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Abstract—Next Generation Sequencing (NGS) is gaining in-
terests due to the increased requirements and the decreased
sequencing cost. The important and prerequisite step of most
NGS applications is the mapping of short sequences, called reads,
to the template reference sequences. Both the explosion of NGS
data with over billions of reads generated each day and the data-
intensive computations pose great challenges to the capability
of existing computing systems. In this paper, we take a hash-
index based algorithm (PerM) as an example to investigate the
optimization approaches for accelerating NGS reads mapping
on multi-core architectures. First, we propose a new parallel
algorithm that reorders bucket access in hash index among
multiple threads so that data locality in shared cache is improved.
Second, in order to reduce the number of empty hash bucket,
we propose a serialized hash index compression algorithm, which
coincides with the sequential access nature of our new parallel
algorithm. With reduced hash index size, it also becomes possible
for us to use longer hash keys, which alleviates the hash conflicts
and improves the query performance. Our experiment on an 8-
socket 8-cores Intel Xeon X7550 SMP with 128 GB memory shows
that the new parallel algorithm reduces LLC miss ratio to be
8% ∼ 15% of the original algorithm and the overall performance
is improved by 4 ∼ 11 times (6 times avg.).

I. INTRODUCTION

The rapid development of high-throughput next generation
sequencing (NGS) technologies influences the scope and scale
of biological and medical research substantially. It is promising
that NGS can be utilized to address a broad range of problems,
including genome-wide polymorphisms detection [1], small
RNAs analysis [2], de-novo sequencing [3], re-sequencing [4],
etc. In these applications, the most important and prerequisite
step is the short sequencing reads mapping, where huge
amount of short sequences are mapped against given long
reference sequences (3Gbps for human genome). The new
generation of sequencers (from Illumina, SOLiD and Helics)
can generate data in short-read format at the speed of the order
of giga base-pair (Gbp) per day [5]. The produced data is
organized in small fragments, called reads, with typical length
lies in the range of 30bp∼200bp. The processing speed of
traditional methods, such as BLAT [6], cannot keep pace with
the high-throughput rate of the new sequencers [10].

Therefore, it is not surprising that many new mapping
tools have been developed in recent years. Table I summa-
rizes several representative tools for short sequencing reads
mapping. There are two main core algorithms for short se-
quencing reads mapping: FM-index [13] and hash index [4].

The performance of FM-index algorithms slows down when
the mismatch threshold get increased [4]. For example, PerM
can be 2∼8 times faster than the BWT-based algorithms,
noticing the high mismatch threshold considered in this paper
(5 mismatches in 100bp reads), we omit the discussion of the
FM-index algorithms in this paper. There are some alternative
algorithms, such as merge sorting, due to the low efficiency,
we exclude them in following discussion.

TABLE I
REPRESENTATIVE SHORT SEQUENCING READS MAPPING SOFTWARE.

Software Algorithm Space Complexity1 Speed2

Bowtie [13] FM-index Θ(n) ≈3
SOAPv2 [14] FM-index Θ(n) ≈4.1
MAQ [11] Hashing reads Θ(kn) ≈0.2
RMAP [15] Hashing reads Θ(kn) ≈3.8
PerM [4] Hashing ref. Θ(n) ≈5
SHRiMP [16] Hashing ref. Θ(kn) ≈0.15
1The n and k denotes the size of the reference sequence and the

number of seed patterns respectively.
2Measured in terms of aligned Gbp per CPU day.

The processing speed of existing mapping solutions lag
behind the data generation speed of the next-generation se-
quencers. Listed in Table I, setting the mismatch threshold to
2 (which indicates supporting of 2 mismatches in mapping),
the speed of mapping 50bp reads against human genome is
about 5 Gb/day with PerM, which is about 11 times slower
than the data generation speed (55 Gb/day) of the Illumina
HiSeq 2000 sequencer [8].

The algorithmic innovation of PerM results in high speed
of short sequencing reads mapping, however, it is far from the
requirement of the solution in the future. For example, when
we increase the mismatch threshold to 3, the query speed of
PerM is reduced over 80%. The problem is compounded by
the fact that the ever increasing reads length of next-generation
sequencers (150bp for now), which requires increasing the
mismatch threshold further, can easily exceed current reads
length limitation (128bp) of PerM and incurs severe perfor-
mance degradation. Evaluated on 100bp reads, with mismatch
threshold of 5, the gap between the data generation speed and
the query speed of PerM is around 20∼50 times. Therefore,
it is necessary to improve the mapping speed further.

In this paper, we investigate how to leverage multi-core
architectures to accelerate the mapping based on hash index
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algorithms. As a well-accepted approach that trading space
for speed, building hash index can be utilized to accelerate
various applications, such as approximate nearest neighbor
querying [18] and database indexing [19]. In this regards, our
study of optimizing PerM can be extended to other applications
based on hash index algorithms.

A key finding of our study, of potential use to many
algorithms based on hash index beyond short sequencing reads
mapping is that rearranging access order of hash index to
avoid random memory access, combined with hash index
compression, can introduce considerable performance boost.
Although there are plenty of existing work dedicated to
algorithm and data structure design, orchestrating data layout
through memory hierarchy for optimal performance has not
been considered yet. Specifically, we make three main contri-
butions in this paper:
• Based on detailed evaluation of an up-to-date NGS mapp-

ing algorithm, called PerM, we observe that irregular
memory accesses and empty hash buckets are two main
performance issues for parallelizing this application.

