
Parallel Mapping Approaches for GNUMAP

Nathan L. Clement∗, Mark J. Clement†, Quinn Snell† and W. Evan Johnson‡§

∗Department of Computer Science

University of Texas at Austin, Austin, TX 78712

Email: nathanlclement@gmail.com
†Department of Computer Science

Brigham Young University, Provo, UT 84602
‡Department of Statistics

Brigham Young University, Provo, UT, 84602
§Department of Oncological Sciences, Huntsman Cancer Institute

University of Utah, Salt Lake City, UT, 84105

Abstract—Mapping short next-generation reads to reference
genomes is an important element in SNP calling and expres-
sion studies. A major limitation to large-scale whole-genome
mapping is the large memory requirements for the algorithm
and the long run-time necessary for accurate studies. Several
parallel implementations have been performed to distribute
memory on different processors and to equally share the
processing requirements. These approaches are compared with
respect to their memory footprint, load balancing, and accu-
racy. When using MPI with multi-threading, linear speedup
can be achieved for up to 256 processors.

Keywords-next-generation sequencing; short-read mapping;
sequence mappers; parallel computing; biology computing

I. INTRODUCTION

Over the past 30 years, Sanger-type sequencing [1] has

been the standard technique for DNA sequencing. This

approach has enabled, among other things, the sequencing

of the first complete human genome sequence [2]. However,

recent developments in sequencing technologies have led to

a second generation of sequencing approaches, from Illu-

mina/Solexa, ABI/SOLiD, 454/Roche, and Helicos, which

currently produce gigabases sequence information during

each instrument run.

Next generation sequencing technologies promise to revo-

lutionize the field of biomedical research by producing large

volumes of sequence data for a reasonable price. However,

the size of the datasets generated are much larger and the

diverse nature of the dataset produced novel statistical and

computational challenges that must be overcome. One very

important problem facing researchers today is the identifica-

tion and characterization of single nucleotide polymorphisms

(SNPs). Researchers are often interested in identifying SNPs

that vary between one individual a reference genome, or

in comparing the sequence composition of two individuals,

strains or species at homologous or orthologous regions.

Researchers are most often interested in associating these

SNPs with disease or important phenotypes of interest, so the

accurate identification of these SNPs is extremely important.

When identifying SNPs, short reads 35-100 base pairs

in length are mapped to their best position in the human

genome. See Figure 1 for an example mapping. A rigorous

probabilistic approach to mapping repeat regions and reads

with lower quality scores can result in a significantly larger

number of mapped reads. This can lead to the identifica-

tion of regions of interest on the genome that otherwise

would have been overlooked—for example, mapping to the

large number of repetitive genomic elements in mammalian

genomes. This approach requires the algorithm to have the

entire genome in memory so that a read can be proportion-

ally mapped to all matching sites, and while it requires more

memory and processing time, it results in a more accurate

mapping [3].

In this paper, we explore several parallelization methods

to the GNUMAP algorithm that use multiple processors and

nodes to significantly decrease the overall time and memory

requirements. Similar approaches have been taken with com-

parable mapping environments (sequences of longer length

from the Roche 454 platform [4]) and mapping programs

(BWA, SOAP2, and Bowtie [5]). Because of the increase

attention to accuracy employed by the GNUMAP algorithm,

there are additional challenges. In this paper we discuss

several of these challenges, outlining those that have trivial

solutions or minimal noticeable effects, and presenting some

whose solutions are non-trivial or would require substantial

negative changes to the algorithm.

The following section presents a detailed overview of

the GNUMAP algorithm so that later descriptions of the

parallelization will make sense.

II. ALGORITHMIC DETAILS

Many mapping algorithms discard reads from repeat

regions and do not utilize quality scores once the base

has been “called.” GNUMAP provides a probabilistic ap-

proach that utilizes this additional information to provide

more accurate results from fewer costly sequencing runs.

