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Abstract— This paper describes a scalable approach to one of 

the most computationally intensive problems in molecular 

plant breeding, that of associating quantitative traits with 

genetic markers.  The fundamental problem is to build 

statistical correlations between particular loci in the genome of 

an individual plant and the expressed characteristics of that 

individual.  While applied to plants in this paper, the problem 

generalizes to mapping genotypes to phenotypes across all 

biology.  In this work, a formulation of a statistical approach 

for identifying pairwise interactions is presented. The 

implementation, optimization and parallelization of this 

approach are then presented, with scalability results. 

Keywords: parallel, trait, gene expression, eQTL 

I. INTRODUCTION 

Pressure on the world's food supply from increased 
population, dietary changes, loss of farmland, and 
anthropogenic climate change makes it essential that we 
radically improve the rate and efficiency at which we 
produce our staple food crops [1-2]. Over the course of the 
last century, the science of plant breeding has advanced to 
produce the annual increases in crop yield that have allowed 
the world population to burgeon while the average price of 
calories has declined (USDA-ERS). Yet, just as we begin to 
truly need even more spectacular increases in yield, the rate 
at which improvements are made has begun to reach a 
plateau - we've essentially reached the limits of traditional 
plant breeding [3].  If we're not successful in reversing this 
trend, then by sometime in the middle of this century we'll 
simply be unable to provide enough calories to feed the 
citizens of our world [4].  

For the most part, plant breeding is an empirical process - 
it proceeds by selecting and breeding together parents that 
have the best versions of traits deemed desirable. This has 
been surprisingly successful, but we don't know (with a few 
exceptions) which biochemical pathways and genetic 
processes are being affected by the selection process. Faced 
with diminishing returns, we need to obtain a fine-grained 
understanding of the relationships between the genetic 

language of our crop plant species, the dynamic environment 
in which they grow, and their resulting complement of traits 
[5-6]. We need this knowledge so that we can predict the 
genetic codes that will, in specified environments, yield 
desirable traits such as increased drought tolerance, 
resistance to disease, or enhanced starch production. This 
knowledge provides invaluable guidance in selecting which 
parents to breed together.  Conversely, we need to be able to 
predict the features that an individual will develop knowing 
little more about it than its set of genetic codes.  This will 
enable us to predict the potential performance of the 
offspring that might arise from given parents.  

One way of obtaining this knowledge comes in the form 
of 'association studies'. Broadly stated, this method exploits 
the natural variation that different individuals display for 
specific traits of interest.  This information is coupled with 
experimental measurement of the genetic code at intervals 
across the genome for those same individuals and, if present, 
correlative relationships between the two data sets are 
identified. Depending on the experimental design, the 
density of genome locations surveyed, and the inheritance 
structure of the population being examined, these studies are 
known as Quantitative Trait Locus (QTL) mapping 
experiments or Genome Wide Association Studies (GWAS). 
A variety of statistical methods used in such studies – 
including maximum likelihood, Bayesian estimation, and 
general linear modeling [7-12] – all share a common 
problem in that as the analyses increase in complexity and 
produce more detailed data, the computational requirements 
to perform them rapidly exceed the resources readily 
available to the average breeder. Thus there is significant 
interest in using high-performance computing to accelerate 
this process [13-15, P. Bradbury pers. comm]. 

Even when a specific marker is found to associate with a 
trait of interest, it is a common situation that association only 
accounts for a fraction of the trait’s variance. This is not 
surprising because many traits are 'polygenic', meaning that 
several genes contribute additively to the final outcome. 
However, even when polygenic relationships are identified, 
as much as 95% of the variance can remain unaccounted for 
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by classical inheritance [16]. One popular hypothesis is that 
pairwise interactions between and among genes may account 
for much of this missing heritability [17-19]. 

However, searching for interactions is much more 
computationally intensive than single-gene analysis because 
all pair-wise relationships between genetic positions have to 
be computed and tested for statistical significance. 
Specifically, if one has a data set consisting of 10

6
 genetic 

positions (which is a reasonable number given the state of 
the art in DNA sequence technology), he or she will need to 
perform not 10

6
 computations but 5x10

11
 computations for 

every trait to be examined. The problem may be amplified by 
the need to use permutation-testing methods for identifying 
significance thresholds.  

