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Abstract—Simulations of statistical models have been used to 
validate theories of past events in evolution of species. Studies 
concerning human evolution are important for understanding 
about our history and biodiversity. However, these approaches 
use complex statistical models, leading to high computational 
cost. The present paper proposes optimization techniques for 
Hyper-threaded multicore architectures to improve the 
computational performance of these simulations. Combining 
granularity studies and Hyper-threading optimization, we 
improved the performance of simulations in more than 30%, if 
compared with common parallel execution (default 
parallelization applied by users). The performance was 
evaluated using a complex example of human evolution studies 
[1]. For this example, our techniques enable the user to 
decrease the simulation execution time from 50 days 
(sequential runtime) to less than 5 days. In addition, the 
evaluation has been extended for simulations running on 
multiple multicore cluster nodes. Our measurements show a 
high Speed-up, close to theoretical maximum, being 129 times 
faster for 160 computational cores. This represents an 
efficiency of 81%.  

Hyper-threading, ABCToolbox optimization; granularity; 
workloads; statistical simulations;  

I.  INTRODUCTION 

Simulations of statistical models are important for 
evolutionary studies of many species. Studying the human 
evolution, for example, we can understand our own history. 
Many statistical models and theories concerning human 
evolution have been proposed [2], however the use of 
genetic data for estimating the relative likelihood among 
them has started recently [1][3]. These methods can be 
applied in order to evaluate the effects of demographic and 
historic events, which may have influenced the biodiversity 
of a given species. These analyses are performed by means 
of simulations that are based on statistical inference [4][5]. 

The evolutionary simulations are based on experimental 
data (genetic or morphologic) and historical or archeological 
data on a given species. Through this information the 
researcher may build a theory concerning the evolution of a 
species (demographic model or evolution scenario). The 
model, based on statistical parameters, is simulated and 
compared against other theories. This comparison is 
performed testing these models’ probability of generating the 
current characteristics of the given species.  

In simulations of high complexity, such as human 
evolution studies, it is necessary to develop extremely 
detailed statistical methods. Sampling simulations are 
performed with a high number of parameters that demand a 
higher computational cost. Furthermore, a high number of 
samples must be generated in advanced probabilistic models, 
in order to acquire results with high degrees of confidence. 
These features also lead to high computational cost, implying 
the need to use techniques to optimize performance. 

The present work proposes and evaluates an optimization 
technique for improving the computational performance of 
evolutionary simulations that are based on statistical 
inference. Some parallelization criteria were evaluated, such 
as the use of parameter sweep and workload. Combined with 
the parallel execution, we applied the optimization 
techniques of granularity evaluation and use of Hyper-
Threading. This work focused on examples of demographic 
models of human evolution, proposed by Fagundes et al.[1]. 
In addition, the tests have been extended to more nodes of a 
cluster, and for another example problem. The performance 
analysis was carried out in order to explore the adaptation of 
the present optimization in other cases, with diverse 
complexities and environments. 

The present paper structure is defined as follows. In 
section 2 we detail the main features of the problem and the 
simulation tool that will be optimized. Section 3 describes 
related simulation tools, as well as the common method for 
parallelization applied for the tool which will be optimized. 
In section 4 we present the proposed optimization 
techniques. Section 5 presents the evaluation of the proposed 
techniques, comparing it with non-optimized execution. In 
section 6 is the discussion on the obtained results and the 
main advantages acquired through the presented 
optimization technique. 

II. SIMULATIONS OF STATISTICAL MODELS FOR HUMAN 

EVOLUTION 

Studies by Fagundes et al. [1] compare three alternative 
models of human evolution: (A) African origin, (B) 
assimilation models and (C) multiregional sources evolution. 
The model variants are distinguished by their patterns of 
population growth: exponential, instantaneous, and negative, 
with sources in multiple regions or a single one. The 
schematic representation of some of the compared models is 
demonstrated in Figure 1.  
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Figure 1. Schematic examples of simulation models for 

human evolution. Adapted from [1].