Accurately mapping reads to repetitive genomic elements

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.184

434

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.184

430

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.184

430

45 50 55 60 65 70 75

G C T T A C C A A C G C A A G A C G T G C C C C A G C C G T G
G C T T A T T A A C C T A A A A A G

A A T G A A A A A A G T G T T C T A G G C G T C
G G T T A T T A A A G T T A G A A G T G T T C G

C G A C T A G T G T T T T A G C C G T G
T T A T T A A C G T A A G A G G T G T T C T A G T

G T G A A T T A A C G T A A G G T
G T C T A C C A G C G T A G G C T G T A T T A T A

A C C G T A A G A T G C G T G T T A G T C G T G
G T T T A C T A A A C T T A G A C G T G T
G T C T A T T G A C G T A A G A C A
G T T T A T T A A C G T A A G A C G T G C T
G T T T T T T A A G G T A A G A C T T G C

A T T A C C G T C A G A C G T C T T T T A G A C G
G T T T A T T A A C G T A A G A C A T G
G T T T A C T T A C G A C A G A C

T A A G A C G T G T G T T C G T C G T G
G C G C G C T T A A G T C G T T

G A C G T G T T T T C G C C C T G
G G T A A G A C G T G T T T T A G T C G T G

A C T A A T T A A C G T T G G A C G T G T C
C T T T A G C C G T G T T T T A G T T G T G

G A C G T A T T T C A G T C G T G
A C G T G C T T T A G T C G T G

G A A T A T T C A A G T A A G A C G T
G T T T T T T A A C G T A A G A C G T G T T T C A

Figure 1. A representation of the final results from the sequence mapping
process. Each of these 25 sequences were mapped to the reference genome,
shown at the bottom. Notice the probable SNP at position 56, where most
reads have a T instead of a C

is essential if next-generation sequencing is to be used to

draw valid biological conclusions. For example, a ChIP-

seq experiment attempts to accurately identify small DNA

regions interacting with a protein of interest. Binding motifs

often appear in or near the repeat regions [6] [7] that are

ignored by some mapping algorithms. Other applications

such as transcription mapping, alternative splicing analysis,

and miRNA identification may also suffer from inaccuracies

if repeat regions are ignored.

Several programs (RMAP[8], SeqMap[9], and ELAND)

have attempted to significantly speed up this mapping pro-

cess through creating a hash map to efficiently map reads

to the genome. Reads are broken into short, 9–15 base pair

segments and assigned a numerical value in the hash map

according to their sequence. The genome is then scanned and

the hashing function is used to find corresponding locations

for the genomic sequences in the read hash table. The reads

at these locations are then aligned with the genome until

either a match is found or the alignment is deemed too

insignificant to continue.

The GNUMAP algorithm effectively incorporates the base

uncertainty of the reads into mapping analysis using a

Probabilistic Needleman-Wunsch algorithm. The Probabilis-

tic Needleman-Wunsch was developed to improve upon the

common dynamic programming algorithm used for sequence

alignment to accurately use reads with lower confidence

values.

Care must be taken to develop an algorithm that can

accurately map millions of reads to the genome in a

reasonable amount of time. In the GNUMAP algorithm,

the genome is first hashed and then stored in a lookup

table rather than hashing the reads. This allows reads to

be accounted for in all of the duplicate genome sites.

Next, the reads are efficiently stored as a position-weight

matrix so that quality scores can be used when aligning the

read with genomic data. A Needleman-Wunsch alignment

algorithm is modified to use these matrices to score and

probabilistically align a read with the reference genome.

Figure II is a flowchart which shows the major steps of the

algorithm.

Step 1: Hashing and Storing the Genome

Hashing a large portion of the data allows for quick

data retrieval while still maintaining a reasonable amount

of memory use. GNUMAP creates a hash table from the

genome instead of the reads, allowing for the computation

of a probabilistic scoring scheme.

The entire genome is hashed based upon either a user-

supplied hash size or the default hash size of nine. A

larger hash size will tolerate fewer mismatches. For example,

in a 30bp read, a hash size of 9bp will guarantee that

the read is matched to every possible location while still

allowing for three mismatches. Larger hashes will require

more memory, but will also reduce the search space. The

amount of memory, B, required based on the number of

bases in the genome, s, and the mer-size of the hash, k, can

be computed as follows:

B = 4 ∗ (4k + s). (1)

For example, for a genome (s) of 200,000bp and a

mer-size (k) of 9, the total memory used (B) will be

4 ∗ (49 + 200,000) ≈ 2Mb of RAM.