• We propose two optimization strategies to address the
aforementioned two problems accordingly. First, a new
parallel algorithm being aware of multi-core cache shar-
ing is developed by reordering hash bucket access in hash
index. Second, we propose a hash index compression
algorithm to reduce the number of empty hash buckets,
which enables the using of longer hash key to achieve
higher accuracy and lower hash conflicts.

• We evaluate the proposed optimizations by improving
PerM running on a 64-core SMP system, on which a
speedup of 4∼11 times (6 times avg.) is achieved. In
particular, the LLC miss ratio and the index size are
reduced to be 8%∼15% and 30% of the original PerM.

The rest of this paper is organized as follows. A brief
introduction to the computing flow of PerM is given in Section
2. Followed by detailed performance analysis in Section 3. Op-
timization approaches are discussed in Section 4, experimental
results are discussed in Section 5 followed by related work in
Section 6. Finally, we conclude our work in Section 7.

II. PERM AND SHORT SEQUENCING READS MAPPING

In this section, we give a brief introduction to the computing
flow of PerM, which is an up-to-date and typical implementa-
tion of short sequencing reads mapping based on hash index.

The basic framework of PerM includes 5 main steps outlined
in Algorithm 2. The similarity of genomes can be exploited
to do template-based sequence mapping, whose framework
underlies all short reads re-sequencing algorithms. PerM uses
a seeded alignment heuristic to limit end-to-end alignment to
pairs of sequences that are priori likely to be highly similar.
However, the existence of differences in gene expression
indicates that, along with finding accurate sub-strings, it is
also crucial to find mapping sites that contain mismatches.
There is a threshold of mismatch that must be applied in short
sequencing reads mapping in order for the mapping results to
be useful, i.e. 5 mismatches for mapping 100bp reads.

A. Hash index generation

Listed in Algorithm 1, the hash index generation process of
PerM is an one-time off-line pass, and the generated index can
be stored on disk for later reuse. The algorithm of generating
hash index can be considered as a variation of the bucket
sort algorithm, and is composed of 3 major steps: allocating
memory for two levels of indices, partitioning data in bucket
and sorting items in each bucket. Every consecutive sub-string
(the length of sub-string depends on selected seed pattern and
hash key weight, kw, given by users for expected sensitivity,
e.g. 13bp in PerM) in reference sequences is used to generate
first-level hash table (L1idx), while the positions of the sub-
strings in reference sequences are stored in corresponding hash
buckets in second-level offset index (L2idx). In Algorithm 1,
the correlation between L1idx and L2idx is established as fol-
lows: First, entries in L1idx are used as counters for counting
bucket size dynamically (Line 3∼6); Next, noticing that the
hash buckets are stored consecutively in increasing order of
bucket number in L2idx, the counter values in L1idx can be
converted to absolute offsets in L2idx (Line 7∼8), which can
be used to address hash buckets in L2idx directly. After the
step of dynamic memory allocation, the next step is to fill the
L2idx with offsets in reference sequences with respect to hash
key (Line 10∼14).

1

1

X

L2idx(Offset	Index)
L1idx	(Hash	table)

Bkt#0

Bkt#1

Bkt#2

Bkt#2m‐1
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Seed1	=	2
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Get
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Bkt#3 7

Fig. 1. Query flow of using the two levels of indices.

Due to limited memory budget in PerM, only a fraction of
hash key (seed1 in Figure 1) can be used to build first-level
hash table. However, in contradiction, in order to improve
sensitivity of hash key, the applied hash key weight (kw)
should be as large as possible. The solution proposed in PerM
is an additional sorting step in each bucket. At Line 15∼16,
executed in a bucket-by-bucket mode, items in each bucket
of L2idx are sorted in ascending order of the seed2 field. In
this way, the sensitivity of using a shorter hash key (seed1)
can be improved by invoking binary search of the seed2 field
in bucket, which excludes items that have a different seed2
value. The two levels of indices in combination provides a fast
way for searching approximate mapping positions in reference
sequences.
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Algorithm 1: Build-Hash-Index Algorithm
input : rs – reference sequences, kw – hash key weight
output : idxlist – (L1idx, L2idx, ref ) 3-tuple index list

1 foreach ref in rs do
2 L1idx = Allocate-Memory(2kw + 1);
3 foreach offset in ref do //Count bucket size
4 seq = Get-Substring(ref, offset);
5 (seed1, seed2) = Get-Hash-Seed(seq);
6 L1idx[seed1]++;

7 foreach i in (0, 2kw − 1) do //Compute bucket boundary
8 L1idx[i+1] += L1idx[i];

9 L2idx = Allocate-Memory(L1idx[2kw]);
10 foreach offset in ref do //Hash data into buckets
11 seq = Get-Substring(ref, offset);
12 (seed1, seed2) = Get-Hash-Seed(seq);
13 pos = next empty entry in bucket seed1 of L2idx;
14 L2idx[pos] = (seed2, offset);

15 foreach i in (0, 2kw − 1) do //Sort buckets
16 Sorting L2idx.seed2 in (L1idx[i]:L1idx[i+1]);

17 Store (L1idx, L2idx, ref ) in idxlist;

Algorithm 2: PerM Algorithm
input : rl – a DNA readlist, rs – reference sequences
output : Mapping result of all reads in readlist

