
Efficient Nonserial Polyadic Dynamic Programming on the Cell Processor

Li Liu, Mu Wang, Jinlei Jiang, Ruizhe Li, and Guangwen Yang
Computer Science and Technology Department, Tsinghua University, Beijing, 100084 China

liuli03@mails.tsinghua.edu.cn; {jjlei, ygw}@tsinghua.edu.cn

Abstract—Dynamic programming (DP) is an effective
technique for many search and optimization problems.
However, the high arithmetic complexity limits its
extensive use. Although modern processor architectures
with multiple cores and SIMD (single instruction
multiple data) instructions provide increasingly high
computing power, even the state-of-the-art fully
optimized algorithm still largely underutilizes modern
multi-core processors. In this paper we propose to
improve one family of DP, nonserial polyadic DP
(NPDP), targeting a heterogeneous multi-core
architecture, the Cell Broadband Engine. We first
design a new data layout which efficiently utilizes the on-
chip memory system of the Cell processor. Next we
devise a CellNPDP algorithm with two tiers. The first
tier is a SPE (a co-processor on the Cell processor)
procedure which efficiently computes a block of data
that can fit into one SPE’s local store. The second tier is
a parallel procedure which enables all SPEs to efficiently
compute all blocks of data. To evaluate CellNPDP, we
use both performance modeling and experiments. The
performance model reveals that the processor utilization
of NPDP can be independent of the problem size. To
empirically evaluate CellNPDP, we use two platforms:
the IBM QS20 dual-Cell blade and a CPU platform with
two latest quad-core CPUs. On both platforms, the
processor utilization of CellNPDP is larger than 60%,
which demonstrates that our optimizations and
CellNPDP can be architecture-independent. Compared
to the state-of-the-art fully optimized algorithm on the
CPU platform, CellNPDP is 44-fold faster for single-
precision and 28-fold faster for double-precision, which
is a significant improvement to NPDP.

Keywords-Bioinformatics, Zuker algorithm, nonserial
polyadic dynamic programming, Cell processor, multi-core,
SIMD

I. INTRODUCTION
YNAMIC programming (DP), which aims to find an
optimal solution among many potential ones, is an

effective technique for many search and optimization
problems, e.g., inventory management, scheduling and
packaging. However, the high arithmetic complexity
limits its extensive use. Modern computer

architectures with multiple cores and SIMD (single
instruction multiple data) instructions provide
increasingly high computing power to perform DP. To
improve DP with modern computers, Grama et al. [13]
classified DP into four classes: serial monadic DP
(SMDP), serial polyadic DP (SPDP), nonserial
monadic DP (NMDP) and nonserial polyadic DP
(NPDP). In this classification, the terms serial and
monadic correspond to uniform data dependences.
This kind of DP has been well studied and optimized
[19, 20]. The term nonserial polyadic stands for
another family of DP with nonuniform data
dependences, which is more difficult to be optimized.
The applications of NPDP include optimal matrix
parenthesization problem, binary search tree, Zuker
algorithm [17], etc. In this paper, we focus on the
NPDP in the Zuker algorithm. Zuker is an important
bioinformatics algorithm for predicting RNA
secondary structure. It searches an optimal structure
with a minimal free energy.

Recently, there are continuing efforts [7, 24, 25, 26]
to improve NPDP on modern multi-core processors.
These works demonstrate that the optimizations of
tiling (or blocking), helper threading and
parallelization can significantly improve NPDP. In
spite of the significant performance improvement,
these works still largely underutilize modern multi-
core processors. Firstly, they all focus on
homogeneous processors with cache systems. NPDP
on heterogeneous processors or on processors without
cache systems has not been studied yet. Second, SIMD
capability, which becomes increasingly important to
modern processor architectures, is almost all wasted.
Third, the parallel performance is not good enough,
which still underutilizes the multiple cores on modern
processors. Consequently, the processor utilization of
the state-of-the-art fully optimized algorithm [26] is
less than 4% (please refer to Section VI-C for details).

To further improve NPDP, we take a well-known
heterogeneous multi-core architecture, the Cell

D

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.186

459

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.186

455

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.186

455

Broadband Engine [6], as the processor platform and
identify the optimizations which make NPDP highly
efficient on modern multi-core processors. Our main
contributions are:

1. A new data layout which significantly improves
the utilization of the on-chip memory system.

2. A two-tiered NPDP algorithm CellNPDP. The
first tier targets the SPE (a co-processor on the
Cell processor) procedure and efficiently utilizes
the instruction pipelines and SIMD instructions to
compute a block of data which can fit into one
SPE’s local store. The second tier is a parallel
procedure which enables all SPEs to efficiently
compute all blocks of data.

3. Performance modeling and experiments to
evaluate CellNPDP. The performance model
reveals that the processor utilization of NPDP can
be independent of the problem size. Experimental
results show that CellNPDP is highly efficient on
modern multi-core processors. To the best of our
knowledge, no Cell implementation of NPDP has
been published. So we compare CellNPDP to the
state-of-the-art fully optimized algorithm on the
same CPU platform. On average, CellNPDP is
44-fold faster for single-precision and 28-fold
faster for double-precision, which significantly
improves NPDP.