Step 2: Processing the Reads

One of the novel approaches implemented by GNUMAP

lies in the data structure used for storing the reads. Instead

of storing the reads as simple sequences, or even sequences

with an attached probability as in the FASTQ format, each

sequence is stored as a position-weight matrix (PWM) (see

Table I for an example).

Raw data from the Solexa/Illumina platform are obtained

as either an intensity file or a probability file. From either of

these files, it is possible to compute a likelihood score for

any nucleotide of any position on any given read. There will

often be a lack of distinction between the most probable

and another base, such as the ambiguity between G and

T seen in position 3 of the PWM in Table I. Since each

read is stored in memory as a position-weight matrix, the

information included in each base call allows for the correct

mapping of a given sequence. Converting these bases to a

single probability score will result in the loss of information.

435431431

Figure 2. A flow-chart of the GNUMAP algorithm. First, the algorithm will incrementally find a k-mer piece in the consensus Solexa read. This k-mer
is used as an index into the hash table, producing a list of positions in the genome with the exact k-mer sequence. These locations are expanded to align
the same l nucleotides from the read to the genomic location. If the alignment score passes the user-defined threshold, the location is considered a hit, and
recorded on the genome for future output.

Step 3: Score Individual Matches

In order to match the reads to the reference genome, the

reads are first subjected to a quality filter, removing reads

with too many unknown bases. In order to pass GNUMAP’s

quality filter, a sequence (stored as a position-weight matrix)

must be able to obtain a positive score when aligned with its

own consensus sequence (the sequence created from using

only the most probable bases). Using this method, very

few reads are discarded by the quality filter (usually only

removing reads identified by the Solexa pipeline as having

an intensity of zero at each base).

A sliding window of size k is used to create a hash

value which can be used to find matching positions in

the reference genome. The matching genomic sequence is

then aligned to the read using the probabilistic Needleman-

Wunsch algorithm (see Table I).

The probabilistic Needleman-Wunsch score (PNWScore)

for read r and genomic sequence S at position i, j in the

dynamic programming matrix NW can be calculated as:

NWi,j = max

{

NWi−1,j−1 +
∑

k∈A,C,G,T
PWMk,j ∗ costk,Si

NWi−1,j + gapcost

NWi,j−1 + gapcost
(2)

given that costk,j is the cost of aligning the character at

position rj with the character k. For example, using the

PWM in Table I, the calculation of the score for position

3,3 in the dynamic programming matrix would be:

max

{

0.208 + 0.172 ∗ −1 + 0.136 ∗ 1 + 0.317 ∗ −1 + 0.375 ∗ −1

−1.792 + −2

−1.792 + −2

(3)

(For this example, a match yields a cost of 1, a mismatch

yields a cost of -1, and the cost for a gap is -2. This results

Table I
DP MATRIX FOR PROBABILISTIC NEEDLEMAN-WUNSCH.

j 0 1 2 3 4 5

PWM A 0.059 0.000 0.172 0.271 0.300

C 0.108 0.320 0.136 0.209 0.330

G 0.305 0.317 0.317 0.164 0.045

T 0.526 0.578 0.375 0.356 0.325

NW T T T T C

0 -2 -4 -6 -8 -10

T -2 0.052 -1.948 -3.948 -5.948 –7.984

T -4 -1.844 0.208 -1.792 -3.792 -5.792

C -6 -3.844 -1.792 -0.520 -2.448 -4.448

A -8 -5.844 -3.792 -2.374 -0.978 -2.978

C -10 -7.984 -5.792 -4.131 -2.774 -1.318

Aligning the genomic sequence TTCAC and read TTTTC,

with the optimal alignment shown in bold. Also notice

the PWM for the sequence, with several fairly ambiguous

positions (especially the final position, probably representing

a C, even though the probabilities for the C and T are nearly

equal).

in a cost of −0.520 which is stored at position 3,3 in the

dynamic programming matrix NW .

