
Optimizing the Execution of Statistical Simulations for

Human Evolution in Hyper-threaded Multicore Architectures

Raquel Dias, César A. F. De Rose
Pontifical Catholic University of Rio

Grande do Sul (PUCRS)
Porto Alegre, Brazil

raquel.dias.001@acad.pucrs.br,
cesar.derose@pucrs.br

Antônio Tadeu Azevedo Gomes
National Laboratory for Scientific

Computing (LNCC)
Rio de Janeiro, Brasil

atagomes@lncc.br

Nelson J. R. Fagundes
Federal University of Rio Grande do Sul

Porto Alegre, Brazil
nelson.fagundes@ufrgs.br

Abstract—Simulations of statistical models have been used to
validate theories of past events in evolution of species. Studies
concerning human evolution are important for understanding
about our history and biodiversity. However, these approaches
use complex statistical models, leading to high computational
cost. The present paper proposes optimization techniques for
Hyper-threaded multicore architectures to improve the
computational performance of these simulations. Combining
granularity studies and Hyper-threading optimization, we
improved the performance of simulations in more than 30%, if
compared with common parallel execution (default
parallelization applied by users). The performance was
evaluated using a complex example of human evolution studies
[1]. For this example, our techniques enable the user to
decrease the simulation execution time from 50 days
(sequential runtime) to less than 5 days. In addition, the
evaluation has been extended for simulations running on
multiple multicore cluster nodes. Our measurements show a
high Speed-up, close to theoretical maximum, being 129 times
faster for 160 computational cores. This represents an
efficiency of 81%.

Hyper-threading, ABCToolbox optimization; granularity;
workloads; statistical simulations;

I. INTRODUCTION

Simulations of statistical models are important for
evolutionary studies of many species. Studying the human
evolution, for example, we can understand our own history.
Many statistical models and theories concerning human
evolution have been proposed [2], however the use of
genetic data for estimating the relative likelihood among
them has started recently [1][3]. These methods can be
applied in order to evaluate the effects of demographic and
historic events, which may have influenced the biodiversity
of a given species. These analyses are performed by means
of simulations that are based on statistical inference [4][5].

The evolutionary simulations are based on experimental
data (genetic or morphologic) and historical or archeological
data on a given species. Through this information the
researcher may build a theory concerning the evolution of a
species (demographic model or evolution scenario). The
model, based on statistical parameters, is simulated and
compared against other theories. This comparison is
performed testing these models’ probability of generating the
current characteristics of the given species.

In simulations of high complexity, such as human
evolution studies, it is necessary to develop extremely
detailed statistical methods. Sampling simulations are
performed with a high number of parameters that demand a
higher computational cost. Furthermore, a high number of
samples must be generated in advanced probabilistic models,
in order to acquire results with high degrees of confidence.
These features also lead to high computational cost, implying
the need to use techniques to optimize performance.

The present work proposes and evaluates an optimization
technique for improving the computational performance of
evolutionary simulations that are based on statistical
inference. Some parallelization criteria were evaluated, such
as the use of parameter sweep and workload. Combined with
the parallel execution, we applied the optimization
techniques of granularity evaluation and use of Hyper-
Threading. This work focused on examples of demographic
models of human evolution, proposed by Fagundes et al.[1].
In addition, the tests have been extended to more nodes of a
cluster, and for another example problem. The performance
analysis was carried out in order to explore the adaptation of
the present optimization in other cases, with diverse
complexities and environments.

The present paper structure is defined as follows. In
section 2 we detail the main features of the problem and the
simulation tool that will be optimized. Section 3 describes
related simulation tools, as well as the common method for
parallelization applied for the tool which will be optimized.
In section 4 we present the proposed optimization
techniques. Section 5 presents the evaluation of the proposed
techniques, comparing it with non-optimized execution. In
section 6 is the discussion on the obtained results and the
main advantages acquired through the presented
optimization technique.

II. SIMULATIONS OF STATISTICAL MODELS FOR HUMAN

EVOLUTION

Studies by Fagundes et al. [1] compare three alternative
models of human evolution: (A) African origin, (B)
assimilation models and (C) multiregional sources evolution.
The model variants are distinguished by their patterns of
population growth: exponential, instantaneous, and negative,
with sources in multiple regions or a single one. The
schematic representation of some of the compared models is
demonstrated in Figure 1.