The rest of the paper is organized as follows.
Section II introduces the background and related work.
Section III presents an improved data layout. Section
IV presents CellNPDP. Section V evaluates CellNPDP
through performance modeling. Section VI empirically
evaluates CellNPDP. Finally, we conclude this paper
in Section VII.

II. BACKGROUND AND RELATED WORK

A. Background
In this subsection, we introduce the NPDP in the

Zuker algorithm [17]. Figure 1 shows the flowchart,
where n is the problem size. This algorithm
corresponds to a three-level loop, with algorithmic
complexity n3/6. Given the problem size 12, Figure 2
shows an example of NPDP, where the gray nodes are
used to compute the black node step by step and each
two nodes used in one step are linked with a line in
Figure 2. According to Figures 1 and 2, we find two
features of NPDP. First, the logical structure is
triangular. Second, the data dependences are

nonuniform. Each data directly or indirectly depends
on the data on its left side or below it. For example,
given three data A, B and C in Figure 2, data A directly
depends on data B while data B directly depends on
data C. This also means that A indirectly depends on
C.

B. Related Work
The previous works of optimizing DP can be

classified into three categories. The first category [2, 9,
11, 15, 18] focuses on reducing the time complexity
and communication overhead with different theoretical
parallel models. The second category [1, 4, 10, 22, 23]
focuses on the performance on distributed systems,
where the communication overhead cannot be
neglected. The third category [7, 24, 25, 26] focuses
on the performance on modern multi-core processors.
Modern multi-core processors with SIMD instructions
can provide a level of performance that was formerly
possible only on supercomputer and clusters. As this
paper focuses on the performance of NPDP on modern
multi-core processors, we next review works targeting
these processors in more detail.

To improve the performance of NPDP on the multi-
core processors with shared cache, Tan et al. [24, 25,
26] first designed a tiling approach to improve the
cache reuse and leveraged the helper threads to hide
the cache miss latency. Next they designed a parallel
algorithm which performs NPDP step by step. In each
step, a block of data which can fit into the shared
cache is computed by all cores in parallel. Chowdhury
et al. [7] further designed a cache-efficient algorithm,
which develops a tiling sequence to improve the
performance on the multi-core processors with
different types of cache systems.

Although these works can achieve a significant
performance improvement, they still largely
underutilize modern multi-core processors. First,
SIMD capability is almost not utilized at all. Note that
SIMD becomes increasingly important to boost the
computing power of modern processors. Second, when
all cores are used, the parallel efficiency is less than
60%, indicating that there is still underutilization of
the multiple cores on modern processors. Third, they
focus on the homogeneous multi-core processors with
cache systems. The performance of NPDP on
heterogeneous processors or on processors without
cache systems has not been studied yet.

460456456

Figure 1. Original flowchart of NPDP

Figure 2. An example of NPDP

Figure 3. Architecture of the Cell processor

C. Cell Processor
The Cell processor is a well-known heterogeneous

multi-core processor with SIMD capability. It can
execute 200G 32-bit operations per second. Many
recent studies [3, 5, 8, 12, 16, 21, 27] show that the
Cell processor is effective to improve many algorithms

and applications.

4(a): The data of NPDP after tiling. The rows in each block are not adjacent
to each other in memory space.

 4(b): Flowchart of NPDP after tiling
Figure 4. The tiling approach proposed by the previous works

As shown in Figure 3, the Cell processor consists of
one general-purpose PowerPC processing element
called PPE and eight special-purpose synergistic
processor elements called SPEs. The PPE runs the
operating system and provides the SPE threads
control. The SPEs [14] provide the bulk of the
application performance. Each SPE is a 128-bit
processor, where each instruction can execute four 32-
bit operations or two 64-bit operations simultaneously.
It has 128 128-bit wide registers and two instruction
pipelines capable of different instruction types. When
the instruction types do not match, the two instructions
aligned in a fetch group cannot be dual-issued. Instead
of cache systems, each SPE has its own 256KB local
store which holds both instructions and data. The load
and store instructions can only access the data in the
local store. The transfers between the local store and
main memory, as well as the transfers between
different local stores, are performed through
asynchronous DMA (direct memory access)
commands. The peak memory bandwidth is up to

for (j=0; j<n; j=j+1)
 for (i=j-1; i>-1; i=i-1)

for (k=i; k<j; k=k+1)
d[i][j]=min(d[i][j], d[i][k]+d[k][j])

AB

C

j

i

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

Element Interconnect Bus 200GB/SPPE+
Cache

Memory

SPU

LS

Cell Processor

25.6GB/s

for (j=0; j<m; j=j+1)
 for (i=j; i>-1; i=i-1)
 for (k=i+1; k<j-1; k=k+1)
 Compute block(i,j) with block(i,k) and block(k,j)
 Compute block(i,j) with block(i,i) and block(j,j)

B(0,0) B(0,1) B(0,m-1)

B(1,0) B(1,m-1)

B(m-1,m-1)

461457457

25.6GB/s.

Figure 5. The new data layout of NPDP. Each memory block is a square
block whose data are stored sequentially in memory space. Triangular
block can be padded into square block.