Step 4: Processing Scores

Once the read has been scored against all plausible

matches in the genome, a proportional share of this read will

be added to all the matching genomic locations . In order to

compute the hit score at a position in the reference genome, a

posterior probability for each read is computed. For a read r,

the algorithm first finds the n most plausible match locations

on the genome, M1 . . .Mn. These matches are scored using

436432432

the probabilistic Needleman-Wunch algorithm, to obtain the

scores Q1 . . . Qn. The value added to the genome G for each

read, r, obtained from each significant match location Mj ,

signified by GMj
, will then be

GMj
=

QMj

nMj
QMj

+
∑n

k 6=j nMk
QMk

, (4)

where nMk
is the number of times the sequence located at

position Mk appears in the genome.

When using this scoring method, the total score for each

sequence at a particular site in the genome is weighted

by its number of occurrences in the genome. If a given

sequence occurs frequently, the value added to a particular

matching site in the final output is down-weighted, removing

the bias that would occur if the match was added to all

repetitive regions in the genome. If, however, there are the

same number of duplicate reads as the number of times the

sequence is duplicated in the genome then a whole read

will be added to each of the duplicate locations in the final

output.

This scoring technique requires the hashing and storing

of the genome instead of the set of reads. Because the score

for a given read is not only calculated from its alignment

score but also by the number of occurrences of similar

regions in the genome, the genome must be scanned for

each read to fairly allocate the read across all matching sites.

Step 5: Create Output

After all the reads have been matched and scored on the

genome, two output files are created. The first file is in

SAM format and identifies the highest scoring match for

each read. The second file contains the genome in .SGR

or .SGREX (SGR-EXtended) format providing a genome-

wide base-pair resolution overview of the mapping results,

which can be viewed in the UCSC Genome Browser or

Affymetrix’s Integrated Genome Browser.

III. METHODS

In this section, two terms are used to identify differ-

ent architectures. A thread refers to a lightweight process

spawned within an instantiation of GNUMAP. A node

executes a stand-alone instance of GNUMAP that has no

shared memory with other instances.

Two major objects are routinely used by GNUMAP:

the genome and the seed index table. The genome object

includes both the compressed character reference genome

and the final numerical mapping results at each genomic

location. Once program setup has completed, the character

representation and seed-index table are read-only, whereas

the mapping results are read-write. On a single node, shared

memory access to either of these objects reduces data

duplication and memory requirements. Because of this, si-

multaneous genomic reads can be performed by any number

of processors, but a locking mutex prevents more than one

processor from performing writes.

A. Multi-Threading on a Single Machine

When using multiple threads on a single node, GNUMAP

employs a master-slave paradigm to efficiently handle a

large number of reads. Each thread is assigned a constant

number of reads from the sequence files. As a given thread

finishes its current workload, it obtains additional reads from

the sequence file until they have all been mapped. When

matching genomic locations are found, the thread will access

a shared genome object to store this information, and save

the read for later writing. Periodically, a master thread will

write this information to a file in SAM format.

Each step requires a certain amount of data sharing.

1) In the first step, care must be taken to avoid race

conditions in mapping DNA sequences. To control

this, one thread reads the data from the file and stores

it to a global array. All other threads use a semaphore

to determine which reads from the array they should

map. This sequential component of the algorithm can

limit the total speedup of the algorithm, but when each

thread is assigned a large enough number of reads, this

overhead is minimal.

2) In the second step of the computation, there is a race

condition if two threads write to the same location

in the genome object at the same time. If each read

is assumed to come from an equally-likely random

location in the genome, in theory there would not

need to be any control structures surrounding genome

writes. However, DNA from many next-generation

sequencing experiments originate from only a few

genomic locations, weakening this assumption. More-

over, as the genomic coverage in a specific location

grows higher, there is a greater chance for multiple

threads to be scoring reads at the same location. For

these reasons, each write to the genome is surrounded

by a locking mutex. Since the critical section for

assigning a read score to the genome is small, threads

do not spend a significant time waiting for genome

availability.