The nature of the algorithm and the amount of data puts 
the analysis well in the realm of High Performance 
Computing (HPC) on large clusters. Code based on scripting 
languages like Perl, Python, R, etc., which are widely used in 
Bioinformatics, are insufficient because they are very slow, 
and they cannot (easily) scale to thousands of compute cores. 
Resolving the latter problem alone would not even be 
sufficient. The competition for HPC compute resources is 
fierce and only projects that use efficient approaches and 
languages have a chance to be awarded substantial amounts 
of compute time. 

We describe here the outcome of a collaboration between 
researchers versed in implementing highly optimized and 
parallelized scientific algorithms, plant molecular geneticists, 
and statisticians, to produce an efficient and scalable code for 
performing permutation tests for detecting pairwise gene 
interactions that will facilitate rigorous analysis of large, 
complex molecular breeding data sets. 

II. BACKGROUND 

The task of identifying stretches of DNA that may 
contain genes controlling particular traits is critical to solving 
the “Genotype-to-Phenotype Problem”, declared by the 
National Research Council to be a top-priority problem in 
applied biology [20].  To date there are two major 
approaches.  The first is direct experimentation, which 
involves using various technologies to generate either 
"shotgun" or targeted changes to the DNA, and then tracking 
down the location of changes that seem to affect the trait of 
interest.  Such approaches are time-consuming and can easily 
take several years.  The second general class of methods 
involves looking for statistical associations between 
naturally-occurring DNA differences and variation in 
numerical measurements of the trait of interest.  Commonly, 
the statistical methods involve heavy use of general linear 
models.  The precise form of the model depends on the 
breeding pattern that generated the particular individuals 
whose trait values were measured. These patterns range from 
the very free-form family trees that characterize human 
populations to very structured arrangements within plant 
populations that have been specifically produced for use in 
association studies.  The range of general linear models 
(GLMs) varies correspondingly. 

From the computational standpoint, there are also various 
methods used for estimating parameters of these GLMs to 

extract the desired genetic information.  These methods can 
range from simple least-squares regression to the iterative 
procedures used for "mixed models" - that is, models that 
explicitly represent both random and fixed effects.  There are 
computational commonalities that exist whichever of these 
methods is used.  The basic idea is to use the markers as 
independent variables and the trait scores as dependent 
variables.  Then the models are fit to the data using model-
specific matrix methods.  If a particular marker, or set of 
markers, is near genes that, in fact, control the trait of 
interest, then the expectation is that the model, when fit, will 
explain a statistically significant percentage of the trait 
variation.  For markers where this does not happen, one 
concludes that whatever effect they may have, if any at all, is 
too small to be detected. 

Thus, the computational task of model fitting must be 
repeated for as many markers or combinations of markers as 
are deemed relevant to the problem. As described elsewhere, 
this can run into many billions of model fitting operations.  
Although there are some differences in nomenclature, this 
general approach is referred to as "QTL mapping" or 
"association mapping". The acronym "QTL" stands for 
"quantitative trait locus" - that is, a place in the genome that 
is associated with some quantitative trait.  Studies are 
currently underway by our group and others to find ways to 
accelerate these calculations, including GPU based 
implementations.   

The approach taken in this paper has the same general 
objective as these standard methods - to identify genomic 
regions exerting control on a trait or traits of interest beyond 
simple additive effects. There are, however, two differences.  
The first is that we are specifically looking for interacting 
controls, i.e. pairs of markers that jointly influence the traits 
of interest.  The second difference is that our approach does 
not directly involve matrix operations, but only simple 
differences between the mean trait values of subgroups of 
individuals whose marker states vary in a systematic way 
(section III.B.1). 

III. DATA, STATISTICAL APPROACH, AND ALGORITHM 

A. Input Data 

Two datasets containing Marker Scores and Trait Values 
from two different files are used for the calculations. The 
Markers file contains the genotype information. For each 
individual, information about which parent provided the 
particular DNA character at a particular location is specified.  
This information is gathered from DNA sequencing, 
microarrays, or amplification-based methods.  The Trait 
Value file contains the measured values for particular 
characteristics of those same individuals.  For this type of 
analysis, the traits in question can all be expressed as a 
numerical value, which is why they are called “quantitative 
traits”. A real-world example of a quantitative trait is plant 
height at developmental maturity. In both files a line starts 
with a RIL (Recombinant Inbred Line) designator (1st 
column), which is a unique string used to identify the 
individual from which the data were derived. Both datasets 
have the same number of lines (NRIL) and the RIL 
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designators match. Each RIL represents one specific 
genotype (or “line”) that results from cross-breeding of two 
parents with known genetic characteristics, followed by 
several generations of self-breeding to eliminate 
heterozygosity across its genome.  