The demographic models represent modifications in the 
population size range over time. Narrowing represents 
decreasing of population size, gradual enlargements 
represent exponential growth (A and B), and immediate 
enlargements represent instantaneous growth (C). 

In order to perform the simulations of the proposed 
evolutionary models, these were described through a set of 
discreet or continuous parameters. Some examples of such 
parameters are: minimum and maximum starting population 
size, migration rate, population growth rate, genetic variation 
rates, parameters deviations, and others. These 
approximations are performed based on historical and/or 
genetic data. Having a detailed description of the proposed 
theories, these models can be used in evolutionary simulation 
tools. 

The work presented by Fagundes et al. is a representative 
example of current evolutionary studies, as for its
computational cost and complexity levels. Considering this, 
we reproduce the same work by Fagundes et al., aiming to 
propose and evaluate optimization techniques against this 
current example workflow. We review the main features of 
this workflow and describe the proposed optimization 
techniques in the next sections. 

A. Evolutionary Studies Workflow with ABCToolbox 

The simulations of the described problem in this paper 
make use of a package for Approximate Bayesian 
Computation, known as ABCToolbox [6]. This tool consists 
in sampling algorithms, based on a likelihood distribution. 
These algorithms, named Monte Carlo (MC) and Markov 
Chain Monte Carlo (MCMC), enable the generation of 
sampling models. The samples are created by approximation 
methods, guided by delimiter parameters. [7]. The workflow
of evolutionary studies consists in a set of steps for 
configuration, simulation and analysis. 

Initially, the user gives as parameters a set of features 
that forms the evolutionary model or hypothesis that is 

being proposed (statistical model). It is done using an input 
file for the simulation program, which contains all the 
statistical parameters of the proposed evolutionary scenario. 
After that, using MC or MCMC methods combined with 
Bayesian inference, a random sampling procedure is 
performed. The sampling is delimited to likelihood intervals 
obtained from the proposed model. The underlying data 
generated in this step is a set of randomly created samples, 
whose statistical parameters and characteristics are assigned 
according to the boundaries of the proposed model. This 
method is well known and widely applied in several 
research lines. Among its main applications, are issues 
related to the sampling randomness, likelihood and 
inference [6].  

After the sampling step, the evaluation of parameters 
distribution is performed for the evolutionary theory 
simulated. In order to do this, it is tested if the hypothesis of 
the proposed model may actually have leaded the current 
characteristics of human species. This test is performed 
comparing the experimental statistic data with simulated 
ones (summary statistics evaluation). In the end of this 
analysis, the output is a comparative score representing the 
likelihood of each compared model.  

In cases that involve complex models, such as in the 
present work case, a huge number of samples is necessary. 
This occurs in order to ensure the reliability and randomness 
of the comparative procedures. In addition, they may be 
needed to rerun the simulations, adjusting parameters for 
calibrating the evolutionary scenarios. In this manner, 
initially the input parameters are evaluated for 
representativeness of the proposed model (parameters 
calibration). Figure 2 shows an overview of the workflow 
for evolutionary studies, where the simulation procedures of 
ABCToolbox are involved. 

 
Figure 2. Workflow for evolutionary studies where 

ABCToolbox simulations are involved. 

Lastly, after developing and comparing representative 
statistical models for each theory, it is possible to choose the 
higher scored model as the most feasible or reliable between 
the compared ones. If one of the hypotheses presents higher 
feasibility among others, so this is accepted as the most 
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consistent. If the opposite occurs, so the hypothesis is less 
probable than others compared.  

The simulation performed in the present work takes a 
sequential run time of around 50 days, in an average 
computer. It implies the need for dividing the workload 
between multiple processors, in order to reduce the 
execution time. 

III. RELATED WORK 

Many parallelization strategies for MCMC methods have 
been developed  [8][9][10][11]. Besides the ABCToolbox 
simulation tools, other evolutionary simulation frameworks 
have been investigated for improving performance. An 
example is the PBPI program, which combines MCMC 
methods with Bayesian inference for performing 
phylogenetic studies [12]. The parallelism of PBPI was 
developed by means of distributing MCMC sampling 
methods. PBPI tests have demonstrated a moderate 
performance in a Beowulf cluster of 32 nodes [13][14]. The 
program presented a weak scaling, with low efficiency for 
higher number of cores, with a Speed-up of 46 for 64 cores 
(71.9% efficiency), 53 for 128 (41.4%) and 75 for 256 cores 
(29.3%). 