6(a): Memory blocks and computing blocks. The size of each data is 32-
bit.

 6(b): SIMD instructions of one step for a computing block and the
corresponding dependence graph
Figure 6. Computing blocks and SIMD implementation.

III. DATA LAYOUT
In order to efficiently utilize the Cell processor, we

first investigate the data layout. As the logical
structure of NPDP is triangular, almost all previous
works [7, 24, 25, 26] use a row-major triangular
matrix to store the data, as shown in Figure 2. Given
the original flowchart in Figure 1, we find two
problems of this data layout. First, given the innermost
loop, ‘d[k][j]’ corresponds to discrete memory
accesses with non-uniform address intervals because
the row-major triangular matrix has non-uniform row
sizes. This kind of accesses can be viewed as poor
spatial data locality. Second, when the data of NPDP
are large, the temporal data locality will be poor. For
example, each iteration of the outermost loop
computes a column of the data. To compute the jth
column, all data on the left of the jth column will be
used. These data will be reused for computing the
(j+1)th column. However, when these data are too large
to fit into the cache or local store, they have to be
fetched from main memory when reusing them. In the
previous works, Tan et al. [24, 25, 26] and Chowdhury
et al. [7] have demonstrated that the tiling approach
can dramatically improve the cache reuse as well as
the performance of NPDP.

To efficiently utilize the local stores on the Cell
processor, we propose to leverage the tiling approach.
However, as this approach does not change the data
layout in memory, it cannot efficiently utilize the
memory bandwidth. Figure 4 shows an example of the
tiling approach. When computing the block (0,m-1),
according to the flowchart in Figure 4(b), we use the

BLOCK(0,0) BLOCK(0,1)

BLOCK(1,1) BLOCK(m,m)

BLOCK(1,m-1)

BLOCK(0,m-1)BLOCK(0,1)BLOCK(0,0)

BLOCK(1,1)

BLOCK(m-1,m-1)

Continuous main memory space

Compuing block A

C[4]

C[1]
C[2]
C[3]

B[4]

B[1]
B[2]
B[3]

A

B

C

Compuing block C

Compuing block B

Memory Block(0,m-1)Memory Block(0,1)

Memory Block(1,m-1)

V3=LOAD(A[1]) V4=SHUFFLE(A[1, 1])V2=LOAD(B[1])V1=LOAD(C[1])

V5=ADD(A[1, 1] , B[1]) V6=CMP(V1, V5) V7=SEL(V1, V5, V6) C[1]=STORE(V7)

462458458

blocks (0,1) and (1,m-1) in the first step, and then use
the blocks (0,2) and (2,m-1) in the next step. In one
step, the blocks used in the next step can be prefetched
into the local store. As the rows in each block are not
adjacent to each other in memory, we have to use a
number of DMA commands to prefetch each row into
the local store. We note that the efficiency of DMA
depends on the size of each DMA transfer. To
maximize the size of each DMA transfer, we design a
new data layout for NPDP, where each block of data is
stored sequentially in memory as shown in Figure 5.
With this layout we can achieve the optimal memory
performance.

The remaining problem is how to determine the
shape and the size of each block. We do not use
rectangular blocks but only use square blocks, because
the reuse of the local store is determined by the
smaller one of the block length and width. We
determine the block size according to the size of the
local store. There should be at least six buffers in the
local store, where three buffers are used in the current
step and the other buffers are used to prefetch the
blocks for the next step. Therefore, the block size
should not exceed 1/6 of the local store size. Note that,
the local store also holds instructions.

As the new data layout focuses on efficiently
utilizing the on-chip memory system, in what follows
we refer to blocks in the new data layout as memory
blocks.

IV. CELLNPDP ALGORITHM
In this section, we present our CellNPDP algorithm.

According to the architecture of the Cell processor, we
devise the algorithm with two tiers. The first tier is a
SPE procedure which efficiently computes a memory
block on a SPE. The second tier is a parallel procedure
which enables all SPEs to efficiently compute all
memory blocks.

A. SPE Procedure
To maximize the reuse of the local store, in

CellNPDP, one SPE only computes a memory block
each time. According to Section II-A, a memory block
depends on the blocks on its left side and below it. For
example, the memory block (0,m-1) in Figure 4(a)
directly depends on the memory blocks on the 0th row
and (m-1)th column. Besides, as a memory block

contains multiple data, there are dependences between
these data. We call these kinds of dependences inner
dependences of the block. According to Figure 1, there
are strong dependences to compute a data, which
results in low ILP (instruction-level parallelism) and
low DLP (data-level parallelism). To improve the ILP
and DLP, we should compute several independent data
simultaneously. The challenge is the inner
dependences. To minimize the impact of the inner
dependences on the ILP and DLP, we propose to
divide each memory block into a number of much
smaller square blocks named computing blocks, as
shown in Figure 6(a). As each register on the SPEs is
128-bit wide, we design the computing block with four
128-bit rows (given that the data size is 32-bit). Each
128-bit row is used to fully utilize the 128-bit wide
SIMD capability and the four rows are used to fully
utilize the instruction pipelines. The computing blocks
still have the problem of inner dependences because a
block also contains multiple data. However, the
computing power wasted due to the inner dependences
is trivial because the computing blocks are small. Here
we’d like to point out that there are triangular
computing blocks because the logical structure of
NPDP is triangular. We can pad them into square
blocks. The overhead of padding is also trivial.