3) Two different output types are produced by

GNUMAP: an SGR (or SGREX—SGR-EXtended)

file, providing a genome-wide base-pair resolution

overview of the mapping results (such as SNP

locations or regions with many matches), and a SAM

file reporting matching locations for each read. The

second step of this computation described above is

used to create the SGR file, and the third to the SAM

file, in the following manner. After positive matches

are found, each thread stores information about this

match to a global list. Periodically during the mapping

process, a single thread will print all matches to an

output file. (This is also critical when using MPI to

437433433

reduce the memory footprint, which will be explained

in Section III-C.) To maintain data integrity, access to

this list is limited to a single thread, requiring locking

mutexes. Because it takes only a short amount of

time to store these mapping results, the amount of

time waiting for global list access is relatively short;

however, as the number of threads increase, this

access time can become a significant bottleneck (see

Section IV-A for a discussion of how many threads

is “too many”).

B. Employing MPI With Multi-Threading

When the entire Genome fits into the memory on a

single node, a simplistic MPI approach can further take

advantage of independence to significantly reduce the time

of computation.1

With multi-threading enabled on a single machine, it is

relatively simple to use MPI to split the work even further.

GNUMAP uses the open source OpenMPI library to perform

communication method calls, including starting individual

processes and syncing information across nodes. In a similar

manner to that taken by multi-threading on a single machine,

the reads are split among nodes and mapped independently.

To reduce the number of times synchronization must occur

among nodes, each sequence file is split into equal portions,

and the unique machine number assigned by OpenMPI

is used to determine which section of the file should be

mapped. In this manner, each node independently writes

SAM records to a separate file, with no extra communication

costs until the end. At the end of the mapping process, each

node performs a global sum on the genome object, which

is then printed out by a single node to a single file (along

with any sort of additional analyses).

C. Employing MPI to Reduce the Memory Footprint

The statistical rigor employed by GNUMAP limits the

mechanisms that can be used to reduce the memory foot-

print. Each character in the genome can feasibly be reduced

to 4 bits (four different nucleotides plus an ambiguity

character), decreasing the memory requirement by half, and

smart memory allocation can reduce the size of the k-mer

lookup table to a reasonable size (around 12GB). Other

algorithms have created structures that significantly reduce

this memory footprint [10], [11], [12]; however, nothing can

be done to compress the Genome object. To obtain the most

accurate final result, the posterior likelihood score for each

read mapped to the genome is added to the corresponding

genomic location. This requires at least single floating-point

precision, which is 4 bytes that cannot be compressed. Two

methods to avoid this are either increasing the number of

1The entire human genome together with lookup structures requires
approximately 12GB RAM; when doing SNP analysis, this requirement
increases to approximately 35GB.

positions stored at a given memory cell (“binning”), or post-

processing the reads in such a way that only a portion of

the genome is in memory at a time. Distributing memory

across MPI nodes can also reduce the memory footprint.

• Binning Internally, GNUMAP creates five floating

point arrays to represent the four nucleotides—A, C,

G, and T—and one ambiguity character. Determining

locations that are different from the reference genome

requires knowing what characters existed in the se-

quence data set at that location. If these are binned, then

a sequence of A’s, C’s, G’s, and T’s would appear all as

one nucleotide. In addition, GNUMAP uses a pairwise-

Hidden Markov Model (pair-HMM) to determine the

probability of each nucleotide matching to a specific

location and being represented by a distinct character.

Binning locations from these scores would discard the

information obtained from a pair-HMM, resulting in an

inability to call SNPs.

• Post-Processing Post-processing the reads requires

only a portion of the genome to be in memory at a

time, but this also has issues. GNUMAP’s probabilistic

algorithm assigns a score to all locations a given read

could match. Repetitive genomic regions and reads with

very similar alignment scores all need to be added to

the genome, requiring many entries for a single read.

Taking shortcuts to find an approximate answer would

decrease the accuracy. Accuracy is one of the major

motivating factors behind the creation of GNUMAP,

so this option is also undesirable.