1 idxlist=Build-Hash-Index(rs) //off-line;
2 foreach (L1idx, L2idx, ref) in idxlist do
3 foreach read in rl do
4 //step ¶;
5 (seed1, seed2) = Get-Hash-Seed(read);
6 //step ·;
7 (start, end) = Query-L1-Index(L1idx, seed1);
8 //step ¸;
9 (L, U) = Query-L2-Index(L2idx, start, end,

seed2) ;
10 foreach i in (L, U) do
11 //step ¹;
12 seq = Get-Substring(ref,L2idx[i].offset);
13 //step º;
14 Pair-Wise-Comparison(seq, read);

B. Query with Hash Index

Extracting offsets and invoking pair-wise alignment of reads
and sub-strings of reference sequences are the key steps
involved in the query flow. The first 4 of 5 steps of Algorithm 2
are illustrated in Figure 1. First, at step ¶, hash keys are
generated by calling Get-Hash-Seed, which are further divided
into two parts. At step ·, the leading and longer part (seed1)
is used to access two consecutive entries in L1idx, which
define an initial access range in L2idx. The data structure of
L2idx is a sequential array, the start position of each bucket is
calculated statically and stored in corresponding entry in L1idx
during hash index generation. Therefore, buckets boundaries
in L2idx can be trivially decided by accessing two consecutive
entries in L1idx. Taking the ith bucket as an example, the start
position and the position next to the end position is stored

in the ith and the i+1th entry in L1idx, respectively. Given
the bucket number (seed1), the corresponding start and end
position can be decided by Query-L1-Index in constant time.
Only the items that have the same seed2 value are of interest
in alignment. In order to improve sensitivity of hash key, using
the remaining part of hash key (seed2), the initial access range,
which spans an entire bucket, is refined by Query-L2-Index
at step ¸. The buckets of L2idx are pre-sorted, as explained
previously, the refinement can be simplified as finding lower
and upper bound of given seed2 value. At step ¹, offsets
within the refined access range of L2idx are used to retrieve
sub-strings of reference sequences. To get the final mapping
result, Pair-Wise-Comparison is invoked at step º, which
executes string matching between reads and sub-strings of
reference sequence. We only present a short description of
PerM algorithm here and refer readers to their paper [4] for
more details.

III. PERFORMANCE ANALYSIS AND MOTIVATION

A. Design Considerations

Short sequencing reads mapping is a data intensive work-
load. On one hand, the exploding increasing of gene data
leads to high requirement on computer memory size. Among
the softwares listed in Table I, PerM consumes more memory
space. We argue that the relatively high memory consumption
will not be a serious problem because memory systems are
getting cheaper and larger. The cost of high performance
computers appears to be increasingly dominated by the cost of
memory to the point where the amount of memory per core is
decreasing. However, for NGS applications, building a system
with huge amount of processors is not the only option. For
example, in turn, we can build alternative systems with large
memory, whereby larger and more efficient hash index can be
built. There is a trade-off, though, in that the performance of
large amount of processors with moderate memories can be
surpassed by fewer processors with larger memories. There-
fore, it opens another way to extend computing systems by
means of increasing the memory capacity, rather than merely
increasing the number of processors.

On the other hand, there is few floating-point operations
and low ratio of arithmetic operations to memory operations
so that the performance is bounded by memory accesses
in the NGS applications. Unfortunately, amount of irregular
memory accesses are observed in hash index algorithms in-
cluding PerM. The irregularity is mainly caused by random
access in hash table and reference sequences, which occupies
most of the execution overhead of the mapping process. A
dedicated discussion of the irregular memory access is given in
Section III-B1. In addition to the problem of irregular memory
access, a large portion of empty hash bucket is another perfor-
mance issue. Leaving most buckets in hash index empty does
not take advantage of the cache line mechanism of modern
CPUs, with which spatial data locality can be improved by
loading adjacent data in advance. As only the non-empty
buckets are of interest, considerable memory bandwidth can
be wasted on loading hash table entries that point to empty
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buckets. By removing empty hash buckets, the hash table size
can be greatly reduced, which makes it possible to build hash
table with longer hash key (52 bit in this paper) that otherwise
would be too big to fit in main memory.

B. Performance Analysis

Due to little arithmetic operations involved in the mapp-
ing process of PerM, we focus on investigating its memory
performance of searching through the hash index. We profile
the behavior of cache and memory utilization, which are
critical performance features that drive us to develop proper
optimization strategies.

1) Irregular memory access: We list the profiled cache miss
rate of kernel functions of PerM in Table II. The excessive
random memory access in hash index accounts for the reported
high cache miss rate. In particular, we highlight the sources
of random memory access in the query flow with dotted lines
in Figure 1. There are plenty of irregular memory accesses
in the 4 most time-consuming steps of PerM: Attributed to
the random nature of hash key generation at step ¶, two
consecutive items in first-level hash table (L1idx), which are
used to define an initial access range in second-level offset
index (L2idx), are accessed randomly at step ·; At step ¸, the
initial access range is further refined by applying binary search
over the seed2 field; At step ¹, the offsets in the refined access
range are used to retrieve sub-strings in reference sequences
randomly.

TABLE II
THE LAST LEVEL CACHE MISS OF KERNEL FUNCTIONS

Function Time Percentage LLC Miss

Get-Hash-Seed 2.18% 0.04
Query-L1-Index 8.15% 0.44
Query-L2-Index 40.35% 0.62
Get-Substring 24.45% 0.84
Pair-Wise-Comparison 13.12% 0

Fig. 2. The fill factors of hash index decrease with the increasing number
of entries that is determined by given hash key weight.

