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Abstract—The identification of genome-wide transcription 
factor binding sites is a fundamental and crucial problem to 
fully understand the transcriptional regulatory processes. 
However, the high computational cost of many motif discovery 
algorithms heavily constraints their application for large-scale 
datasets. The rapid growth of genomic sequences and gene 
transcription data further deteriorates the situation and 
establishes a strong requirement for time-efficient scalable 
motif discovery algorithms. The emergence of many-core 
architectures, typically CUDA-enabled GPUs, provides an 
opportunity to reduce the execution time by an order of 
magnitude without the loss of accuracy. In this paper, we 
present mCUDA-MEME, an ultrafast scalable many-core 
motif discovery algorithm for multiple GPUs based on the 
MEME algorithm. Our algorithm is implemented using a 
hybrid combination of the CUDA, OpenMP and MPI parallel 
programming models in order to harness the powerful 
compute capability of modern GPU clusters. At present, our 
algorithm supports OOPS and ZOOPS models, which are 
sufficient for most motif discovery applications. mCUDA-
MEME achieves significant speedups for the starting point 
search stage (and the overall execution) when benchmarked, 
using real datasets, against parallel MEME running on 32 
CPU cores. Speedups of up to 1.4 (1.1) on a single GPU of a 
Fermi-based Tesla S2050 quad-GPU computing system and up 
to 10.8 (8.3) on the eight GPUs of a two Tesla S2050 system 
were observed. Furthermore, our algorithm shows good 
scalability with respect to dataset size and the number of GPUs 
(availability:https://sites.google.com/site/yongchaosoftware/mc
uda-meme). 

Motif discovery; MEME; CUDA; MPI; OpenMP; GPU 

I.  INTRODUCTION 
De novo motif discovery is crucial to the complete 

understanding of transcription regulatory processes by 
identifying transcription factor binding sites (TFBSs) on a 
genome-wide scale. Algorithmic approaches for motif 
discovery can be classified into two categories: iterative and 
combinatorial. Iterative approaches generally exploit 
probabilistic matching models, such as Expectation 
Maximization (EM) [1] and Gibbs sampling [2]. These 
approaches are often preferred because they use position-
specific scoring matrices to describe the matching between a 
motif instance and a sequence, instead of a simple Hamming 
distance. Combinatorial approaches employ deterministic 

matching models, such as word enumeration [3] and 
dictionary methods [4].  

MEME [5] is a popular and well established motif 
discovery algorithm, which is primarily comprised of the 
starting point search (SPS) stage and the EM stage. 
However, the high computational cost of MEME constrains 
its application for large-scale datasets, such as motif 
identification in whole peak regions from ChIP-Seq datasets 
for transcription factor binding experiments [6]. This 
encourages the use of high-performance computing solutions 
to meet the execution time requirement. Several attempts 
have been made to improve execution speed on conventional 
computing systems, including distributed-memory 
workstation clusters [7] and special-purpose hardware [8]. 
The emerging many-core architectures, typically Compute 
Unified Device Architecture (CUDA)-enabled GPUs [9], 
have demonstrated their power for accelerating 
bioinformatics algorithms [10] [11] [12] [13]. This convinces 
us to employ CUDA-enabled GPUs to accelerate motif 
discovery. Previously we have presented CUDA-MEME, 
based on MEME version 3.5.4, for a single GPU device 
which accelerates motif discovery using two parallelization 
approaches, namely: sequence-level parallelization and 
substring-level parallelization. The detailed implementations 
of the two approaches have been described in [14]. 