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.87

693

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.87

693

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.87

699

Figure 1. Schematic examples of simulation models for

human evolution. Adapted from [1].

The demographic models represent modifications in the
population size range over time. Narrowing represents
decreasing of population size, gradual enlargements
represent exponential growth (A and B), and immediate
enlargements represent instantaneous growth (C).

In order to perform the simulations of the proposed
evolutionary models, these were described through a set of
discreet or continuous parameters. Some examples of such
parameters are: minimum and maximum starting population
size, migration rate, population growth rate, genetic variation
rates, parameters deviations, and others. These
approximations are performed based on historical and/or
genetic data. Having a detailed description of the proposed
theories, these models can be used in evolutionary simulation
tools.

The work presented by Fagundes et al. is a representative
example of current evolutionary studies, as for its
computational cost and complexity levels. Considering this,
we reproduce the same work by Fagundes et al., aiming to
propose and evaluate optimization techniques against this
current example workflow. We review the main features of
this workflow and describe the proposed optimization
techniques in the next sections.

A. Evolutionary Studies Workflow with ABCToolbox

The simulations of the described problem in this paper
make use of a package for Approximate Bayesian
Computation, known as ABCToolbox [6]. This tool consists
in sampling algorithms, based on a likelihood distribution.
These algorithms, named Monte Carlo (MC) and Markov
Chain Monte Carlo (MCMC), enable the generation of
sampling models. The samples are created by approximation
methods, guided by delimiter parameters. [7]. The workflow
of evolutionary studies consists in a set of steps for
configuration, simulation and analysis.

Initially, the user gives as parameters a set of features
that forms the evolutionary model or hypothesis that is

being proposed (statistical model). It is done using an input
file for the simulation program, which contains all the
statistical parameters of the proposed evolutionary scenario.
After that, using MC or MCMC methods combined with
Bayesian inference, a random sampling procedure is
performed. The sampling is delimited to likelihood intervals
obtained from the proposed model. The underlying data
generated in this step is a set of randomly created samples,
whose statistical parameters and characteristics are assigned
according to the boundaries of the proposed model. This
method is well known and widely applied in several
research lines. Among its main applications, are issues
related to the sampling randomness, likelihood and
inference [6].

After the sampling step, the evaluation of parameters
distribution is performed for the evolutionary theory
simulated. In order to do this, it is tested if the hypothesis of
the proposed model may actually have leaded the current
characteristics of human species. This test is performed
comparing the experimental statistic data with simulated
ones (summary statistics evaluation). In the end of this
analysis, the output is a comparative score representing the
likelihood of each compared model.

In cases that involve complex models, such as in the
present work case, a huge number of samples is necessary.
This occurs in order to ensure the reliability and randomness
of the comparative procedures. In addition, they may be
needed to rerun the simulations, adjusting parameters for
calibrating the evolutionary scenarios. In this manner,
initially the input parameters are evaluated for
representativeness of the proposed model (parameters
calibration). Figure 2 shows an overview of the workflow
for evolutionary studies, where the simulation procedures of
ABCToolbox are involved.

Figure 2. Workflow for evolutionary studies where

ABCToolbox simulations are involved.

Lastly, after developing and comparing representative
statistical models for each theory, it is possible to choose the
higher scored model as the most feasible or reliable between
the compared ones. If one of the hypotheses presents higher
feasibility among others, so this is accepted as the most

694694700

consistent. If the opposite occurs, so the hypothesis is less
probable than others compared.

The simulation performed in the present work takes a
sequential run time of around 50 days, in an average
computer. It implies the need for dividing the workload
between multiple processors, in order to reduce the
execution time.

III. RELATED WORK

Many parallelization strategies for MCMC methods have
been developed [8][9][10][11]. Besides the ABCToolbox
simulation tools, other evolutionary simulation frameworks
have been investigated for improving performance. An
example is the PBPI program, which combines MCMC
methods with Bayesian inference for performing
phylogenetic studies [12]. The parallelism of PBPI was
developed by means of distributing MCMC sampling
methods. PBPI tests have demonstrated a moderate
performance in a Beowulf cluster of 32 nodes [13][14]. The
program presented a weak scaling, with low efficiency for
higher number of cores, with a Speed-up of 46 for 64 cores
(71.9% efficiency), 53 for 128 (41.4%) and 75 for 256 cores
(29.3%).