• Memory Distribution A third alternative is to only

mildly compress the internal data structures, and in-

stead spread the reference genome and corresponding

memory accesses across independent nodes. While

this effectively solves the problem of high memory

requirements, maintaining consistency with the original

GNUMAP algorithm requires additional communica-

tion costs. In order to compute a posterior alignment

score consistent across the entire genome, the score

from an individual genomic region must be com-

bined with each other region. The specific algorithm

GNUMAP uses is described below.

Utilizing MPI, GNUMAP uses the following large-

memory algorithm for memory distribution (refer to Figure 3

for labels):

1 The MASTER_Node reads the genome and assigns

each SLAVE_Node its portion of the Genome.

2 Each SLAVE_Node hashes and stores its portion

of the Genome, allocating memory as if it were

only mapping to this single piece of the Genome.

3 In order, each SLAVE_Node performs the map-

ping of k reads (a subset of all those in a given

run).

3.1 Each SLAVE_Node divides the k reads among its

438434434

Processor Node

Thread

Thread

Thread

Thread

Thread

Thread

Thread
G

e
n

o
m

e
 S

e
c

ti
o

n

(I
n

c
lu

d
in

g
 H

a
s
h

 a
n

d

G
e

n
o

m
e

)
Reads

Read Denominator

Top Read Score

k

Figure 3. Pictorial representation of a single node of an MPI large-memory run. k reads are processed at a time, storing the needed information in the
Read Denominator and Top Read Score arrays. Individual nodes will communicate information at synchronization points.

Threads, and performs the Multi-Threading on

a Single Machine as described in Section III-A.

The numerator for the final score for a read is

the alignment score at that location divided by the

number of times it appeared in the genome. The

denominator is computed by summing together the

alignment scores across all the “good” matching

locations. (See [3] for a further description.) The

denominator is saved in the Read Denominator

array and the highest matching score in the Top

Read Score array.

3.2 Each SLAVE_Node performs an

MPI_REDUCE_ALL with a SUM on the Read

Denominator for k reads.

3.3 Each SLAVE_Node performs an

MPI_REDUCE_ALL with a MAX on the Top

Read Score for k reads.

3.4 Each SLAVE_Node uses the Read Denominator

to obtain the posterior score, and writes the SAM

output to a unique file for each read which is equal

to the value in Top Read Score.

4 Each SLAVE_Node performs any needed genomic

analysis (such as SNP identification), and prints the

Genome to separate sgr or sgrex file, thus reducing

the need for a semaphore.

IV. RESULTS

To evaluate performance, a subset of a 32,000,000 read

Illumina lane (short-read archive number NA20828, found

at http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=

viewer&m=data&s=viewer&run=ERR005645) was mapped

to the human genome. Each sequence from this data set are

54 bases in length, and are in fastq format (each nucleotide

in the sequence has an associated probability). It is difficult

to plot results for different parallelization approaches due

to the different problem sizes that are needed to expose

parallel artifacts. A comparison of these different problem

sizes was performed by plotting a relative speedup for

each algorithm. For the Multiple Processors algorithm, all

threads run on a single 32-processor node. The Multiple

Nodes and Large Memory experiments run on up to 32

nodes with 8 processors each for a total of 256 processors.

0
.0

5
0
.1

0
0
.2

0
0
.5

0
1
.0

0

Percent Time for Different Optimizations

Processors

or Nodes

%
 T

im
e

1 2 4 8 16 32

Multiple Processors

Multiple Nodes

Large Memory

Figure 4. Plots for the relative speedups for different optimizations. Note
that each axis is logged, so the straight line drawn in red shows perfect linear
speedup. Splitting the reads across multiple nodes achieves near-linear
speedup. Splitting the memory across multiple nodes can obtain nearly log-
linear speedup. Because of the high cost of thread synchronization, linear
speedup is not possible beyond 8 threads.

Figure 4 plots the relative percentage of time for different

number of processors instead of the absolute time in order to

compare the efficiency of all approaches fairly. Using Mul-

tiple Processors on a single node results in linear speedup

as long as 8 or fewer processors are used. Beyond this,

the synchronization costs overwhelm the parallel benefits.