Next we study how to compute all computing blocks
in a memory block according to the various data
dependences. First, each computing block depends on
the computing blocks in the dependent memory
blocks. For example, the black block C in Figure 6(a)
depends on the gray blocks. Second, there are
dependences between the computing blocks in the
same memory block and each computing block has
inner dependences. Therefore, we use two stages to
compute a memory block. The first stage does not
consider the inner dependences of the memory block.
The second stage computes the computing blocks one
by one, where the blocks on the left side and closer to
the bottom are computed earlier. For each computing
block, we first compute it with the dependent
computing blocks in the same memory block and next
use the original flowchart in Figure 1 to process its
inner dependences.

Now we study the SIMD implementation. We first
introduce the SIMD instructions used. According to
Figure 1, there are three kinds of operations: memory,
minimum and add. The memory instructions used

463459459

include load, store and shuffle. They are used for the
data transfer between the local store and the registers.
As the SPEs do not have the minimum instruction, we
first use the compare instruction to mark the minimum
values in the two registers and then use the select
instruction to pick out the minimum values. With
regard to the add operation, we use the add instruction.
Here we’d like to point out that these SIMD
instructions are not unique to the Cell SPEs [28].
VMX [29] and SSE [30] instruction sets also provide
similar instructions. Next we design the SIMD
procedure. Let’s study an example. As shown in
Figure 6(a), we want to compute the computing block
C with blocks A and B, where each block is a 4*4
matrix and each data is 32–bit wide. As each row is
128-bit wide, we compute the four values in each row
of C simultaneously. Let’s investigate the first row
C[1] of C. It depends on the first row A[1] of A and the
entire matrix of B. There are four steps to compute
C[1], where each step uses one value in A[1] and the
corresponding row in B. For example, the first step is
formulated as C[1]=min(C[1], <A[1][1],A[1][1],
A[1][1],A[1][1]> + B[1]), where A[1][1] means the
first value in A[1], and <A[1][1],
A[1][1],A[1][1],A[1][1]> means a four-value vector.
The SIMD procedure of this step is as follows:

1. Load C1 into a register V1: V1=load(C1)
2. Load B1 into a register V2: V2=load(B1)
3. Load A1 into a register V3: V3=load(A1)
4. Set all values in a register V4 to A11:

V4=shuffle(V3, mask)
5. Add V2 and V4 to a register V5: V5=add(V2,V4)
6. Compare V1 and V5 to a register V6:

V6=compare(V1, V5)
7. Select minimum values from V1 and V5,

according to V6: V7=select(V1,V5,V6)
8. Write V7 into C1: Store(V7, C1)

TABLE I

CHARACTERIZATION OF THE SIMD INSTRUCTIONS USED FOR
COMPUTING A COMPUTING BLOCK WITH TWO BLOCKS. DATA TYPE IS

SINGLE-PRECISION FLOATING-POINT.

Instruction Execution
number

Latency
(cycles)

Pipeline
type

Load 12 6 1
Shuffle 16 4 1

Add 16 6 0

Compare 16 2 0
Select 16 2 0
Store 4 6 1

Figure 7. Scheduling blocks and task dependence graph

Figure 8. Flowchart of CellNPDP

In sum, there are 16 steps to compute the block C
with the blocks A and B, where 16*8=128 SIMD
instructions are executed. We find that we can utilize
the registers to reduce the SIMD instructions. During
the 16 steps, there are multiple times of data transfer
between the registers and the blocks A, B and C. After
buffering these blocks in 12 registers, we can save 48

Memory Block

Computing Block

Scheduling Blocks

Subroutine: PPEprocedure
(1) Initialize the task dependence graph and task queue
(2) While there are unfinished tasks
(3) Assign the ready tasks in the task queue to SPEs
(4) Receive finished tasks from SPEs
(5) Notify the tasks according to the finished tasks and

then insert the ready tasks into the task queue

Subroutine: SPEprocedure
(6) While there are unfinished tasks
(7) Fetch a ready task T from the PPE
(8) For each memory block MB in the scheduling block

corresponding to T
(9) Compute MB without considering the inner

dependences
(10) For each computing block CB in MB
(11) Compute CB according to the other

computing blocks in MB
(12) Process the inner dependences of CB with

the original code in Figure 1
(13) Send T to the PPE

464460460

memory instructions. At last, only 80 SIMD
instructions are executed.

Finally, we study how to explore the ILP. Table 1
characterizes the 80 SIMD instructions for a
computing block with two blocks. As there are
independent instructions in Figure 6(b) and the
procedure of computing each row of a computing
block is independent, we can hide the high instruction
latency through mixing the execution of the 16 steps.
However, we cannot achieve the ideal pipeline
utilization because the pipeline type restriction results
in more instructions executed by the pipeline 0, as
shown in Table 1. We also note a problem that the first
instruction executed by the pipeline 0 must be 10
cycles later than that of the pipeline 1, because of the
data dependence and instruction latency. To fully
utilize the pipelines, we develop an approach of
software pipelining to hide the 10-cycle latency. At
last, it takes only 54 cycles to execute the 80 SIMD
instructions.