Another program, known as MrBayes, is an example of
parallel implementation for evolutionary simulations with
the use of MCMC methods [15]. For its parallelization two
programing models were used: message passing interface
and shared memory. For the MrBayes program, such kind of
implementation was necessary because its simulation
procedures make use of a sampling algorithm variant purely
based on MCMC. Unlike ABCToolbox, this variant, known
as Metropolis Coupled MCMC Methods, there is
interdependence between processes. Tests have
demonstrated a moderate scaling, with Speed-up of 21 for
32 cores, with 65.6% efficiency, for the parallel
implementation of MrBayes [15].

In the present work, techniques for improving the
performance of evolutionary simulations of ABCToolbox
are evaluated. The performance evaluation is focused on
demographic model examples evaluated by Fagundes et al.
[1]. ABCToolbox has a workload for which little effort is
required to separate the problem in parallel tasks. For the
parallel execution the simulation parameters were
distributed and the workload granularity was analyzed. For
the optimization of parallel execution Hyper-Threading was
employed [16] combined with granularity optimization. In
this work we introduce a new optimization technique in
order to improve the performance of ABCToolbox.

A. Selecting a Template (Heading 2)

The ABCToolbox can be considered as an
embarrassingly parallel program, being parallelized through
the distribution of input parameters between processes, with
no major efforts. Its parallel execution is well known and
applied by users [17]. Unlike MrBayes program,
ABCToolbox does not present dependence between

processes, which enables its parallelization, without the
need for message passing interface. For the parallel run, the
total number of simulation iterations is divided among the
total number of processes.

In the parallel ABCToolbox, the total number of
iterations is settled by an input parameter named as nbsims.
For its parallel run, the value of nbsims is divided by the total
number of processes, represented by np. An example of a
ABCToolbox run, with the division of this parameter for 4
processes, is described in Table 1.

In this example, the parameter nbsims (1000 iterations) is
divided by np (4 processors), resulting in 250 iterations by
processor. Input represents the statistical parameters for the
model. The parallel run of ABCToolbox will be used in
order to compare its gain of performance against the present
optimization techniques proposed.

TABLE I. EXAMPLE OF ABCTOOLBOX PARALLEL EXECUTION

np nbsims Run commands generated
1 1000 ABCSampler input 1000
4 nbsims/np ABCSampler input 250
 ABCSampler input 250
 ABCSampler input 250
 ABCSampler input 250

B. Workload Granularity

The granularity, which is the ratio between processing
and communication, is an important issue for the
performance of parallel programs [18][19]. Although not
having interdependence among processes, at the end of
execution, each ABCToolbox process writes its results to
hard disk. This kind of communication may interfere in
performance if the workload grain is too small. This issue
was considered before applying the presented herein
optimization.

Another feature of ABCToolbox is that, for each iteration
of simulation, it takes approximately the same runtime,
without remarkable variations. There is no big difference
between processes workloads. All these issues were
considered for the performance analysis and employment of
HT optimization. The granularity evaluation was performed
in order to explore the performance of parallel ABCToolbox,
combined with the use of HT.

IV. OPTIMIZATIONS THROUGH THE USE OF HYPER-
THREADING

The technique explored for improving the performance of
evolutionary simulations, using parallel ABCToolbox, was
the use of HT combined with granularity optimizations. HT
is an Intel proprietary technology that works replicating
modules of a given processor. With HT, a physical
processor starts to be considered by the operating system as
two logical processors. In this manner, processor modules
that are idle can be available for better use of performance
[16].

695695701

Benchmark tests have demonstrated that the performance
of Intel Xeon processors can be improved 30% with HT
[16]. Without the use of HT, in order to obtain the same
improve of performance, it would be necessary to obtain
new physical processors. Considering this, HT is a strategy
regarded as an advantageous feature at costs and benefits
levels, for improving the performance of multiprocessors
without any additional cost.

Many program features may influence the performance
of the HT technology, such as: workload balance,
interdependence between processes, use of memory, access
to memory, etc. Among them, an important feature for
obtaining performance by the use of HT is the memory
usage of applications. With HT enabled, the number of
logical processors is duplicated, what consequently
increases the number of memory accesses. This may harm
this technique efficiency, when applied to high memory
usage programs.