However, the increasing size and availability of ChIP-
Seq datasets established the need for parallel motif discovery 
with even higher performance. Therefore in this paper, we 
present mCUDA-MEME, an ultrafast scalable many-core 
motif discovery algorithm for multiple GPUs. Our algorithm 
is designed based on MEME version 4.4.0 which 
incorporates position-specific priors (PSP) to improve 
accuracy [15]. In order to harness the powerful compute 
capability of GPU clusters, we employ a hybrid combination 
of CUDA, Open Multi-Processing (OpenMP) and Message 
Passing Interface (MPI) parallel programming models to 
implement this algorithm. Compared to CUDA-MEME, 
mCUDA-MEME introduces four new significant features:  

• Supports multiple GPUs in a single host or a GPU 
cluster through a MPI-based design;  

• Supports starting point search from the reverse 
complements of DNA sequences;  

• Employs multi-threaded design using OpenMP to 
accelerate the EM stage;  

• Incorporates PSP prior probabilities to improve 
accuracy. 
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Since the sequence-level parallelization is advantageous 
to the substring-level parallelization in execution speed [14], 
our following discussions only refer to the sequence-level 
parallelization. Real datasets are employed to evaluate the 
performance of mCUDA-MEME and parallel MEME (i.e. 
the MPI version of MEME distributed with the MEME 
software package). Compared to parallel MEME (version 
4.4.0) running on 32 CPU cores, mCUDA-MEME achieves 
a speedup of the starting point search stage (and the overall 
execution) of up to 1.4 (1.1) times on a single GPU of a 
Fermi-based Tesla S2050 quad-GPU computing system and 
up to 10.8 (8.3) times on eight GPUs of a two Tesla S2050 
system.  Furthermore, our algorithm shows good scalability 
with respect to dataset size and the number of GPUs. 

The rest of this paper is organized as follows. Section 2 
briefly introduces the MEME algorithm and the CUDA, 
OpenMP and MPI parallel programming models. Section 3 
details the new features of mCUDA-MEME. Section 4 
evaluates the performance using real datasets, and Section 5 
concludes this paper. 

II. BACKGROUND 

A. The MEME Algorithm 
Given a set of protein or DNA sequences, MEME 

attempts to search for statistically significant (unknown) 
motif occurrences, which are believed to be shared in the 
sequences, by optimizing the parameters of statistical motif 
models using the EM approach. MEME provides support for 
three types of search modes: one occurrence per sequence 
(OOPS), zero or one occurrence per sequence (ZOOPS), and 
two component mixture (TCM). The OOPS model postulates 
that there is exactly one motif occurrence per sequence in the 
dataset, the ZOOPS model postulates zero or one motif 
occurrence per sequence, and the TCM model postulates that 
there can be any number of non-overlapping occurrences per 
sequence [5]. Since the OOPS and ZOOPS models are 
sufficient for most motif finding applications, our algorithm 
in this paper concentrates on these two models. 

MEME begins a motif search with the creation of a set of 
motif models. Each motif model θ is a position specific 
probability matrix representing frequency estimates of letters 
occurring in different positions. Given a motif of width w 
defined over an alphabet Σ = {A1, A2, ... , A|Σ|},  each value 
θ(i, j) (1≤ i ≤ |Σ| and 0≤ j ≤w) of the matrix is defined as: 

probability of  at position  of the motif,  1
( , )

probability of  not in the motif,   = 0
i

i

A j j w
i j

A j
θ

≤ ≤⎧
= ⎨

⎩
 (1) 

A starting point is an initial motif model θ(0) from which 
the EM stage runs for a fixed number of iterations, or until 
convergence, to find the final motif model θ(q) with maximal 
posterior probability. To find the set of starting points for a 
given motif width, MEME converts each substring in a 
sequence dataset into a potential motif model and then 
determines its statistical significance by calculating the 
weighted log likelihood ratio [15] on different numbers of 
predicted sites, subject to the model used. The potential 

motif models with the highest weighted log likelihood ratio 
are selected as starting points for the successive EM 
algorithm. 

When performing the starting point search, independent 
computation from each substring of length w in the dataset 
S={S1, S2, ..., Sn} of n input sequences is conducted to 
determine a set of initial motif models. The following 
notations are used for the convenience of discussion: li 
denotes the length of Si, S̅i denotes the reverse complement 
of Si, Si,j denotes the substring of length w starting from 
position j of Si, Si(j) denotes the j-th letter of Si, where 1 ≤ i ≤ 
n and 0 ≤ j ≤ li-w. The starting point search process is 
primarily comprised of three steps for the OOPS and ZOOPS 
models:  

• Calculate the probability score P(Si,j, Sk,l) from the 
forward strand (or P(Si,j, S̅k,l) from the reverse 
complement), which is the probability that a site 
starts at position l in Sk when a site starts at position j 
in Si. The time complexity is O(li·lk) for each 
sequence pair Si and Sk. 