Another program, known as MrBayes, is an example of 
parallel implementation for evolutionary simulations with 
the use of MCMC methods [15]. For its parallelization two 
programing models were used: message passing interface 
and shared memory. For the MrBayes program, such kind of 
implementation was necessary because its simulation 
procedures make use of a sampling algorithm variant purely 
based on MCMC. Unlike ABCToolbox, this variant, known 
as Metropolis Coupled MCMC Methods, there is 
interdependence between processes. Tests have 
demonstrated a moderate scaling, with Speed-up of 21 for 
32 cores, with 65.6% efficiency, for the parallel 
implementation of MrBayes [15]. 

In the present work, techniques for improving the 
performance of evolutionary simulations of ABCToolbox 
are evaluated. The performance evaluation is focused on 
demographic model examples evaluated by Fagundes et al. 
[1]. ABCToolbox has a workload for which little effort is 
required to separate the problem in parallel tasks. For the 
parallel execution the simulation parameters were 
distributed and the workload granularity was analyzed. For 
the optimization of parallel execution Hyper-Threading was 
employed [16] combined with granularity optimization. In 
this work we introduce a new optimization technique in 
order to improve the performance of ABCToolbox.  

A. Selecting a Template (Heading 2) 

The ABCToolbox can be considered as an 
embarrassingly parallel program, being parallelized through 
the distribution of input parameters between processes, with 
no major efforts. Its parallel execution is well known and 
applied by users [17]. Unlike MrBayes program, 
ABCToolbox does not present dependence between 

processes, which enables its parallelization, without the 
need for message passing interface. For the parallel run, the 
total number of simulation iterations is divided among the 
total number of processes.  

In the parallel ABCToolbox, the total number of 
iterations is settled by an input parameter named as nbsims. 
For its parallel run, the value of nbsims is divided by the total 
number of processes, represented by np. An example of a 
ABCToolbox run, with the division of this parameter for 4 
processes, is described in Table 1. 

In this example, the parameter nbsims (1000 iterations) is 
divided by np (4 processors), resulting in 250 iterations by 
processor. Input represents the statistical parameters for the 
model. The parallel run of ABCToolbox will be used in 
order to compare its gain of performance against the present 
optimization techniques proposed. 

TABLE I.  EXAMPLE OF ABCTOOLBOX PARALLEL EXECUTION  

np nbsims Run commands generated 
1 1000 ABCSampler input 1000  
4 nbsims/np ABCSampler input 250 
  ABCSampler input 250 
  ABCSampler input 250 
  ABCSampler input 250 

 

B. Workload Granularity 

The granularity, which is the ratio between processing 
and communication, is an important issue for the 
performance of parallel programs [18][19]. Although not 
having interdependence among processes, at the end of 
execution, each ABCToolbox process writes its results to 
hard disk. This kind of communication may interfere in 
performance if the workload grain is too small. This issue 
was considered before applying the presented herein 
optimization.  

Another feature of ABCToolbox is that, for each iteration 
of simulation, it takes approximately the same runtime, 
without remarkable variations. There is no big difference 
between processes workloads. All these issues were 
considered for the performance analysis and employment of 
HT optimization. The granularity evaluation was performed 
in order to explore the performance of parallel ABCToolbox, 
combined with the use of HT. 

IV. OPTIMIZATIONS THROUGH THE USE OF HYPER-
THREADING  

The technique explored for improving the performance of 
evolutionary simulations, using parallel ABCToolbox, was 
the use of HT combined with granularity optimizations. HT 
is an Intel proprietary technology that works replicating 
modules of a given processor. With HT, a physical 
processor starts to be considered by the operating system as 
two logical processors. In this manner, processor modules 
that are idle can be available for better use of performance 
[16]. 
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Benchmark tests have demonstrated that the performance 
of Intel Xeon processors can be improved 30% with HT 
[16]. Without the use of HT, in order to obtain the same 
improve of performance, it would be necessary to obtain 
new physical processors. Considering this, HT is a strategy 
regarded as an advantageous feature at costs and benefits 
levels, for improving the performance of multiprocessors 
without any additional cost. 