The first file contains Trait Values for a number of traits. 
Each trait is represented by one column. The trait values are 
only known to a few significant digits and single precision is 
sufficient for storage and all numerical operations. An 
example of the Trait Values file is given below.  The first 
column contains the line designators. Other columns hold the 
measured values for the traits. Missing information is 
denoted NA. Columns and rows are trimmed. 

 
M0001 0.2859 2.3228 26.5275 163.401 29.3054 379.593 …  
M0002 0.2535 3.0007 25.0224 174.592 NA      509.122 …  
M0004 0.2617 1.8441 NA      142.614 16.7467 237.905 … 

… 
The second file contains markers with chromosomal 

coordinates and genotypes for each of the RILs (lines). An 
example of the Markers file is given below. The first column 
contains the line designators. “NA” is missing data. Columns 
and rows are trimmed. 

 
M0001  1  1  1  0 NA  0 … 
M0002  0  0 NA  1  1  1 … 
M0004  0  0  0  0 NA  1 … 

… 
Note that both files contain additional information, i.e., 

descriptive information of the traits, trait names, 
chromosome on which the marker resides, and the location 
of the marker within the chromosome measured in relative 
units (centiMorgans). This information is used during 
subsequent steps, but is not relevant for the interaction 
testing described in this paper.. 

B. Statistical Approach 

It is the goal to calculate interaction values (Finter) and a 
distribution of maximum interaction values (Fmax) for all 
traits provided in the Trait Values file. We describe the 
calculation of Finter first (section. III.B.1) and progress to the 
calculation of Fmax in section. III.B.2. 

1) Calculation of Finter. For now we assume that no data 
are missing in either input file. Interaction values are 
defined as the interaction between a pair of markers, i.e. two 
columns in the marker file. All possible combinations will 
be examined; for Nmark markers, Npair=(Nmark (Nmark–1))/2 
pairs can be selected. 

Since each potential interaction involves two markers, 
four different marker combinations are possible: 11, 00, 01, 
and 10. All summations are done with respect to these four 
marker combinations. The trait values are denoted by y; 
specifically yij is the score of the jth

 individual with marker 
combination i=1..4, corresponding to 11, 00, 01, and 10, 
respectively.  

ni is defined as the number of individuals with the ith
 

marker combination (i.e., 11, 10, 01, or 00). If one or both 
markers are missing the individual is ignored. For a marker 
pair the interaction value (Finter) is defined as follows: 
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The MSE numerator can be simplified as follows 
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A total of Npair interaction values are calculated for each 

trait.  Once these calculations are performed for the data as 
observed, the y-values are randomly shuffled across the 
lines and the calculation is repeated.  This is done many 
times (Nperm) in a Monte Carlo simulation to approximate 
the distribution of the Fmax statistic (next section) under the 
null hypothesis of no association between the trait in the 
marker scores. 

2) Calculation of Fmax: Fmax is defined as the maximum 
(across all marker pairs) of all interaction values (Finter) for a 
given permutation of the data. Hence, the calculation 
described in sect. III.B.1 is executed 1+Nperm times for every 
trait, once with the original order of trait values for the 
calculation of Finter, and Nperm times for the calculation of the 
Fmax distribution.  This distribution is then used to calculate 
the significance levels of the Finter values computed for each 
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marker pair in a manner adjusted for testing multiple 
dependent marker pairs within each trait [21]. 

3) Incomplete data: Collection of trait data is often a 
very labor intensive process, requiring months of field work. 
Sometimes, individual RILs may fail to grow or be lost to 
herbivory and disease, and in some cases, the trait 
measurement may simply be unsuccessful. Collection of 
genome data takes place in laboratory conditions and is 
generalbly reliable, but the large number of measurements 
may still result in missing data for specific markers in 
particular lines. Thus, data may be missing in either input 
dataset. If either the trait value (yj) or any markers are 
missing, the line is omitted from all summations. If a trait 
value is missing the line is not considered in the 
permutations. Also, if any of the ni’s are zero or if the 
sum(ni) <= 4, then no interaction value (Finter) is calculated. 