2) Empty hash buckets: The nucleotide composition of
genome, which exhibits biased presentation of specific nu-
cleotide patterns and structured repeats, is far from random.

When building hash index for genome, the generated hash
keys, which are summaries of original sequences, are more
likely to cluster in few buckets. The severe contentions in few
hash buckets indicates that most remaining buckets are empty
and wasted, which incurs the problem of low fill factor rate of
the hash table. Evaluated on chromosomes of human genome,
in Figure 2, the percentage of non-empty buckets in hash tables
(L1idx) is well below 1% when hash key weight (kw) exceeds
16bp. The y-axis illustrates the percentage of presented hash
keys in entire hash key space. One observation, which can
be explained as that the increasing rate of unique hash key
is lower than the increasing rate of hash entries, is that the
fill factor decreases steadily when we increase kw. Another
interesting observation of practical usage is that, although
increasing kw exerts severe impacts on L1idx, the influence
on L2idx is rather limited. Therefore, when kw get increased,
the additional index size is largely attributed to empty entries
in L1idx. In following section, based on this observation, we
propose an index compression method to remove empty entries
in L1idx. Removing empty buckets in hash index also makes
it possible to build hash index with larger kw that otherwise
would be too big to fit in main memory. For example, using
our approach, with a kw of 26bp, the size of hash index is only
40.5 GB. In contrast, the hash index will occupy a prohibitive
16 PB memory in original PerM. Using of longer hash key
facilitates short sequencing reads mapping in two aspects:
First, the sensitivity of hash key gets increased, whereby false
positive within buckets can be reduced. Second, the step of
Query-L2-Index in Algorithm 2, which refines access range
by invoking binary search in bucket, can be eliminated. On the
other hand, leaving most buckets in hash table empty does not
take advantage of the pre-fetch functionality of cache line of
modern CPUs. As only part of pre-fetched data is used, most
memory bandwidth is actually wasted, which prevents designs
from reaching optimal throughput with respect to available
parallelism.

IV. PARALLELIZATION AND OPTIMIZATION

To alleviate the gap between the speed of CPU and memory,
in modern computers, the memory hierarchy is usually or-
ganized into layers. In a typical memory hierarchy, the off-
chip main memory is at the bottom layer. Above it, one
or more levels of faster but smaller cache memory reside.
The order in which applications access data exerts heavy
impacts on spatial data locality. To improve spatial data
locality, cache system relies on block data transfer to exchange
data with main memory. The size of data blocks (a.k.a the
cache line) is usually larger than the requested data size
of individual read/write instructions of CPUs. In this way,
memory operations on adjacent data can be fulfilled by few
cache line load/store operations, which dispenses with multiple
time-consuming main memory accesses. However, the random
access nature of hash index query does not take the advantage
of the cache system in modern CPUs. Therefore, how to
improve data locality of hash index access determines the
extent to which the memory system can be efficiently utilized
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and the extent to which the application can be accelerated
through parallelization.

A. Parallelism Analysis

Potentially, there are two levels of parallelism to be ex-
ploited for the 3 for-loop (Line 2, 3 and 10 of Algorithm 2) in
PerM algorithm. The third level of parallelism in Line 10 of
Algorithm 2 is confined by the size of hash bucket. The degree
of parallelism at this level is very limited due to non-uniform
distribution of hash bucket size shown in Figure 3. In fact, the
statistics results of human genome show that the number of
items in most of buckets is less than 100. Therefore, it prefers
to only focusing on the first two levels of parallelism.

Fig. 3. Distribution of the bucket size of hash index for human genome
chr1. The buckets are clustered according to their size.

query  R0 query  R3

query  R1

query  R2
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Thread 0 Thread 1Last level cache

Example reads for query and their target reference sub-sequences:
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Fig. 4. Performance effect of execution order

At first glance, it is easy to develop the embarrassing
parallelism by partition the set of DNA reads among multiple
processors (cores). We note that the straightforward imple-
mentation does not take into account cache sharing in current
multi-core architecture. The number of cores on commercial
multi-core architecture increases to 6 or 12, i.e. Intel Westmere
and AMD Magny-core. A common feature of these multi-core
processors is that the last level cache is shared by all cores
on the same chip. A highly efficient utilization of the shared
cache is important for multi-threaded program to achieve better
performance on multi-core architectures [9]. For an instance
of our targeted mapping algorithm, Figure 4 illustrates a
possible transformation to increase the utilization of shared
cache among multiple threads. In the example there are two
threads or cores, each of them maps reads {R0, R1} and {R2,
R3} to reference, respectively. Assume that both R0 and R3

match with the same position in reference, which is referred
to as RefA, R1 matches with RefB, R2 matches with RefC.
Without loss of generality, for simplicity we assume that there
is only one cache line in the shared cache. Figure 4 shows two
execution modes with different query order. Execution 1 in the
left part is an execution order in the naive parallel algorithm,
which directly partitions reads among multiple threads. Due
to cache line conflict, the execution of two parallel threads is
serialized. If we could change the query order, i.e. thread 1
reads R3 before R2, two threads would share the same data
in cache and run in parallel, and then the overall execution
time could be reduced. The right part of Figure 4 shows the
execution order (Execution 2).