B. Parallel Procedure
To efficiently utilize all SPEs, we use a task queue

model which dynamically schedules the computation
of all memory blocks among SPEs. As introduced in
Section IV-A, each SPE computes a memory block
each time. Thus each task contains at least one
memory block. When the problem size of NPDP gets
bigger or the local stores get smaller (there may be
other multi-core or many-core processors with smaller
local stores in future), there will be more memory
blocks. To reduce the overhead of task scheduling, we
use the scheduling blocks each of which is a square of
memory blocks. When executing a task on a SPE, the
SPE computes the memory blocks in the
corresponding scheduling block one by one, where the
memory blocks on the left side and closer to the
bottom are computed earlier.

As there are dependences between the memory
blocks, there are also dependences between the
scheduling blocks. Therefore, the task queue model
should guarantee that the task of a scheduling block is
not scheduled until the computation of all dependent
scheduling blocks is finished. To further reduce the
overhead of task scheduling, we build a simplified
dependence graph, where a task depends on at most
two tasks: the nearest task on its left side and blow it
respectively. For example, Figure 7 shows the task
dependence graph corresponding to Figure 4(a). In the

parallel execution, when a task is finished, the two
tasks depending on it will be notified. When a task has
been notified twice, it becomes ready for scheduling
and will be inserted into the task queue.

TABLE II
PERFORMANCE ON THE IBM QS20 CELL BLADE. TIME SECONDS

Problem size 4,096 8,192 16,384

Single-
precision

original
algorithm

one PPE 715 21961 187,945
one SPE 3,061 24,588 198,432

CellNPDP (16 SPEs) 0.22 1.77 13.90

Double-
precision

original
algorithm

one PPE 1015 27821 241,759
one SPE 5,096 40,752 327,276

CellNPDP (16 SPEs) 4.41 34.54 389.15

TABLE III

PERFORMANCE ON THE 8-CORE CPU PLATFORM. TIME SECONDS
Problem size 4,096 8,192 16,384

Single-
precision

original algorithm 108.01 1041.1 11021
CellNPDP (8 cores) 0.43 3.25 25.56

Double-
precision

original algorithm 119.79 1234.3 13624
CellNPDP (8 cores) 0.8159 6.185 48.170

C. Putting It All Together: CellNPDP Algorithm
Incorporating the two procedures, we construct

CellNPDP, an efficient NPDP algorithm on the Cell
processor. Figure 8 shows its flowchart. The
subroutine PPEprocedure is executed by the PPE. It
manages the task queue. The subroutine SPEprocedure
is executed by each SPE. It executes the ready tasks
one by one. There are three levels of blocking
implemented. The first level is the scheduling block
which reduces the overhead of task scheduling. The
second level is the memory block which efficiently
utilizes the on-chip memory system. Note that we have
used asynchronous DMA commands in Steps from 8
through 12. The third level is the computing block
which efficiently utilizes the instruction pipelines and
SIMD capability. Note that, the steps 9 and 11 have
been accelerated using SIMD instructions.

V. PERFORMANCE MODELING

In this section, we will answer the following two
questions through performance modeling:

1. Which architecture features limit the efficiency of
CellNPDP?

2. Does the efficiency of CellNPDP depend on the
problem size of NPDP?

Due to the efficiency of the task queue model,
CellNPDP can keep load balance and low overhead in

465461461

parallel execution. Thus the parallel performance of
CellNPDP can be viewed as the ideal. As the size of
the computing blocks is small, the overhead due to the
inner dependences can be neglected. Therefore, we can
use the fully optimized memory performance and
computing performance to estimate the performance of
CellNPDP.

The memory performance depends on the local store
size and the memory bandwidth. As presented in
Section II, the memory block should not exceed 1/6 of
the local store. Given the local store size LS, the
maximum side length of the memory blocks is

S
LN S

*62 = , where S is the size of each data. Given

the problem size N1, each row has at most
2

1
N
N

memory blocks. Given a memory block with index
(j,i), it depends on (j-i)*2 memory blocks. To compute
this memory block, we need to fetch (j-i)*2 memory
blocks into the local store. In sum, the total number of
the memory blocks fetched into the local stores is

3
2

3
1

1 1 *3
)(2

2

1

N
Nij

N
N

j

j

i
≈−∑∑

= =
 , with the total size

2

3
1

*3
*
N

SN . On

the other hand, the write into main memory can be
neglected because each memory block is written into
main memory only once. Therefore, the memory time

is

S
LB

SNT
S

M

*6
**3

*3
1≈ , where B is the memory

bandwidth.
Next we study the computing time. Given that each

computing block is an N3*N3 square, each row has at

most
3

1

N
N computing blocks. In sum, there are about

3
3

3
1

*6 N
N times to compute all computing blocks. Each

time, we use two computing blocks to compute a
computing block. Therefore, the overall computing

time is
N

C
C CfN

CNT
**

*
3
3

3
1≈ , when CC is the number of

cycles to compute a computing block each time, f is
the frequency of the processor and CN is the number of
cores.