C. Algorithm 

Four implementations are described: serial/naive, 
serial/optimized, parallel/OpenMP, and parallel/MPI. The 
description covers the actual calculation, but does not 
consider (binary) I/O. 

1) Naive serial implementation: A straightforward 
implementation of the equations above was initially coded 
in serial fashion as a baseline. The pseudo-code for the 
serial implementation is provided below in listing 1. Note 
that the calculation of Finter and Fmax is independent of the 
trait and the itr index is dropped from the description. Hence 
the index itr does not appear in the pseudo-code except as 
the index of the outermost loop.  
 
Loop over all Traits: itr 
  Loop over 1+Nperm permutations: iperm=0..Nperm 
    If iperm > 0: permute valid trait values (yj != “NA”) 
    Fmax = 0. 
    Loop over Npair marker pairs: imp 
      ni  = 0    i=1..4 
      s1i = 0.   i=1..4 
      s2  = 0. 
      Loop over all lines (RILs): j 
        If yj = “NA”: cycle 
        If marker1 or marker2 = “NA”: cycle 
        Determine index i from the two markers 
        ni  = ni  + 1 
        s1i = s1i + yj 
        s2 = s2  + yj * yj 
      End loop (j) 
      If any(ni) =  0 or 
         sum(ni) <= 4:    Finter = “NA”; cycle 
      meani    = s1i / ni (I=1..4) 
      contrast = meani=1 + meani=2 – meani=3 – meani=4 
      mse = s2 – sum(s1i * meani, i=1..4) / (sum(ni,i=1..4) – 4) 
      Finter  = contrast^2 / (mse * sum(1 / ni, i=1..4)) 
      If iperm = 0: Output Finter 
      Fmax  = max(Fmax, Finter) 
   End loop (imp) 
   Output Fmax 
  End loop (iperm) 
End loop (itr) 

 
The naive serial version written in Fortran is about 1000 
times faster than a similar implementation in Python.  

2) Optimized serial implementation: The naive serial 
implementation suffers from two performance penalties. 
The number of floating-point operations is not minimized, 
but more importantly the innermost loop over the lines 
(RILs) cannot be vectorized because of the two if conditions 
that skip over invalid traits and/or marker pairs, and the 
indirect addressing of ni and s1i through the index i. Without 
vectorization only one multiplication or addition can be 
executed in a SIMD instruction (Single Instruction Multiple 
Data) out of eight possible concurrent operations on a 
modern processor (single precision, four multiplications and 
four additions).  

To enable vectorization and to increase speed, the loop 
order has to be changed and a vectorizable loop has to 
become the innermost loop. The trait loop (itr) and the 
permutations loop (iperm) are candidates but the loop over 
marker pairs is not, since it bears the indirect addressing. 
For the following two reasons we chose to move the 
permutation loop inside the RIL-loop. First, the number of 
loop iterations is large (at least 1000 to achieve meaningful 
statistics), while the number of traits may be very small or 
even one. Second, the exact number of permutations is not 
important, allowing us to choose a total number of loop 
iterations in the innermost loop (1+Nperm) that is divisible by 
4, which supports effective loop vectorization.  

The pseudo-code for the optimized serial implementation 
is given below. The core is a nested loop over RILs and 
permutations. The sum ni is independent of the permutation 
and can be determined outside of the core. The permutation 
of the Trait Values is done in advance and the permuted 
Trait Values are stored in a separate 2D array zj,iperm to avoid 
indirect addressing. The inner loop of the core vectorizes 
and the number of loop iterations is divisible by 4 which is 
the SIMD width of x86 processors in single precision. Note 
that the calculation of Finter and Fmax is independent of the 
trait. Thus, the index itr does not appear in the pseudo-code. 
 