Many program features may influence the performance 
of the HT technology, such as: workload balance, 
interdependence between processes, use of memory, access 
to memory, etc. Among them, an important feature for 
obtaining performance by the use of HT is the memory 
usage of applications. With HT enabled, the number of 
logical processors is duplicated, what consequently 
increases the number of memory accesses. This may harm 
this technique efficiency, when applied to high memory 
usage programs.  

The characteristics of ABCToolbox program support the 
use of HT optimization technique: there is no dependence 
among processes (no need of message passing interface), low 
memory usage (a maximum of usage around 35%, for a node 
with 16GB available) and a balanced workload between 
processes. The tests for this optimization technique were 
focused in the simulations of statistical models described in 
the present work, analyzed by Fagundes et al. [1]. However, 
the present optimization was also evaluated for another 
example, in order to verify its adaptation to other kinds of 
problems. 

V. PERFORMANCE EVALUATION  

The present work was performed through the following 
computational environments: 
• Atlântica cluster (10 nodes): 2 Intel Xeon Quad-

Core E5520 2.27 GHZ processors, Hyper-Threading, 16 
cores per node, 16 GB of memory. Cluster located in 
Laboratório de Alto Desempenho (LAD-PUCRS) 1 . 10 
nodes were used for performance testing. These machines 
are connected by Gigabit Ethernet network. 
• Pantanal cluster (6 nodes): 2 Intel Xeon 3.6 GHZ 

processors, Hyper-Threading, 4 cores per node, 2 GB of 
memory. Cluster located in Laboratório de Alto 
Desempenho (LAD-PUCRS)1. These machines are 
connected by Gigabit Ethernet network. One node used for 
performance testing. 
• Altix-Xe cluster: 2 Intel Xeon Quad-Core E5520 

2.27 GHZ processors, Hyper-Threading, 16 cores per node, 
24 GB of memory. Cluster located in Laboratório Nacional 
de Computação Científica (LNCC) 2. These machines are 
connected by Gigabit Ethernet network. One node used for 
performance testing. 
• Rachserver: 2 Intel Xeon 8 cores, 2.00 GHZ 

processors, Hyper-Threading (32 cores per node), 64 GB of 

                                                             
1 http://www.pucrs.br/ideia/lad 
2 http://www.lncc.br 

memory. Server located located in Laboratório de Alto 
Desempenho (LAD-PUCRS)1.  

All nodes are multiprocessors from clusters. The 
environments rely on the use of resource scheduling 
TORQUE e SGE [20][21]. There is the same processor 
model in both clusters Atlântica (TORQUE) and Altix-Xe 
(SGE). However, since each one has different resource 
scheduling managers, both were kept for the development of 
scripts for parameter sweep. In addition, variations in 
resources administration may influence performance.  

A. Parallel ABCToolbox 

The present optimizations were compared against the 
default ABCToolbox. For this, tests were performed with 
parallel ABCToolbox (without optimization), 5 times, for a 
simulation of 10 iterations. The statistical parameters were 
applied according to the simulation scenario described in 
this work. The runtime was measured for this test set, 
obtaining an average runtime. For measuring the 
performance, the acceleration factor, or Speed-up, was 
calculated [22][23]. For measuring the gain of performance 
regarding the computational power available, efficiency 
factor was calculated. This value indicates the effective use 
of processors [23]. The results demonstrate a high potential 
for parallelization through the division of nbsims parameter, 
since among all the tests the acceleration factor presented a 
speed-up close to the maximum theoretical value expected 
(Figure 3). 

 
Figure 3. Performance acquired using division of nbsims 

parameter, using a node o Atlântica cluster. 