The execution time of CellNPDP is
),max(CMAll TTT = . To fully utilize the computing

power, we should guarantee CM TT ≤ . In this case we

derive the constraint
C

N
S C

CfSNLB ***
3
6

2/33
3≥ .

This formula indicates that the efficiency of CellNPDP
depends on the memory system and is more sensitive
to the memory bandwidth. The processor utilization of

CellNPDP is),1min(*
*
**

M

C
C

All

CC
All T

TU
fT
UfTU == , where

UC means the processor utilization of computing one
computing block with two computing blocks. As both

TM and TC have the factor of N1
3,

M

C

T
T is independent

to N1. Therefore, the efficiency of CellNPDP is
independent of the problem size of NPDP. To the best
of our knowledge, this is the first work revealing that
the efficiency of NPDP can be independent of the
problem size on modern multi-core processors.

VI. EXPERIMENTAL EVALUATION
To empirically evaluate CellNPDP, we use two

platforms: an IBM QS20 dual-Cell blade and a CPU
platform with two quad-core Nehalem processors. On
the two platforms, the processor utilization of
CellNPDP is larger than 60%, which demonstrates the
high efficiency of CellNPDP on modern multi-core
processors. Tables 2 and 3 show the performance of
the original NPDP algorithm in Figure 1 and
CellNPDP on the two platforms. To the best of our
knowledge, there is no available Cell implementation
of NPDP. Therefore, we only use the CPU platform to
compare CellNPDP to the state-of-the-art algorithm
proposed by Tan et al. [26] (denoted as TanNPDP).
The code of the algorithm is provided by the authors.
It is a fully optimized implementation with
optimizations including tiling, helper threading and
parallelization. In the following context, we first
evaluate the impact of each kind of optimizations,
including the new data layout (denoted as NDL), SPE
procedure (denoted as SPEP) and parallel procedure
(denoted as PARP) on the two platforms. Next we
compare CellNPDP to TanNPDP on the CPU
platform. Finally, we evaluate the performance of
CellNPDP given that the local stores get smaller.

A. Performance Anatomy on the Cell Processor
On the Cell processor, we set the memory block size

to 32KB which is smaller than 1/6 of the local store
size, because the local stores also hold instructions. In

466462462

the following context, we first evaluate the
performance with the single-precision floating-point
(SPFP) data in Sections from VI-A. The baseline here
is the original algorithm on one SPE, where each
DMA command prefetches multiple data in one row or
a data in one column.

1) Impact of the new data layout: As the new data

layout can improve the data reuse, it significantly
reduces the data transfer between the processor and
main memory, as shown in Figure 9(a). Besides, it
improves the efficiency of DMA transfers. As a result,
it significantly improves the performance, as shown in
Figure 10(a). On average, there is a 31.6-fold speedup.

2) Impact of the SPE procedure: As shown in
Figure 10(a), the SPE procedure further provides a 28-
fold speedup on average. Although one SIMD
instruction can only execute 4 SPFP operations, the
speedup achieved is much higher. This is because the

SPE procedure not only efficiently utilizes the SIMD
instructions but also significantly improves the ILP.
Moreover, the use of the computing blocks also
reduces the number of loop iterations and
consequently reduces the overhead of branch
instructions.

3) Impact of the parallel procedure: As shown in
Figure 10(a), the parallel procedure achieves a good
scaling performance with the number of SPEs. When
using 16 SPEs, there is a 15.7-fold speedup on
average. This result demonstrates the high efficiency
of our task queue model.

4) Processor utilization: Next we evaluate the
processor utilization of CellNPDP. When using 16
SPEs, CellNPDP can execute 80 scalar instructions
per cycle (A useful 32-bit operation is counted as a
scalar instruction. The redundant operations for
padding are neglected). As the Cell blade can execute
128 scalar instructions per cycle, the processor
utilization is up to 62.5%.

9(a): Data transfer amount on the IBM QS20 Cell blade

9(b): Data transfer amount on 8-core CPU platform

Figure 9. The amount of data transfer between processors and main memory. The data type is single-precision floating-point

10(a): Speedup on the IBM QS20 Cell blade

10(b): Speedup on the 8-core CPU platform

Figure 10. Performance speedup with the single-precision floating-point data

467463463

5) Performance with double-precision floating-
point data: Now we evaluate the performance with the
double-precision floating-point (DPFP) data. As
shown in Figure 11(a), CellNPDP also significantly
improves the performance of NPDP. We note that the
performance of CellNPDP in Figure 11(a) is much
worse than that in Figure 10(a). This is because of
three facts. First, one SIMD instruction can execute
only two DPFP operations simultaneously. Second, the
latency of the DPFP instructions is 13 cycles, which is
much bigger than the latency of the SPFP instructions.
Third, the DPFP instructions have 6 cycles of stall,
which means there are at least 6 cycles between a
DPFP instruction and the successive instruction on the
same pipeline. We also note that CellNPDP achieves
lower speedup when the problem size is 16K. This is
because the 1GB main memory on the Cell blade
cannot hold the operating system and the 1GB data at
the same time.