439435435

When spreading the memory across multiple nodes—both

with shared memory and without—nearly linear speedup can

be achieved even with 32 nodes (256 processors). The Large

Memory program seems to perform slightly worse, until the

number of

A. Multi-Threading on a Single Machine

To determine the cost of synchronizing multiple threads,

we ran a test data set on a shared-memory machine with

32 processors2. Figure 4 shows an almost-perfectly linear

speedup until GNUMAP tries to use more than 8 threads,

after which the completion time does not decrease signif-

icantly. In this particular example, a single compute node

using 8 threads mapped 600k reads to human chromosome

1 in 564 seconds. The time for 10 threads was 478 seconds.

These results can only be obtained when using the GNU

g++ compiler. When compiling with the mpic++ compiler,

using multiple threads in fact takes longer than a single

thread. This is likely due to MPI communication libraries

that prevent multiple threads from executing simultaneously.

In Figure 5, the mpic++ experiments were performed with

a smaller problem size in order to diagnose the speedup

limitation. This is why they appear to take a shorter amount

of time.

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

Absolute Time for mpic++ and g++

Processors

T
im

e
 i
n
 s

e
c
o
n
d
s

1 2 4 8 16 32

mpic++

g++

Figure 5. Comparison between mpic++ and g++. mpic++ does not allow
more than one thread to be used, taking much longer if it does.

B. MPI With Multi-Threading

Because of the minimal number of synchronizations re-

quired when spreading the reads across multiple nodes,

approximately linear speedup can be seen with even 32

nodes (see Figure 6). For each of these runs, 1.2M sequences

2Intel Nehalem EX clocked at 1.86 GHz with 256 GB RAM

were aligned to the entire human genome. This took just

under an hour on only one node, and only 178 seconds on

32 nodes (256 processors)3. Clearly, when the memory and

hardware are available, this is the preferred option.

2
0

0
5

0
0

1
0

0
0

2
0

0
0

Absolute Time for MPI with Multi−Threading

Nodes
T

im
e

 i
n

 s
e

c
o

n
d

s

1 2 4 8 16 32

Figure 6. Absolute time for MPI with Multi-Threading. Linear speedup
is achieved even with 32 nodes (256 processors).

1) Memory Requirements: With the default settings,

GNUMAP requires 56 GB of RAM to map any number of

sequences to the human genome. To perform SNP compari-

son, this increases to 100GB of RAM. Since many machines

do not have this much memory, spreading the program across

different nodes provides an obvious alternative.

C. MPI to Reduce the Memory Footprint

Some installations may not have enough memory to fit the

entire genome on a single node. If there are multiple nodes

available, the genome can be divided into smaller sections

and processed independently. With only a few points of

communication, a global alignment score can be computed

for each read, completing the mapping process without any

reduction in accuracy.

In Figure 7, MPI was used to reduce the memory footprint

with as many as 32 nodes. What took two processors nearly

three days to complete could be finished in 6.6 hours with 32

nodes4. This was a much larger data set than used previously,

and the entire genome wouldn’t fit onto a single machine. As

can be seen in Figure 7, the program achieves nearly-linear

speedup as the workload is balanced.

The biggest cost for this type of optimization is in the syn-

chronization after each portion of reads. One of the obvious

3Two Quad-core Intel Nehalem processors per node, clocked at 2.8 Ghz
with 24GB RAM and 4x DDR Infiniband connection

4Two Quad-core Intel Nehalem processors per node, clocked at 2.8 Ghz
with 24GB RAM and 4x DDR Infiniband connection

440436436

2
e

+
0

4
5

e
+

0
4

2
e

+
0

5
5

e
+

0
5

Absolute Time for MPI with Reduced Memory Footprint

Nodes

T
im

e
 i
n

 s
e

c
o

n
d

s

1 2 4 8 16 32

Figure 7. Absolute time for MPI with Reduced Memory Footprint. Note
that a comparable time for only one node could not be obtained because
of insufficient memory.

adjustments that can be made is to look at load balancing,

especially with fewer synchronizations. Even with a large

grain size where millions of reads are processed before a

synchronization event, there is always one machine with a

larger proportion of difficult reads to map that becomes the

bottleneck of the computation. This is largely due to the

lack of randomness in DNA: certain regions are harder to

map to, contain highly repetitive elements, or are naturally

enriched during the sequencing process. Future work will try

to identify a way to load balance more correctly to alleviate

this problem.