B. Reorder Bucket Access in Hash Index

As discussed in previous section, the two levels of indices
in PerM are organized as sequential arrays and stored in
increasing order of hash key. The higher and lower parts of
a hash key (seed1 and seed2) are used to address the two
levels of indices, which exhibits severe performance issue
of random memory access (see Figure 1). To mitigate the
problem, built upon the concept of Hash-Join [20], we resort
to an optimization step to reorder and join query reads with
respect to the accessed hash bucket number in reference index.

The Hash-Join algorithm is a well-accepted technique,
which trading CPU power and memory space for speed, to
join two or more distinct data tables with shared data fields
in database. In Hash-Join, by hashing the shared data fields,
one of the data table (usually the smaller one) is converted
to a temporary hash table in advance and resided in main
memory. Then, the join operation for the larger data tables can
be simplified as in-memory hash table probing with respect to
the shared data fields. In this way, the time-consuming join
operation can be fulfilled by traversing each data table only
once. In short sequencing reads mapping that based on hash
index, the reference sequences are already expressed in form
of hash table, which coincides with the Hash-Join technique.
In particular, for hash table probing, the step of hashing the
shared data fields can be harmoniously replaced with hash
key generation. Therefore, by making hash index for query
reads as well, the technique of Hash-Join can be applied to
optimize short sequencing reads mapping. The performance
improvement of applying Hash-Join can be explained in two
aspects: 1) For query reads that share the same hash key, the
same bucket in hash index will be accessed. By joining query
reads according to their hash keys, buckets of hash table need
to be accessed only once; 2) In a typical query, over hundreds
of millions of reads are processed in batch. By calculating the
hash bucket numbers that reads going to access in advance,
and reordering them in increasing order, it becomes possible
to access the hash index in strictly increasing order, which
avoids random memory access. In this paper, the optimization
of Hash-Join is implemented by indexing reads with the same
strategy used for indexing reference sequences.

To utilize the sequential nature of the reordered hash index,
as listed in Algorithm 3, a new query algorithm is proposed.
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The new query algorithm iterates the hash index with respect
to the reordered hash bucket numbers and invokes pair-wise
alignment on items in corresponding buckets in both reads
and reference index. Figure 5 illustrates an example of our
query algorithm. The query seeds from two separated reads
(each read contains several query seeds), denoted as A0, A1,
A2 and B0, B1, B2, are queried in lexicographic order in
original PerM. In contrast, the buckets of hash index will be
probed sequentially from top to bottom in our reordered query
algorithm. Therefore, B1 will be queried first, as it is the only
seed that accesses bucket 0. Both B2 and A0 access bucket 1,
therefore they can be joined together to reduce a hash index
access. As a result, the number of bucket access can be reduced
from 6 to 4.

Algorithm 3: Reordered hash index query
input : idxlist – (L1idx, L2idx) 2-tuple index list,

b – (L1idx, L2idx) 2-tuple reads index
output : Mapping result of all reads in b

1 foreach a in idxlist do
2 j = 0;
3 for i in b.L1idx do
4 repeat //Matching bucket number
5 m = b.L1idx[i].bktnum;
6 n = a.L1idx[j].bktnum;
7 if m > n then j++;
8 else if m < n then i++;
9 until m == n;

10 foreach p in jth bucket of a.L2idx do //Alignment
11 foreach q in ith bucket of b.L2idx do
12 Pair-Wise-Comparison(p.seq, q.seq);

13 i++; j++;

Joined	
Query

Hash	
Table

Bkt 0

Bkt 1

Bkt 2

Bkt 3

Bkt N

SeedQuery	Order	After	
Hash-Join

Original	Query	Order

Joined	
Query

Fig. 5. Reordering queries based on Hash-Join.

The increased data locality comes at the cost of out-of-order
result collection. The sequential traversal of hash index gives
rise to a different query order, in which even the query order
within reads will change. As illustrated in Figure 5, according
to given hash key pattern, the reads are divided into several
sub-queries, which will be processed sequentially in original
PerM. However, after applying the Hash-Join, the sub-queries
will be tangled with each other, which leads to the loss of
correspondence between reads and their results. The solution
to this problem is an auxiliary post-processing step, which

is responsible for collecting scattered results and trimming
redundant mapping sites.

In complement, the second optimization takes into account
the data access locality in reference sequences. Instead of
storing the indirect offsets of reference sequences, the random
access in reference sequences can be avoided by storing
the sequence data in the first place. Although the memory
consumption increases linearly as length of reads increased, we
argue that the problem is affordable with large memory at our
disposal. Furthermore, leveraging the hash index compression
method discussed in following section, we can combine the
two levels of indices in PerM to form a unified index, whereby
the bucket boundary refinement in second-level offset index
(Line 9 of Algorithm 2) can be eliminated.

C. Hash Index Compression

Increasing hash key weight (kw) is a common practice
to reduce hash conflicts and improve query performance.
However, the high space overhead stemming from the fact that
most hash buckets are empty can easily offset the performance
gains. The problem is compounded by the highly biased
composition of genome sequences. As explained in Figure 3,
we learn that the distribution of generated hash keys is far from
random, which can make over 99% of hash buckets empty. The
huge amount of empty buckets in hash index slows down our
optimized query considerably. Explained in Algorithm 3 (Line
4∼9), after reordering bucket access order, a traversal of the
entire hash index is required for finding all matching bucket
pairs. Therefore, it is worth while to reduce the hash index
traversal time by removing empty buckets. However, operated
as mandatory place-holders for constant time data access, it
is impossible to remove the empty buckets in traditional hash
table.