B. Performance Anatomy on the CPU Platform
On the CPU, we also set the memory block size to

32KB because the results in Section VI-A show that
this size can achieve good enough performance. In the
SPE procedure, there are also 80 SIMD instructions to
compute a computing block with two computing
blocks. We do not implement the software pipelining
approach in the SPE procedure because the Nehalem
processor does not have the pipeline type restriction.
In the parallel procedure, all cores cooperatively
manage the task queue.

1) Impact of the new data layout: As shown in
Figures 9(b) and 10(b), the new data layout also
significantly reduces the data transfer between the
CPU and main memory and consequently significantly
improves the performance. On average, there is a 7.14-
fold performance speedup. Comparing Figures 9(a)
and 9(b), we can see that the amount of original data
transfer is higher on the CPU platform. This is because
the size of each data transfer on the CPU platform is
larger (64 bytes, a cache line). In contrast, the original
algorithm can achieve much higher memory
bandwidth on the CPU platform. As a result, the
original performance is better and the speedup of the
new data layout is lower on the CPU platform, as
shown in Tables 2 and 3 and Figure 10.

2) Impact of the SPE procedure: As shown in
Figure 10(b), the SPE procedure further provides a
5.28-fold speedup on average. This speedup is much
smaller than the speedup on the Cell processor because
the Nehalem processor does not have pipeline type
restriction and the out-of-order superscalar architecture

can dynamically hide the latency of the SPFP
instructions.

3) Impact of the parallel procedure: As shown in
Figure 10(b), the parallel procedure also achieves a
good parallel performance on the CPU. When using 8
cores, there is a 7.22-fold speedup on average.

4) Processor utilization: Different from SPEs,
Nehalem is not a SIMD processor. Each core on
Nehalem is a 4-issue out-of-order superscalar core
which can execute four 128-bit operations each cycle
in the ideal case. In other word, the CPU platform can
execute 128 32-bit operations per cycle.

Each instruction on Nehalem consists of several
operations. For example, when computing a
computing block with two computing blocks, the 80
SIMD instructions will be translated into 160
operations, where 64 operations compute the addresses
of memory operations and the remaining are 128-bit
operations. When using 8 cores, CellNPDP can
execute 78.8 32-bit operations per cycle. As a result,
the processor utilization is up to 61.6%. This result
demonstrates that CellNPDP is also highly efficient on
the homogeneous multi-core CPU architecture.

5) Performance with double-precision floating-
point data: Figure 11(b) shows that CellNPDP also
significantly improves the performance of NPDP when
the data are DPFP. We note that this performance is
much better than the corresponding performance on
the Cell blade because the double-precision
instructions on Nehalem do not have the cycles of
stall.

C. Comparison with the State-of-the-art fully
Optimized Algorithm

Figure 12 shows the performance of CellNPDP and
TanNPDP on the CPU platform when 8 cores are
used. On average, CellNPDP is 44-fold faster for
single-precision and 28-fold faster for double-
precision. This result also indicates that the processor
utilization of TanNPDP is less than 4%, which largely
underutilizes modern multi-core processors. Although
TanNPDP is an implementation optimized with tiling,
helper threading and parallelization, CellNPDP still
significantly outperforms it. This is because CellNPDP
fully exploits ILP, DLP and TLP (thread-level
parallelism) at the same time.

D. Performance with Smaller Local Store
In the end, we’d like to evaluate the impact of the

local store size on the performance of CellNPDP. As
the maximum size of memory blocks is linear to the

468464464

local store size, we evaluate this impact through
varying the memory block size. From Figure 13, we
can find that the performance of CellNPDP gets
poorer when the memory block size gets smaller. This
is because the smaller size leads to lower efficiency of
DMA transfers and more data transferred. Besides, the
smaller size leads to lower efficiency of the software
pipelining approach implemented in the SPE
procedure, which results in poorer ILP.

VII. CONCLUSION
In this paper, we study the NPDP problem on

modern multi-core processors. Although the previous
works have achieved a significant performance
improvement, they still largely underutilize modern
processors. To make NPDP really efficient on modern
processors, we design the new data layout and devise

the two-tiered CellNPDP algorithm. The experimental
results show that CellNPDP significantly improves the
performance of NPDP and can achieve the processor
utilization larger than 60%. The experiences of this
paper demonstrate that, through carefully designing
the data layout and the algorithm implementation,
NPDP can efficiently utilize the instruction pipelines,
SIMD capability and multiple cores on modern
processors.

ACKNOWLEDGEMENT

We would like to thank H. Peter Hofstee for
improving this paper and Guangming Tan for
providing us the source code of TanNPDP.

This work is supported by National High-Tech R&D
(863) Program of China (2010AA012301,
2010AA012302), Natural Science Foundation of

11(a): Speedup on the IBM QS20 Cell blade

11(b): Speedup on the 8-core CPU platform

Figure 11. Performance speedup with the double-precision floating-point data

12(a): Execution time with single-precision floating-point data

12(b): Execution time with double-precision floating-point data

Figure 12. Performance of CellNPDP and TanNPDP (the state-of-the-art fully optimized algorithm) on the 8-core CPU platform. 8 cores are
used.