The characteristics of ABCToolbox program support the
use of HT optimization technique: there is no dependence
among processes (no need of message passing interface), low
memory usage (a maximum of usage around 35%, for a node
with 16GB available) and a balanced workload between
processes. The tests for this optimization technique were
focused in the simulations of statistical models described in
the present work, analyzed by Fagundes et al. [1]. However,
the present optimization was also evaluated for another
example, in order to verify its adaptation to other kinds of
problems.

V. PERFORMANCE EVALUATION

The present work was performed through the following
computational environments:
• Atlântica cluster (10 nodes): 2 Intel Xeon Quad-

Core E5520 2.27 GHZ processors, Hyper-Threading, 16
cores per node, 16 GB of memory. Cluster located in
Laboratório de Alto Desempenho (LAD-PUCRS) 1 . 10
nodes were used for performance testing. These machines
are connected by Gigabit Ethernet network.
• Pantanal cluster (6 nodes): 2 Intel Xeon 3.6 GHZ

processors, Hyper-Threading, 4 cores per node, 2 GB of
memory. Cluster located in Laboratório de Alto
Desempenho (LAD-PUCRS)1. These machines are
connected by Gigabit Ethernet network. One node used for
performance testing.
• Altix-Xe cluster: 2 Intel Xeon Quad-Core E5520

2.27 GHZ processors, Hyper-Threading, 16 cores per node,
24 GB of memory. Cluster located in Laboratório Nacional
de Computação Científica (LNCC) 2. These machines are
connected by Gigabit Ethernet network. One node used for
performance testing.
• Rachserver: 2 Intel Xeon 8 cores, 2.00 GHZ

processors, Hyper-Threading (32 cores per node), 64 GB of

1 http://www.pucrs.br/ideia/lad
2 http://www.lncc.br

memory. Server located located in Laboratório de Alto
Desempenho (LAD-PUCRS)1.

All nodes are multiprocessors from clusters. The
environments rely on the use of resource scheduling
TORQUE e SGE [20][21]. There is the same processor
model in both clusters Atlântica (TORQUE) and Altix-Xe
(SGE). However, since each one has different resource
scheduling managers, both were kept for the development of
scripts for parameter sweep. In addition, variations in
resources administration may influence performance.

A. Parallel ABCToolbox

The present optimizations were compared against the
default ABCToolbox. For this, tests were performed with
parallel ABCToolbox (without optimization), 5 times, for a
simulation of 10 iterations. The statistical parameters were
applied according to the simulation scenario described in
this work. The runtime was measured for this test set,
obtaining an average runtime. For measuring the
performance, the acceleration factor, or Speed-up, was
calculated [22][23]. For measuring the gain of performance
regarding the computational power available, efficiency
factor was calculated. This value indicates the effective use
of processors [23]. The results demonstrate a high potential
for parallelization through the division of nbsims parameter,
since among all the tests the acceleration factor presented a
speed-up close to the maximum theoretical value expected
(Figure 3).

Figure 3. Performance acquired using division of nbsims

parameter, using a node o Atlântica cluster.

Another feature of its execution, to be considered before
applying optimizations, is the workload granularity. The disk
writing time keeps the same in ABCToolbox. This occurs
due to the characteristics of this algorithm, where regardless
the simulation size, the summary statistics calculated from
the sampling return a fixed number of values. These values
are calculated as an overall descriptive statistics summary
from all samples (average, standard deviation, variance, etc.).

Therefore, the size of simulated samples may vary while
the statistic summary results will present the same size. This
issue may be related with what is observed in Figure 4. 10
repetitions were performed for each test described, with each

��

��

��

��

��

��

�	

�

�� �� �� �� �� �� �	 �

��

���

���

�	�

����

�
�

��
�

�

�
���

��
��

��
��

�
�

��������������� �!

"�����������
�����������������

��������������

696696702

workload size. The average value of runtime and its standard
deviations were calculated. Through the results, we observe
that a minimum 200 iterations by process is an recommended
grain size, in order to obtain a better performance, in diverse
computational environments.

Figure 4. Workload granularity using HT (16 cores) in a

node of Atlântica cluster.