More significantly, among the steps listed in Algorithm 2,
mapping refinement (Line 9∼14) is the most computing-
intensive one. As illustrated in last 3 rows in Table II, over 80%
of the total execution time is dedicated to mapping refinement
in original PerM. However, only 7.4% of the invocations of
Pair-Wise-Comparison (Line 14 of Algorithm 2) contributes
to positive matching results, which indicates a considerable
waste of computing power on false positive alignments. In-
tuitively, the problem can be alleviated by increasing hash
key weight, which in turn improves the resolution ratio of
hash key and reduces false positive in hash index. However,
when increasing kw in traditional approach, the exponential
explosion in memory space renders it practical to only limited
kw. With the hash index compression discussed in this section,
building hash index with unprecedented kw (26bp) becomes
possible.

1) Serialized Index Compression: In the reordered hash
index query algorithm, the hash index will be accessed sequen-
tially. In this regard, the empty buckets introduce nothing but
pure access overhead. As only non-empty buckets of reference
(reads) index are of interest in alignment, space saving can
be achieved by probing and storing non-empty buckets in
increasing order of bucket number. Intuitively, the highest
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compression ratio can be achieved by reserving bucket pairs
that are both non-empty in two indices. However, the drawback
is that the compressed index is related to given reference
and reads index, and the compressed index becomes invalid
once either of the index changed. To overcome the drawback,
we resort to a static compression algorithm, which can be
explained as sequentially removing of empty buckets in both
indices. Taking Figure 6 as an example, bucket 3 and 4 of
the reference index are empty and will be removed in the
compressed index. After squeezing out the empty buckets,
bucket 5 will follow bucket 2 directly in the compressed
reference index. Algorithm 4 gives the serialized hash index
compression algorithm. For clarity, Algorithm 1 and 4 are
listed as separated flows. In practice, however, they can be
combined to get a unified flow that dispenses with extra data
copys. The loss of bucket-to-bucket correspondence is the
primary drawback of this approach. Therefore, an additional
step of realigning bucket numbers (Line 4∼9 of Algorithm 3)
is required in the reordered hash index query algorithm.

Bucket
Empty

Empty Empty
Read	
Index

Reference	
Index

Bucket

Miss	Match
Index	After
Compression

Empty

Fig. 6. Hash index compression by removing empty buckets. Highlighted
as a mismatch between bucket 2 and 3, the mapping of buckets between two
indices does not hold after the compression.

Algorithm 4: Serialized hash index compression
input : idxlist – (L1idx, L2idx, ref ) 3-tuple index list
output : idxlist2 – (L1idx, L2idx) 2-tuple index list

1 foreach a in idxlist do
2 Allocate a 3-tuple index b in idxlist2;
3 idxlist2.b.L2idx = Allocate-Memory(size of a.L2idx);
4 foreach i in a.L2idx do //Mapping & translating L2idx
5 offset = a.L2idx[i].offset;
6 b.L2idx[i].offset = offset;
7 b.L2idx[i].seq = Get-Substring(a.ref, offset);

8 s = Number of non-empty entries in a.L1idx;
9 b.L1idx = Allocate-Memory(s);

10 j = 0;
11 foreach i in a.L1idx do //Compressing L1idx
12 if bucket i of a.L1idx is not empty then
13 b.L1idx[j].start = a.L1idx[i];
14 b.L1idx[j].bktnum = i;
15 j++;

2) Comparison of Space and Time Complexity: The com-
parison of space and time complexity is listed in Table III.
For large hash key weight (kw), the space overhead of ori-
ginal PerM, which grows exponentially with increasing kw,
is prohibitive. The advantage of serialized hash index lies in
the fact that the index size depends on the number of unique

TABLE III
SPACE AND TIME COMPLEXITY. THE n, m AND p REFERS TO THE NUMBER

OF THE GENERATED HASH KEYS, THE HASH KEY WEIGHT AND THE
NUMBER OF THE UNIQUE HASH KEYS, RESPECTIVELY.

Index Type Space Time(best) Time(worst)

Serialized Hash Index Θ(n) Θ(1) Θ(p + n)
Hash Index in PerM Θ(2m) Θ(1) Θ(n)

hash key, instead of the kw of the applied hash key pattern.
Taking the 26bp (52bit) kw considered in this paper as an
example, although building the prohibitive 16 PB (252 ∗ 4
Byte) hash index is impractical, extracting and storing the non-
empty buckets for sequential query becomes applicable. As
illustrated in Table V, the size of compressed hash index is
only about 40.5 GB.

The worst case time complexity is reached when all hash
keys are clustered in a single bucket. For serialized hash
index, iteration of the entire reference index (Line 4∼9 of
Algorithm 3) is needed, which attributes to the p factor in
worst case time complexity. Although it is needed to iterate
the entire reference index, with huge amount of reads queried
in batch, the amortized query time of serialized hash index
actually approaches Θ(1).

V. EXPERIMENTAL RESULTS

A. Experiment Setup

The human genome from GenBank [25] is used as the refer-
ence sequences in following experiments. The reads length is
set to, but not limited to, 100bp. Up to 3.87 million short reads
of human individual, which is provided by Novogene [26],
are mapped against the reference sequences. Hash keys are
extracted from the first half of reads, in which the mismatch
threshold is set to 2. While, in end-to-end alignment, up to 5
mismatches is allowed. All alignment results that satisfy the
mismatch threshold are collected without bias and filtering.
Considering the diversity among various output formats, time
consumed in dumping results to disk is excluded in perfor-
mance evaluation. In this paper, the experiments are designed
to follow the convention of the original PerM, where the 24
chromosomes of human genome are handled separately.