Loop over all Traits: itr 
  Loop over Npair marker pairs: imp 
    Calculate ni for the marker pair under consideration 
    Calculate zj,iperm from permutations of yj 
 
Comment – Core of nested loops: RILs and permutations 
    Loop over all lines/RILs: j 
      If zj,iperm=0  = ” NA”: cycle 
      If marker1 or marker2 = “NA”: cycle 
      Determine index i from the two markers 
      Loop (vectorized) over permutations: iperm=0..Nperm 
        s1i,iperm = s1i,iperm + zj,iperm 
        s2iperm = s2iperm   + zj,iperm * zj,iperm 
      End loop (iperm) 
    End loop (j)  Comment – End of nested core loops 
 
    Calculate and output Finter 
    Update Fmax for all permutations 
  End loop (imp) 
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  Output Fmax 
End loop (itr) 
 

The optimized serial version is about 12 times faster than 
the naive serial version, which can be mainly attributed to 
the vectorization of the inner loop of the core. 

3) Parallel implementation with OpenMP: The second 
loop (marker pairs: imp) is parallelized with OpenMP. 
Summation variables (ni, s1i, s2, etc.) are made private and 
an OpenMP reduction is used for the calculation of Fmax. 
 

Loop over all Traits: itr 

  OpenMP: parallel do with reduction (+) of Fmax 

    Summation variables (ni, s1i, s2, etc.) are made private 

  Loop over Npair marker pairs: imp 

    Calculate ni for the marker pair under consideration 

    Calculate zj,iperm from permutations of yj 

      Loop over all lines/RILs: j 

      If zj,iperm=0 = “NA”: cycle 

      If marker1 or marker2 = “NA”: cycle 

      Determine index i from the two markers 

      Loop over 1+Nperm permutations: iperm=0..Nperm 

        s1i,iperm = s1i,iperm + zj,iperm 

        s2iperm = s2iperm   + zj,iperm * zj,iperm 

      End loop (iperm) 

    End loop (j) 

 

    Calculate and output Finter 

    Update Fmax for all permutations 

  End loop (imp) 

  omp: end parallel 

  Output Fmax 

End loop (itr) 
 

4) Parallel implementation with MPI: The outermost 
loop (itr) is parallelized with MPI. Every MPI task is 
assigned a range of traits  (itr_srank and itr_erank) to 
distribute the work as evenly as possible. Note that OpenMP 

may be used seamlessly within the MPI implementation. 
 
MPI_Init 
MPI_Comm_size(…, size, …) 
MPI_Comm_rank(…, rank, …) 
 
Determine non-overlapping and balanced itr_srank and 
itr_erank for every MPI task.  
 
Loop over all Traits: itr = itr_srank, itr_erank 
  omp: parallel do with reduction (+) of Fmax 
       Summation variables (ni, s1i, s2, etc.) are made private 
  Loop over Npair marker pairs: imp 
    Calculate ni for the marker pair under consideration 
    Calculate zj,iperm from permutations of yj 
      Loop over all lines/RILs: j 
      If zj,iperm=0 = “NA”: cycle 
      If marker1 or marker2 = “NA”: cycle 

      Determine index i from the two markers 
      Loop over 1+Nperm permutations: iperm=0..Nperm 
        s1i,iperm = s1i,iperm + zj,iperm 
        s2iperm = s2iperm + zj,iperm * zj,iperm 
      End loop (iperm) 
    End loop (j) 
 
    Calculate and output Finter 
    Update Fmax for all permutations 
  End loop (imp) 
  omp: end parallel 
  Output Fmax 
End loop (itr) 
 

5) MPI version limitations & alternatives  
The trait-based MPI implementation limits the number of 
MPI tasks to the number of traits, and therefore the amount 
of resources that can be utilized. However, the dataset at 
hand contains over 13,000 traits, which would allow for 
using at least 13,000 cores, and up to ~100,000 cores if 
combined with OpenMP on eight-core blades. However, 
this exceeds the number of cores in most clusters and the 
single-core time to analyze one trait is only a few minutes.  

The situation changes with datasets that contain just a 
few traits (or even one) but a greatly increased number of 
markers. The number of marker pairs and, therefore, the 
compute time per trait would increase quadratically while 
the number of cores would be dramatically limited. To 
enable the use of many compute cores, the MPI 
parallelization would have to move from the trait-loop to the 
marker-pair-loop, i.e., the same loop that is parallelized with 
OpenMP. Changes to the code would be minimal and would 
mostly be limited to the use of an MPI_Reduce call for the 
calculation of Fmax. Note that these changes can be easily 
done while keeping the OpenMP parallelization intact. 

IV. PERFORMANCE AND SCALING 

We introduce the experimental setup and the hardware 
in section IV.A and discuss the performance and scaling 
aspects of the serial and parallel versions in sections III.B to 
III.D. Figure 1 (sections III.C-D) gives scaling diagrams. 