Many factors may affect results of granularity, such as:
memory access, cache size, processor clock, and disk
access. This workload granularity optimization was
combined with HT in order to improve performance.

B. Use of Hyper-Threading combined with grain size
optimization

Through our tests, we observe that using HT combined
with inappropriate granularity may dramatically decrease HT
efficiency, as shown in figure 5. In addition, using at least a
grain size of 200 iterations by computational core, the
efficiency of HT improves substantially (29%), compared
with smaller grain sizes tests.

Figure 5. Efficiency using HT combined with grain sizes
optimizations.

The same performance evaluation described in previous
section was carried out for evaluating the use of HT
technology. The evaluation was performed in order to
compare the gain of performance by the use of HT against
the parallel ABCToolbox commonly used (without HT).
The improvement in the runtime was evaluated for each one

of the computational environments described. The
performance results with HT, combined with the parameters
division, are demonstrated in Figure 6. The performance for
all the computational environments can be observed.

Figure 6. Performance acquired with Hyper-Threading.

For the Atlântica and Altix-Xe clusters nodes (2 x Intel
Xeon Quad-Core E5520 2.27GHZ), it was observed a gain
of performance of ~38% if compared with parallel
ABCToolbox without using HT, nor granularity
optimization. For Pantanal cluster (Intel Xeon 3.6GHZ), the
performance improvement was around 51% of efficiency.
The results from 1 to 8 cores represent the optimization
without HT (Figure 3). The acceleration obtained for 16
cores represents the use of HT for the same 8 cores used in
previous test (Figure 5). For the Rachserver (2 x Intel Xeon
8 cores X6550 2.00 GHZ), it was observed an improvement
of performance of ~29% using HT (32 cores), if compared
with parallel ABCToolbox not using HT (16 cores). In
Figure 5, 32 cores represent the acceleration achieved with
HT for Rachserver.

The present simulation for human evolution needs 5
million iterations to achieve a desired degree of confidence
or representativeness. This total value of iterations takes a
sequential time of around 50 days. In present work, this time
has been reduced in approximately 90%. In other words, a
simulation that takes around 50 days of sequential time, has
become 12 times faster, running at less than 5 days. The
results of runtime for this simulation can be observed in
Figure 7.

The performance improvement obtained (~38%) using
HT combined with appropriate grain size is better than the
value expected through the use of HT (30%) [16]. This good
adaptation to this problem may occur due to the better use of
the processors idle time. It may happen during the sampling
steps, writing in disk, or through the transition between such
activities.

The memory usage is another important issue that may
influence performance. Enabling HT, the number of logical
processors is duplicated, what consequently increases the
memory access. This could harm the efficiency of this

 0

 5

 10

 15

 20

10 20 50 100 200 500 1000 10000 20000

R
un

tim
e

by
 It

er
at

io
n

(s
ec

.)

Grain Size (Iterations by Process)
��

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�
	

�
�
�	

��	�������������
�

��
����	

���	
�����������	

���	
�������
��	

���	
����������	

���	

�����
��
���	

���	

697697703

technique, when applied to programs that consume large
amount of memory. However, this problem was not
observed in ABCToolbox, since its maximum peaks of
memory usage have not surpassed 35% from the total
available memory.

Figure 7. Results of runtime for sampling simulation

with 5 million iterations.

The first tests were performed inside a single machine,
only exploring the features of the computational
environment and the simulation tool. Further, the same
evaluation was extended to the remaining nodes of Atlântica
cluster. The same optimizations described were applied,
through 10 nodes (160 cores with HT). The performance
evaluation results, comparing the optimized use of HT
enabled and disabled, for all cluster nodes, are demonstrated
in Figure 8.

Figure 8. Performance obtained with Hyper-threading

optimization among all Atlântica cluster nodes.

We verified a good adaptation of the optimization
techniques along the cluster nodes, presenting a
performance close to the theoretical Speed-up. We have
obtained an acceleration factor of 8.1 for 10 multicore
nodes, which corresponds 129,1 for 160 cores (81%
efficiency), representing an improvement of ~38% when
compared with the disabled HT performance. With 160

cores, the runtime was decreased from 50 days to less than 9
hours using HT, and 13,8 hours without HT. A more
detailed description of results obtained for each node is
shown in Table 2, where the performance and efficiency are
demonstrated for each optimization technique applied in this
work. These tests where carried out in Atlântica cluster (10
multicore nodes, 16 computational cores with HT).