We implement and evaluate the optimized parallel PerM
algorithm on the 8-socket SMP system, which is equipped with
Intel Xeon 2 GHz 8 core X7550 CPU and 128 GB memory
(easily expanded to 2 TB). All 8 cores in the same socket share
an 18 MB L3 cache. The parallel program is implemented
with OpenMP and compiled with the latest Intel Compiler.
The memory performance is collected using the Intel VTune.
For simplicity of presentation, we define several notations used
in experimental results comparison:
• HJ represents Hash-Join optimization that reorders hash

buckets (Section IV-B).
• SH stands for serialized hash, with which it indicates that

the index is compressed by sequentially removing empty
hash buckets (Section IV-C).

• Hash key weight is expressed as Sn. For example, the
13bp hash key used in original PerM can be denoted as
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S13. Different hash key weights are combined with the
proposed optimizations for comparison.

B. Results Analysis

1) Performance and Scalability: First, we report the
speedup of our optimized parallel program over original PerM.
The overall speedup is shown in Figure 7(a), where the exper-
iments are evaluated by querying reads against the 24 chro-
mosomes individually. Index building time is not calculated,
the reads index is built once and shared by all chromosomes.
The baseline program is PerM+S13 which applies all default
configurations. When we increase the hash key weight from
13bp to 15bp, only a little improvement is achieved in original
PerM. In contrast, our optimized algorithm shows significant
improved performance for each chromosome’s query. Due to
varied nucleotide composition of chromosomes that results in
different distribution of hash buckets, the reported speedup
varies in the range of 4∼11 times while 6 times in average.
Note that our new algorithm can run a mapping procedure with
a hash key weight of 26bp because of the applied hash index
compression optimization. The original PerM fails to use such
long hash key because its memory consumption exceeds the
physical memory capacity.

Without data dependency among query reads and references,
the embarrass parallel loops (Line 2 and 3 of Algorithm 2) can
be easily partitioned and accelerated with multiple threads.
Figure 7(b) compares the execution time of two parallel
programs with an increasing number of threads. Due to the
limited space we only present the results for one chromo-
some (chr1), on which similar results can be deduced for
other chromosomes. With respect to parallel scalability (the
ratio of parallel execution time to sequential execution time),
attributed to the improved data locality in the shared cache,
our optimized version is clearly better than original PerM.
For example, with 64 threads, the parallel scalability of our
optimized version is 42.4 times, while only 32.7 times is
achieved in original PerM. However, parallel queries push the
memory bandwidth to the limit, which prevents our optimized
version from reaching higher speedup.

The optimization of merely increasing hash key weight
reduces collision in hash index, however, as reported in
Figure 8(a), the speedup is restricted to no more than 1.4 times,
while the speedup of utilizing Hash-Join is at least 4 times.
The speedup reported in Figure 8 is not some kind of upper
bounds. Noticing the huge number of reads involved in real
sequencing application, for experimental purpose, the limited
size of reads prevents our optimizations from reaching further
speedup.

Increasing hash key weight alleviates collision in hash
index, however it comes at the cost of increased hash index
size, which can offset benefits of using longer hash key.
Illustrated in Figure 8(a), when compared with 13bp hash key,
the degraded performance of using 15bp hash key indicates
that the increased overhead of traversing hash index actually
outweighs performance gains of using longer hash key. Re-
garding the steep increase in hash index size when the hash

key weight get increased, the advantage of using longer hash
key is decaying. The problem can be solved by hash index
compression. As illustrated in Figure 8(b), the hash index
iteration overhead can be reduced by hash index compression,
which contributes to another 20% speedup in average.

Using serialized hash index makes it possible to build
compact index structure, which not only reduces memory
consumption, but also improves query speed. However, when
hash key weight exceeds 16bp, instead of 32-bit integer, 64-
bit long is required to store the hash key. The advantage of
using long hash key can be outweighted by the increased cost
of storing and comparing hash keys, which indicates that the
optimal hash key weight should be 16bp. Figure 8(b) illustrates
that the performance of using 26bp hash key is actually worse
than 15bp hash key. However, as explained previously, with
26bp hash key, the two levels of hash indices can be combined,
which facilitates the parallelization.

2) Memory Utilization: The increased memory perfor-
mance, which is largely attributed to the decreased ratio of
random memory access, is the key factor that accounts for the
reported speedup in previous section. As listed in Table IV,
utilizing Hash-Join and serialized hash index, the LLC miss
ratio can be reduced to 8∼15% of the original PerM, CPI and
instruction stalls also get improved by 30%.

TABLE IV
MEMORY PERFORMANCE

CPI1 LLC Miss Retire Stalls2

PerM+S13 .757 .542 48.5%
PerM+S15 .748 .452 48.5%
HJ+S13 .544 .046 33.5%
SH+HJ+S26 .568 .045 35.4%
1Cycles Per Instruction.
2Percentage of cycles in which no instructions are retired.

TABLE V
INDEX SIZE(IN GBYTES)

13bp1 14bp 15bp 26bp

SH+HJ 26.6 30.2 34.2 40.5
PerM 18.1 36.1 108.1 -
HJ 28.7 46.7 118.8 -
1Hash key weight, measured in base pair.