A. Experimental Setup and Hardware 

We have used 2 large clusters, Ranger and Longhorn, at the 

Texas Advanced Computing Center (TACC) for the 

evaluation of the performance and the scaling. Ranger is an 

AMD Opteron based system (2.3GHz) with a total of 

62,976 compute cores arranged in 3,936 quad-socket, quad-

core blades. Longhorn has 256 dual-socket, quad-core Intel 

Nehalem blades with a total of 2048 cores (2.53GHz). The 

dataset contains 13,824 traits, 56 lines (RILs) and 1127 

markers (634,501 marker pairs). The number of 

permutations is set to 999. To keep the  run-time  relatively 

consistent in the strong and weak scaling experiments, only 

a few traits are selected. The total number of operations and 

the amount of output scale linearly with the number of traits. 
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For the strong scaling (OpenMP) the number of traits is set 
constant, while for the weak scaling (MPI) the number of 
traits is selected proportional to the number of MPI tasks. 
Both parallelization techniques are implemented side-by-
side, so that the code can be run in Hybrid mode (MPI with 
OpenMP, not shown). 

B. Serial Performance 

The code was written in Fortran2003 and compiled with 
the Intel compiler version 11 and was carefully hand-
optimized for maximum performance. The optimized serial 
version of the code performs about 2 and 1.3 floating-point 
operations per clock cycle on Longhorn and Ranger, 
respectively. This translates to 25% and 16% of the peak 
performance, given that an x86 CPU has a nominal single 
precision peak performance of eight operations per clock 
cycle (four additions and four multiplications). The 
difference of performance on the two platforms can be 
traced back to the much improved memory bandwidth of the 
Intel Nehalem architecture. These are excellent performance 
numbers, particularly with an unbalanced innermost loop 
(two additions and one multiplication) and one division in 
the second innermost loop. Note that the timings include 
both the output and the random number generator calls. 

The total number of operations needed to analyze the full 
dataset is ca. Nops≈(Ntrait)(Nmarker-pairs)(21Nperm+3NpermNRIL) 
or 1.6x10

15
 operations which translates to about 92 hours 

(Longhorn: 2.5GHz, 2ops/cycle of achieved performance). 
One trait can be analyzed in 25 seconds on Longhorn. The 
speedup gained by the optimization is about a factor of 12. 

Based on the naive serial implementation in C and Fortran 
and the Python implementation, the total run-time is 
estimated to 20-50 and 20,000 days, respectively. This 
demonstrates vividly that only highly optimized code is 
appropriate to perform the task. 

C. OpenMP Performance 

The OpenMP performance was measured in strong 
scaling tests on a single Ranger and Longhorn blade. The 
scaling is excellent. Due to the non-uniform memory 
architecture (NUMA), applications parallelized with 
OpenMP perform best when the number of threads is equal 
to the number of cores per socket (4 on both platforms) 
which minimizes memory traffic between sockets. The 
parallel efficiency is about 99% for 4 threads on 1 socket. 
The graph is shown in Figure 1.  

D. MPI Performance 

Weak scaling with MPI is excellent as well. In this test, 
weak scaling was achieved by reading a fixed number of 
traits per processor from the input file and increasing the 
total number of traits as the number of MPI tasks is 
increased. The parallel efficiency at 128 cores is above 99% 
on both platforms. No degradation is observed at scale. The 
scatter is due to the utilization of the file system by other 
users. No performance test has yet been performed in 
dedicated mode. Based on 95% parallel efficiency the whole 
dataset can be analyzed within one hour on 96 Longhorn 
cores and 192 Ranger cores, which translates to 12 blades in 
both cases. 

Figure 1: Strong and Weak Scaling on Longhorn and Ranger. 
OpenMP achieves almost perfect scaling on one blade (left). The MPI version (right) scales perfectly to the highest core counts when the 

performance degradation due to I/O contention is addressed by increasing the number of Object Storage Targets (OST) used by the Lustre 
filesystem. Two timings are given at the highest core counts for 2 different stripe settings (default and an increase by 4 and 8, respectively). 