TABLE II. PERFORMANCE OF OPTIMIZATION TECHNIQUES EVALUATED IN
A MULTICORE CLUSTER

Nodes 1 2 4 6 8 10
Cores 16 32 64 80 128 160

S
pe

ed
-u

p Granularity 8 15.8 31.3 38 56 69.2

HT 14.6 21.9 40.2 48.3 75 91.7

HT +
Granularity

15.3 30.9 56.6 68 106 129.1

E
ff

ic
ie

nc
y

(%
) Granularity 50 49 49 48 44 43

HT 91 69 63 60 59 57

HT +
Granularity

96 97 88 85 83 81

The performance achieved surpasses the one obtained

with the parallel version of PBPI program (~75 for 256
cores)[14]. The performance also surpasses the one obtained
through the parallel MrBayes program. MrBayes achieved a
Speed-up of ~21 in 32 cores [15]. With the present
optimization for ABCToolbox, we observe an acceleration
of ~30, for 32 cores.

VI. CONCLUSION

Sampling simulations of statistical models for inference
are important for understanding several issues related to the
evolution of many species. These simulations present high
complexity, which implies a high computational cost. For
each evolutionary model used for the problem described in
present work, 5 million of simulation steps or iterations are
necessary. Such repetitions take an average runtime of 50
days, for each model, if running sequentially in a common
computer. This high computational cost leads to the
investigation of optimization techniques that can decrease
the runtime in parallel architectures.

Considering this issue, we proposed and evaluated
techniques for optimizing the performance of simulations
with ABCToolbox. The performance evaluation focused on
a representative problem of high computational cost. The
use of Hyper-threading and granularity evaluation were
proposed as optimization techniques. Currently, Hyper-
threading technology is present in most of new processor
models of Intel. The expected gain of performance (30%),
plus the suitable features presented in ABCToolbox
motivated the use of HT. Besides, workload granularity
optimization was evaluated in order to improve performance
combined with HT technology.

 0

 10

 20

 30

 40

 50

1 2 4 8 16(HT)

R
un

tim
e

(d
ay

s)

Computational Cores

��

��

��

��

��

��

��

��

��

��	

�� �
 �� �� �� �� �� �� �� ��	

�
�
��
�
�

�����

������������
��������������

�����������������

698698704

Through the proposed optimizations, the runtime of
ABCToolbox program was reduced by 12 times, for 16
computational cores in one cluster node. Furthermore, the
tests were extended for other cluster nodes. Our best result
was verified when optimizing for 10 nodes (160 cores), with
a Speed-up close to the theoretical value expected (129) and
81% efficiency. We can verify that the optimization not
only is adapted for one kind of problem, but also for a
simpler example.

Further, the proposed optimization techniques also can
be applied to other programs for evolutionary simulations.
Like ABCToolbox, other programs are used to perform the
same kind of evolutionary studies described in this work.
Although varying some features, they share runtime and
complexity characteristics among their simulation strategies.
For instance, PBPI and MrBayes programs use MC and
MCMC methods, which are very similar to the ones used in
ABCToolbox [14][15]. Considering this, it is expected that
our optimizations may be successfully applied to such
programs for evolutionary simulations. On the other hand,
other optimization techniques, such as cache usage
optimization, could be adapted and evaluated for
ABCToolbox in future work.

REFERENCES
[1] Fagundes N.J.R, et al., “Statistical Evaluation of Alternative Models

of Human Evolution”, PNAS, 6/11/2007, pp. 17614-17619.

[2] Stringer C., “Modern Human Origins: Progress and Prospects”,
Philosophical Transactions of Royal Society B., 2001, pp. 563–579.

[3] Ray N., et al., “A Statistical Evaluation of Models for the Initial
Settlement of the American Continent Emphasizes the Importance of
Gene Flow with Asia”, Molecular Biology Evolution, Oxford
University Press, Oxford, UK, 2010, pp. 337-345.

[4] Knowles L.L., “Statistical Phylogeography”, Annual Review of
Ecology, Evolution and Systematics, Annual Reviews, Palo Alto, CA,
USA, 1/12/2009, pp. 593-612.