469465465

China (61040048), and Tsinghua National Laboratory
for Information Science and Technology (TNList)
Cross-discipline Foundation.

Figure 13. Performance of CellNPDP on the IBM QS20 Cell blade

with different sizes of memory blocks and different numbers of
SPEs. The baseline is the performance with 32KB memory block
size and one SPE. The problem size is 4K. The data are single-

precision floating-point.

REFERENCES
[1] F. Almeida, R. Andonov, and D. Gonzalez. Optimal tiling for

RNA base pairing problem. In Proc. SPAA, 2002.
[2] P.G. Bradford. Efficient parallel dynamic programming. In Proc.

Allerton Conf. on Communication, Control and Computing,
1992.

[3] G. Buehrer, S. Parthasarathy, and M. Goyder. Data mining on the
Cell Broadband Engine. In Proc. ICS, 2008.

[4] J. H. Chen, S. Y. Le, B.A. Shapiro, and J.V. Maizel. Optimization
of an RNA folding algorithm for parallel architectures. Parallel
Computing, 1998.

[5] S. Chellappa, F. Franchetti, and Markus Püschel. Computer
generation of fast Fourier transforms for the Cell Broadband
Engine. In Proc. ICS, 2009.

[6] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broadband
Engine architecture and its first implementation: A performance
view. IBM Journal of Research and Development, 2007.

[7] R. Chowdhury and V. Ramachandran. Cache-efficient dynamic
programming algorithms for multicores. In Proc. SPAA, 2008.

[8] K. Daloukas, C.D. Antonopoulos, and N.Bellas. Implementation
of a wide-angle lens distortion correction algorithm on the Cell
Broadband Engine, In Proc. ICS, 2009.

[9] P. Edmonds, E. Chu, and A. George. Dynamic programming on a

shared memory multiprocessor. Parallel Computing, 1993.
[10] I. H. M. Fekete, and P. Stadler. Prediction of RNA base pairing

possibilities for RNA secondary structure. Biopolymers, 1990.
[11] Z. Galil, and K. Park. Parallel algorithm for dynamic

programming recurrences with more than O(1) dependency. In
Journal of Parallel and Distributed Computing, 1994.

[12] B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: high
performance sorting on the cell processor. In Proc. VLDB, 2007.

[13] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to
parallel computing. Addison Wesley, 2003.

[14] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y.
Watanabe, and T. Yamazaki. Synergistic processing in Cell's
multicore architecture. IEEE Micro, 2006.

[15] L. Guibas, H. Kung, and C. Thomson. Direct VLSI
implementation of combinatorial algorithms. In Proc. Caltech
Conf. VLSI, 1979.

[16] K.Z. Ibrahim, and F. Bodin. Implementing wilson-dirac operator
on the cell broadband engine”. In Proc. ICS, 2008.

[17] R.B. Lyngso, and M. Zuker. Fast evaluation of internal loops in
RNA secondary structure prediction. Bioinformatics, 1999.

[18] B. Louka, and M. Tchuente. Dynamic programming on two-
dimensional systolic arrays. Information Processing Letters,
1988.

[19] S. A. Manavski, and G. Valle. CUDA compatible GPU cards as
efficient hardware accelerator for smith-waterman sequence
alignment. BMC Bioinformatics, 2008.

[20] F. Sanchez, E. Salami, A. Ramirez, and M. Valero. Performance
analysis of sequence alignment applications. In Proc. IISWC,
2006.

[21] D. P. Scarpazza, and G. F. Russell. High-performance regular
expression scanning on the Cell/B.E. processor. In Proc. ICS,
2009.

[22] B.A. Shapiro, J.C. Wu, D. Bengali, and M.J. Potts. The massively
parallel genetic algorithm for RNA folding: MIMD
implementation and population variation. Bioinformatics, 2001.

[23] G. Tan, S. Feng, and N. Sun. Load balancing algorithm in cluster-
based RNA secondary structure prediction. In Proc. ISPDC 2005.

[24] G. Tan, S. Feng, and N. Sun. Locality and parallelism
optimization for dynamic programming algorithm in
bioinformatics. In Proc. SC, 2006.

[25] G. Tan, N. Sun, and G. R. Gao. A parallel dynamic programming
algorithm on a multi-core architecture. In Proc. SPAA 2007.

[26] G. Tan, N. Sun, and G. R. Gao. Improving performance of
dynamic programming via parallelism and locality on multicore
architectures. IEEE Transactions on Parallel and Distributed
Systems, 2009.

[27] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K.
Yelick. The potential of the cell processor for scientific
computing. In Proc. CF, 2006.

[28] IBM Corp. C/C++ language extensions for Cell Broadband
Engine architecture V2.5. CBEA JSRE Series, 2008.

[29] IBM Corp. PowerPC microprocessor family: Vector/SIMD
multimedia extension technology programming environments
manual.

[30] Intel Corp. IA-32 Intel architecture software developer's manual.

470466466