The timings with the higher stripe number are indicated by squares and the performance gain is indicated by arrows. The maximum amount of 

(binary) output is 4.8 and 19.4 GB, respectively, which translates to transfer rates of 248MB/s on Ranger and 51MB/s on Longhorn. 
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With OpenMP almost perfect scaling is achieved on one 
blade (left panel). The MPI version (right panel) scales 
perfectly to the highest core counts when the performance 
degradation due to the large amount of output is 
compensated for by increasing the number of Object Storage 
Targets (OST) in the Lustre file system. Two timings are 
given at the highest core counts for 2 different stripe settings 
(default and an increase by 4 and 8, respectively). The 
timings with the higher stripe number are indicated by 
squares and the performance gains are indicated by arrows. 
The maximum amount of (binary) output is 4.8 and 19.4 GB, 
respectively, which translates to transfer rates of 248MB/s on 
Ranger and 51MB/s on Longhorn. 

E. Analysis 

As mentioned previously, much larger datasets with a 
vastly increased number of markers will become available 
soon. Assuming that the number of markers may grow to 
the order of 10

6
, the time that it takes to analyze one trait 

would grow to 5,500 hours on a single compute core 
(Longhorn), based on the estimate (10

6
 / 1127)

2 
 x 25s. Even 

given this likely future problem size, the scalability results 
indicate that 125 blades (1,000 cores) could finish the job 
within a couple of hours. These core counts represent only a 
fraction of the size of modern leadership clusters. At such 
speeds the analysis of large datasets with a million markers 
and thousands of traits is within reach. 

F. Absolute Performance 

About two floating point operations per clock cycles are 
achieved on one core which translates to 25% of peak in 
single precision. This is high compared to average code 
written in HPC languages (Fortran, C/C++) that execute at 
about 1% to 5% of peak. The algorithm is of a conveniently 
parallel nature and no data has to be exchanged between 
MPI tasks. However, the assertion that this would lead 
naturally to a linear speed-up is wrong. Multiple OpenMP 
threads and MPI tasks are competing for resources, namely 
for higher-level caches and memory bandwidth on a node, 
and for I/O bandwidth. We have carefully analyzed the 
behavior of several trial implementations on multiple 
platforms to achieve the best scaling.  

There is no competing software (apart from a Python 
version) to which the current implementation can be 
compared. However, from the high serial performance (25% 
of peak) and the linear scaling it can be asserted that a 
different implementation cannot be much faster. 

We have conducted early production runs (not shown) 
with about 13,000 traits, 10,000 permutations, 1000 markers 
(0.5 million pairs) and 60 RIL’s. A calculation of this size 
takes about 4.5 hours on 128 cores, which is equivalent to 
600 hours on a single core (600 SUs).  This means that 
similar calculations can be performed on any small resource 
(small cluster, single multi-core workstation). Calculations 
that take 1,000 to 10,000 times longer (0.6 – 6 million SUs) 
can be facilitated through the TeraGrid which is a nation-
wide resource that has provided over 1.3 billion SUs in 
2010 to researchers in the US and the world. 

V. CONCLUSIONS 

Marker association studies are one promising approach to 
solving the problem of relating genotype to phenotype.  This 
challenge is fundamental to modern biology.  While 
potentially a very powerful tool in tackling this challenge, 
association studies are computationally intense, and the 
availability of better sequencing technologies will make 
datasets available that can not be analyzed by conventional 
means.  In this paper, we have shown that for one type of 
association study, detecting pairwise interactions, it is 
feasible to take advantage of both on-node and inter-node 
parallelism to effectively scale this analysis.   Given the size 
and capability of modern clusters, this puts this technique 
within reach of biologists. 

We live in a world wherein even transient food shortages 
can lead to severe price hikes resulting in rioting, as has been 
seen within the last few years.  Climate changes that result in 
crop performance reductions can exacerbate this effect, 
unfortunately in parts of the world where the social 
infrastructures are least able to absorb the strains. Effective 
scaling and application of the code developed here could 
simplify the task of molecular plant breeders in selecting the 
most effective crosses, thus helping to accelerate crop yield 
increases. 

This paper also represents the result of a very fast 
interdisciplinary collaboration; the team, working 
exclusively by email and conference calls, produced these 
results in 5 weeks of work (gathering the data initially took 
substantially longer!).  Application of this code to larger 
datasets is coming soon; integration of visualization 
techniques, and much wider dissemination will all be 
pursued in the coming months. 
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