Another feature of its execution, to be considered before 
applying optimizations, is the workload granularity. The disk 
writing time keeps the same in ABCToolbox. This occurs 
due to the characteristics of this algorithm, where regardless 
the simulation size, the summary statistics calculated from 
the sampling return a fixed number of values. These values 
are calculated as an overall descriptive statistics summary 
from all samples (average, standard deviation, variance, etc.).  

Therefore, the size of simulated samples may vary while 
the statistic summary results will present the same size. This 
issue may be related with what is observed in Figure 4. 10 
repetitions were performed for each test described, with each 
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workload size. The average value of runtime and its standard 
deviations were calculated. Through the results, we observe 
that a minimum 200 iterations by process is an recommended
grain size, in order to obtain a better performance, in diverse 
computational environments. 

 
Figure 4. Workload granularity using HT (16 cores) in a 

node of Atlântica cluster. 

Many factors may affect results of granularity, such as: 
memory access, cache size, processor clock, and disk 
access. This workload granularity optimization was 
combined with HT in order to improve performance. 

B. Use of Hyper-Threading combined with grain size 
optimization 

Through our tests, we observe that using HT combined 
with inappropriate granularity may dramatically decrease HT 
efficiency, as shown in figure 5. In addition, using at least a 
grain size of 200 iterations by computational core, the 
efficiency of HT improves substantially (29%), compared 
with smaller grain sizes tests. 

Figure 5. Efficiency using HT combined with grain sizes 
optimizations. 

The same performance evaluation described in previous 
section was carried out for evaluating the use of HT 
technology. The evaluation was performed in order to 
compare the gain of performance by the use of HT against 
the parallel ABCToolbox commonly used (without HT). 
The improvement in the runtime was evaluated for each one 

of the computational environments described. The 
performance results with HT, combined with the parameters 
division, are demonstrated in Figure 6. The performance for 
all the computational environments can be observed.  

 
Figure 6. Performance acquired with Hyper-Threading. 

For the Atlântica and Altix-Xe clusters nodes (2 x Intel 
Xeon Quad-Core E5520 2.27GHZ), it was observed a gain 
of performance of ~38% if compared with parallel 
ABCToolbox without using HT, nor granularity 
optimization. For Pantanal cluster (Intel Xeon 3.6GHZ), the 
performance improvement was around 51% of efficiency. 
The results from 1 to 8 cores represent the optimization 
without HT (Figure 3). The acceleration obtained for 16 
cores represents the use of HT for the same 8 cores used in 
previous test (Figure 5). For the Rachserver (2 x Intel Xeon 
8 cores X6550 2.00 GHZ), it was observed an improvement 
of performance of ~29% using HT (32 cores), if compared 
with parallel ABCToolbox not using HT (16 cores). In 
Figure 5, 32 cores represent the acceleration achieved with 
HT for Rachserver. 

The present simulation for human evolution needs 5 
million iterations to achieve a desired degree of confidence 
or representativeness. This total value of iterations takes a 
sequential time of around 50 days. In present work, this time 
has been reduced in approximately 90%. In other words, a 
simulation that takes around 50 days of sequential time, has 
become 12 times faster, running at less than 5 days. The 
results of runtime for this simulation can be observed in 
Figure 7. 

The performance improvement obtained (~38%) using 
HT combined with appropriate grain size is better than the 
value expected through the use of HT (30%) [16]. This good 
adaptation to this problem may occur due to the better use of 
the processors idle time. It may happen during the sampling 
steps, writing in disk, or through the transition between such 
activities. 

The memory usage is another important issue that may 
influence performance. Enabling HT, the number of logical 
processors is duplicated, what consequently increases the 
memory access. This could harm the efficiency of this 
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technique, when applied to programs that consume large 
amount of memory. However, this problem was not 
observed in ABCToolbox, since its maximum peaks of 
memory usage have not surpassed 35% from the total 
available memory. 

 
Figure 7. Results of runtime for sampling simulation 

with 5 million iterations. 

The first tests were performed inside a single machine, 
only exploring the features of the computational 
environment and the simulation tool. Further, the same 
evaluation was extended to the remaining nodes of Atlântica 
cluster. The same optimizations described were applied, 
through 10 nodes (160 cores with HT). The performance 
evaluation results, comparing the optimized use of HT 
enabled and disabled, for all cluster nodes, are demonstrated 
in Figure 8.  

