. Lee, CUDA acceleration
of P7Viterbi algorithm in HMMER 3.0, 30th IEEE Interna-
tional Performance Computing and Communications Confer-
ence (IPCCC), 2011.

735735741