[5] Nielsen R., and Beaumont M.A., “Statistical Inferences in
Phylogeography”, Molecular Biology, Blackwell Publishing Ltd,
Malden, MA, USA, 4/2/2009, pp. 1034-1047.

[6] Wegmann D., Leuenberger C., Neeuenschwander and Excoffier L,
“ABCtoolbox: a Versatile Toolkit for Approximate Bayesian
Computatons”, BMC Bioinformatics, BioMed Central, 2010, vol. 11,
pp. 1-7.

[7] Gilks W.R., “Markov Chain Monte Carlo”, Encyclopedia of
Biostatistics, Blackwell Publishing Ltd, Malden, MA, USA,
15/7/2005.

[8] R. Salakhutdinov, and A. Mnih, “Bayesian Probabilistic Matrix
Factorization using Markov Chain Monte Carlo”, Proceedings of the

25th International Conference of Machine Learning (ICML ’08),
ACM, New York, USA, 2008, pp. 880-887.

[9] Whiley M., and Wilson S.P., “Parallel algorithms for Markov Chain
Monte Carlo Methods in Latent Spatial Gaussian Models”, Statistics
and Computing, Kluwer Academic Publishers, Hingham, MA, USA,
8/2004, pp. 171-179.

[10] Campillo F., Rakotozafy R., and Rosi V., “Parallel and Interacting
Markov Chain Monte Carlo Algorithm”, Mathematics and Computers
in Simulation, Elsevier Science Publishers, Amsterdam, Netherlands,
8/2009, pp. 3424-3433.

[11] Corander J., Ekdahl M., and Koski T., “Parallel Interacting MCMC
for Learning of Topologies of Graphical Models”, Data Mining and
Knowledge Discovery, Kluwer Academic Publishers, Hingham, MA,
USA, 12/2008, 431-456.

[12] Feng X., “High Performance, Bayesian-Based Phylogenetic Inference
Framework”, University of South California, Columbia, SC, USA,
2006.

[13] Feng X., Buell D.A., Rose J.R., and Waddell P.J., “Parallel
Algorithms for Bayesian Phylogenetic Inference”, Journal of Parallel
and Distributed Computing – High-performance Computational
Biology, Academic Press, Orlando, FL, USA, 7/2003, pp. 707-718.

[14] Feng X., Cameron K.W., Buell D.A., “PBPI: A High Performance
Implementation of Bayesian Phylogenetic Inference”, SC '06
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
ACM, New York, NY, USA, 2006, article 75.

[15] Altekar G., Dwarkadas S., Huelsenbeck J.P., and Ronquist F.,
“Parallel Metropolis Coupled Markov Chain Monte Carlo for
Bayesian Phylogenetic Inference”, Bioinformatics, Oxford University
Press, Oxford, UK, 2/2004, pp. 407-415.

[16] D. Marr, et al., “Hyper-Threading Technology Architecture and
Microarchitecture”, Intel Technology Journal Q1, 2002, pp. 4-15.

[17] Wegmann D., Leuenberger C., e Excoffier L., “Using ABCToolbox”,
University of Bern, Bern, Switzerland, 30/9/2009, pp. 51.

[18] Oliver R.L., and Teller P.J., “Are All Scientific Workloads Equal?”,
Performance, Computing and Communications Conference (IPCCC
'99), IEEE International, 6/8/2002, pp. 284-290.

[19] Connelly C., and Ellis C.S. “A Workload Characterization for Coarse-
Grain Multiprocessors”, Proceedings, 9th International Parallel
Processing Symposium, IEEE, 6/8/2002, pp. 393-397.

[20] G. Staples, “TORQUE Resource Manager”, Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, ACM, New York, USA,
Artigo 8.

[21] Gentzsch W., “Sun Grid Engine: towards creating a compute power
grid”, First IEEE/ACM International Symposium on Cluster
Computing and the Grid, Brisbane, Australia, 7/8/2001, pp. 35-36.

[22] Karp A.H., and Flatt H.P., “Measuring Parallel Processor
Performance”, Communications of the ACM, ACM, New York,
USA, 3/1990, pp. 539-543.

[23] Sabetta A., and Koziolek H., “Measuring Performance Metrics:
Techniques and Tools”, Lecture Notes in Computer Science,
Springer, 2008, pp. 226-232.

699699705