 
Figure 8. Performance obtained with Hyper-threading 

optimization among all Atlântica cluster nodes. 

We verified a good adaptation of the optimization 
techniques along the cluster nodes, presenting a 
performance close to the theoretical Speed-up. We have 
obtained an acceleration factor of 8.1 for 10 multicore 
nodes, which corresponds 129,1 for 160 cores (81% 
efficiency), representing an improvement of ~38% when 
compared with the disabled HT performance. With 160 

cores, the runtime was decreased from 50 days to less than 9 
hours using HT, and 13,8 hours without HT. A more 
detailed description of results obtained for each node is 
shown in Table 2, where the performance and efficiency are 
demonstrated for each optimization technique applied in this 
work. These tests where carried out in Atlântica cluster (10 
multicore nodes, 16 computational cores with HT). 

TABLE II.  PERFORMANCE OF OPTIMIZATION TECHNIQUES EVALUATED IN 
A MULTICORE CLUSTER 

Nodes 1 2 4 6 8 10 
Cores 16 32 64 80 128 160 

S
pe

ed
-u

p Granularity 8 15.8 31.3 38 56 69.2 

HT 14.6 21.9 40.2 48.3 75 91.7 

HT + 
Granularity 

15.3 30.9 56.6 68 106 129.1 

E
ff

ic
ie

nc
y 

(%
) Granularity 50 49 49 48 44 43 

HT 91 69 63 60 59 57 

HT + 
Granularity 

96 97 88 85 83 81 

 
The performance achieved surpasses the one obtained 

with the parallel version of PBPI program (~75 for 256 
cores)[14]. The performance also surpasses the one obtained 
through the parallel MrBayes program. MrBayes achieved a 
Speed-up of ~21 in 32 cores [15]. With the present 
optimization for ABCToolbox, we observe an acceleration 
of ~30, for 32 cores. 

VI. CONCLUSION 

Sampling simulations of statistical models for inference 
are important for understanding several issues related to the 
evolution of many species. These simulations present high 
complexity, which implies a high computational cost. For 
each evolutionary model used for the problem described in 
present work, 5 million of simulation steps or iterations are 
necessary. Such repetitions take an average runtime of 50 
days, for each model, if running sequentially in a common 
computer. This high computational cost leads to the 
investigation of optimization techniques that can decrease 
the runtime in parallel architectures. 

Considering this issue, we proposed and evaluated 
techniques for optimizing the performance of simulations 
with ABCToolbox. The performance evaluation focused on 
a representative problem of high computational cost. The 
use of Hyper-threading and granularity evaluation were 
proposed as optimization techniques. Currently, Hyper-
threading technology is present in most of new processor 
models of Intel. The expected gain of performance (30%), 
plus the suitable features presented in ABCToolbox 
motivated the use of HT. Besides, workload granularity 
optimization was evaluated in order to improve performance 
combined with HT technology. 
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Through the proposed optimizations, the runtime of 
ABCToolbox program was reduced by 12 times, for 16 
computational cores in one cluster node. Furthermore, the 
tests were extended for other cluster nodes. Our best result 
was verified when optimizing for 10 nodes (160 cores), with 
a Speed-up close to the theoretical value expected (129) and 
81% efficiency. We can verify that the optimization not 
only is adapted for one kind of problem, but also for a 
simpler example.  

Further, the proposed optimization techniques also can 
be applied to other programs for evolutionary simulations. 
Like ABCToolbox, other programs are used to perform the 
same kind of evolutionary studies described in this work. 
Although varying some features, they share runtime and 
complexity characteristics among their simulation strategies. 
For instance, PBPI and MrBayes programs use MC and 
MCMC methods, which are very similar to the ones used in 
ABCToolbox [14][15]. Considering this, it is expected that 
our optimizations may be successfully applied to such 
programs for evolutionary simulations. On the other hand, 
other optimization techniques, such as cache usage 
optimization, could be adapted and evaluated for 
ABCToolbox in future work. 
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