Along with storing the indirect offsets in reference se-
quences, improving data locality by extracting and storing ac-
tual sequence sub-strings in the generated index can introduce
considerable index size explosion. However, in combination
with hash index compression, with hash key weight of 15bp,
Table V illustrates that the index size can be reduced to 30%
of the uncompressed one. Further, using hash key as long as
26bp, the sensitivity of hash key can be greatly improved.
However, noticing the high similarity of genome sequences,
the index size is far smaller than expectation.

3) Index Building Overhead: The hash index generation
is an one-time off-line pass and the generated index can
be stored on disk for later reuse. Therefore, in previous
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Fig. 7. Speedup and scalability: speedup is normalized to original PerM with hash key weight of 13bp.
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Fig. 8. Speedup of individual optimization: speedup is normalized to PerM with hash key weight of 13bp.

section, time consumed in index building is not included in
query performance evaluation. As illustrated in Algorithm 1,
in PerM, the time of building hash index is composed of
3 parts: counting items in bucket (Line 3∼8), hashing and
partitioning data to buckets (Line 10∼14); and sorting items
in bucket (Line 15∼16). Figure 9 explains the composition of
each part. Time consumed in counting items remains stable
for all optimizations. In order to improve data locality, in
our optimized versions, we choose to extract and store the
seed2 data when hashing data into bucket, which accounts
for the increased time reported as HASH bars in Figure 9.
However, with explicitly stored seed2 data, time consumed in
bucket sorting can be greatly reduced. The net effect is that,
although the composition of index building time changes, the
optimizations introduced in this paper exert little impact on
aggregated index building time.

The overhead of indexing reads is also depicted as READS
bars in Figure 9, which occupies a little portion of the
index building time. When querying reads against all 24
chromosomes, the process of indexing reads is executed only
once, and the generated reads index can be shared across
chromosomes. Therefore, compared with the query time, the
overhead of indexing reads is negligible. Although not covered
in this paper, the preprocessing step can be parallelized with
trivial effort.

VI. RELATED WORK

Traditional sequence alignment tools, such as BLAT [6],
are designed for long sequences, and are not optimized for
NGS applications with huge amount of short reads. In recent
years, short sequencing reads mapping has emerged as an
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in building reads index.

active research topic. Amongst the numerous work published
in literature, two of the most important categories, accord-
ing to the applied index structure, are hash index and FM-
index (Burrows-Wheeler transform, BWT) [10]. For the first
category, MAQ [11], PerM [4], GNUMAP [12], RMAP [15]
are prevalent solutions, while Bowtie [13] and SOAP2 [14]
are representatives in the second category. The query flow
of BWT-based algorithms, which involves extensive pointer
calculations, is far intricate than hash-based algorithms.

In most of the work discussed so far, improving single-
thread performance and reducing memory footprint are the
primary focus, which leaves parallel optimization largely ig-
nored. The scalability for running Bowtie [13] using four
threads on a 4-core server is 3.12 times. Limited by the
experimental scales, it is not clear if Bowtie can be par-
allelized further beyond 4 threads. Most existing work on
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parallel short sequencing reads mapping focus on optimal
workload partitioning. In [21], six parallelization methods are
proposed, including partitioning the reads, the genome, and
both the reads and the genome. The parallelization strategies
investigated in [24] try to optimize data distribution for parallel
execution of BWT-based algorithms. In contrast, we focus on
single-thread optimization in this paper, which is orthogonal
to those workload partitioning strategies, in this regard their
work can be used to extend our work. To our best knowledge,
our work is the first approach that optimizes parallel NGS
performance in aware of orchestrating data layout through
memory hierarchy.

The massive parallelism involved in NGS, makes it easier
to justify using distributed clusters or the GPUs for accel-
eration. Using MPI with multi-threading to parallelize the
GNUMAP is introduced in [22], where the performance can
be linearly scaled up to 256 processors across 32 nodes. The
CloudBurst [23] presents efforts of parallelizing the RMAP
on distributed architectures based on the Google MapReduce
framework. On a 96 cores remote computing cloud, up to 100x
speedup is achieved in the CloudBurst. A GPU optimized
version, which uses GPU-compatible binary search instead
of original hashing technique, of the RMAP is introduced
in [17]. Measured on a NVIDIA Tesla C1060 GPU, in terms of
overall execution time, up to 9.6-fold speedup over a sequential
implantation of the RMAP on a traditional PC is reported.

VII. CONCLUSION

With the increased capacity and decreased cost of memory
chip, utilizing large memory system to improve next-
generation sequencing has just now becoming a practical
consideration. We take the position that exploration of the
memory hierarchy should be a foremost design consideration.
We optimized and parallelized a short sequencing reads mapp-
ing program, called PerM, based on hash index algorithm. Our
optimizations focus on memory utilization on current multi-
core architecture with large mount of memory capacity. The
optimization strategies include: (i) Memory access reorder in
hash index by a Hash-Join transformation that takes advantage
of cache sharing in multi-core architecture. It is worth noting
that an efficient parallel algorithm on multi-core architecture
should be aware of the underlying shared cache. (ii) A
serialized hash index compression that reduces empty hash
buckets, further enables to adopt longer hash key. The results
indicate that improving performance by simply expanding hash
key length is an inefficient way. More dedicated optimizations,
such as Hash-Join and index compression, are needed to
unleash the power of large memory system. The combination
of these optimization strategies achieve a speedup of 4∼11
times (6 times avg.) over the original parallel PerM.
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