V. CONCLUSIONS

Mapping short next-generation reads to reference

genomes is an important element in SNP calling and expres-

sion studies. A major limitation to large-scale whole-genome

mapping is the large memory requirements for the algorithm

and the long run-time necessary for accurate studies. Several

parallel implementations have been performed to distribute

memory on different processors and to equally share the

processing requirements. These approaches are compared

with respect to their memory footprint, load balancing, and

accuracy.

When using multiple threads (pthreads) on a shared

memory machine, linear speedup can be achieved until more

than 8 threads are used. After this time, the mutual exclusion

costs overwhelm the benefits of more processors. This

approach can be combined with distributed-memory paral-

lelization using MPI and pthreads. In this case, machines

with a sufficient amount of memory can achieve nearly-

linear speedup. When calling SNPs, 100GB of memory is

required, with 56GB required for a normal mapping. If large

memory machines are not available, the genome can be

divided among multiple processors to reduce the memory

footprint. This is also shown to obtain nearly-linear speedup,

and is also a suitable option for SNP calling, which requires

significantly more memory.

This research has shown that the mapping problem can

be effectively parallelized in several different environments

without reducing accuracy. Future work will focus on reduc-

ing the memory requirements overall and load balancing.

REFERENCES

[1] F. Sanger, S. Nicklen, and A. Coulson, “DNA sequencing
with chain-terminating inhibitors.” PNAS, vol. 74, no. 12, p.
54635467, 1977.

[2] I. H. G. S. Consortium, “Finishing the euchromatic sequence
of the human genome.” Nature, vol. 431, no. 7011, p. 931945,
2004.

[3] N. L. Clement, Q. Snell, M. J. Clement, P. C.
Hollenhorst, J. Purwar, B. J. Graves, B. R. Cairns,
and W. E. Johnson, “The GNUMAP algorithm:
unbiased probabilistic mapping of oligonucleotides from
next-generation sequencing,” Bioinformatics, vol. 26,
no. 1, pp. 38–45, 2010. [Online]. Available: http:
//bioinformatics.oxfordjournals.org/content/26/1/38.abstract

[4] D. Bozdag, C. Barbacioru, and U. Catalyurek, “Parallel short
sequence mapping for high throughput genome sequencing,”
in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, May 2009, pp. 1–10.

[5] D. Bozdag, A. Hatem, and U. Catalyurek, “Exploring par-
allelism in short sequence mapping using burrows-wheeler
transform,” in Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Sym-
posium on, April 2010, pp. 1–8.

[6] J. van Helden, “Metrics for comparing regulatory sequences
on the basis of pattern counts.” Bioinformatics, vol. 20, pp.
399–406, 2004.

[7] P. Park, A. Butte, and I. Kohane, “Comparing expression pro-
files of genes with similar promoter regions,” Bioinformatics,
vol. 18, pp. 1576–1584, 2002.

[8] A. Smith, Z. Xuan, and M. Zhang, “Using quality scores
and longer reads improves accuracy of solexa read mapping,”
BMC Bioinformatics, vol. 9, no. 1, p. 128, 2008.

[9] H. Jiang and W. H. Wong, “SeqMap: mapping
massive amount of oligonucleotides to the genome,”
Bioinformatics, vol. 24, no. 20, pp. 2395–2396, 2008.
[Online]. Available: http://bioinformatics.oxfordjournals.org/
content/24/20/2395.abstract

[10] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang, “SOAP2: an improved ultrafast tool for short read
alignment,” Bioinformatics, vol. 25, pp. 1966–1967, 2009.

441437437

[11] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg,
“Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome,” Genome Biology, vol. 10,
p. R25, 2009.

[12] H. Li and R. Durbin, “Fast and accurate short read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol. 25,
pp. 1754–1760, 2009.

442438438