• Identify the highest-scoring substring Sk,maxk (as well 
as its strand orientation) for each Sk. The time 
complexity is O(lk) for each sequence Sk. 

• Sort the n highest-scoring substrings {Sk,maxk} in 
decreasing order of scores and  determine the 
potential starting points. The time complexity is 
O(nlogn) for OOPS and O(n2w) for ZOOPS. 

The probability score P(Si,j, Sk,l) is computed as: 

               
-1

, ,
0

( , ) [ ( )][ ( )]
w

i j k l i k
p

P S S mat S j p S l p
=

= + +∑                (2) 

where mat denotes the letter frequency matrix of size |Σ|×|Σ|. 
To reduce computation redundancy, (2) can be further 
simplified to (3), where the computation of the probability 
scores {P(Si,j, Sk,l)} in the j-th iteration depends on the 
resulting scores {P(Si,j-1, Sk,l-1)} in the (j-1)-th iteration. 
However, P(Si,j, Sk,0) needs to be computed individually 
using (2). 

, , , 1 , 1( , ) ( , ) [ ( 1)][ ( 1)]

                                       - [ ( 1)][ ( 1)]
i j k l i j k l i k

i k

P S S P S S mat S j w S l w

mat S j S l
− −= + + − + −

− −
  (3)

 

B. The CUDA Programming Model 
More than a software and hardware co-processing 

architecture, CUDA is also a parallel programming language 
extending general programming languages, such as C, C++ 
and Fortran with a minimalist set of abstractions for 
expressing parallelism. CUDA enables users to write parallel 
scalable programs for CUDA-enabled processors with 
familiar languages [16]. A CUDA program is comprised of 
two parts: a host program running one or more sequential 
threads on a host CPU, and one or more parallel kernels able 
to execute on Tesla [17] and Fermi [18] unified graphics and 
computing architectures. 
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Figure 1.  Registration-based GPU mapping management diagram. 

A kernel is a sequential program launched on a set of 
lightweight concurrent threads. The parallel threads are 
organized into a grid of thread blocks, where all threads in a 
thread block can synchronize through barriers and 
communicate via a high-speed, per block shared memory 
(PBSM). This hierarchical organization of threads enables 
thread blocks to implement coarse-grained task and data 
parallelism and lightweight threads, comprising a thread 
block, to provide fine-grained thread-level parallelism. 
Threads from different thread blocks in the same grid are 
able to cooperate through atomic operations on global 
memory shared by all threads.  

The CUDA-enabled processors are built around a fully 
programmable scalable processor array, organized into a 
number of streaming multiprocessors (SMs). For the Tesla 
architecture, each SM contains 8 scalar processors (SPs) and 
shares a fixed 16 KB of PBSM. For the Tesla-based GPU 
series, the number of SMs per device varies from generation 
to generation. For the Fermi architecture, it contains 16 SMs 
with each SM having 32 SPs. Each SM in the Fermi 
architecture has a configurable PBSM size from the 64 KB 
on-chip memory. This on-chip memory can be configured as 
48 KB of PBSM with 16 KB of L1 cache or as 16 KB of 
PBSM with 48 KB of L1 cache. When executing a thread 
block, both architectures split all the threads in the thread 
block into small groups of 32 parallel threads, called warps, 
which are scheduled in a single instruction, multiple thread 
fashion. Divergence of execution paths is allowed for threads 
in a warp, but SMs realize full efficiency and performance 
when all threads of a warp take the same execution path. 

C. The OpenMP Programming Model 
OpenMP is a compiler-directive-based application 

program interface for explicitly directing multi-threaded, 
shared-memory parallelism [19]. This explicit programming 
model enables programmers to have a full control over 
parallelism. OpenMP is primarily comprised of compiler 
directives, runtime library routines and environment 
variables that are specified for C/C++ and Fortran 
programming languages. As an open specification and 
standard for expressing explicit parallelism, OpenMP is 
portable across a variety of shared memory architectures and 
platforms. 

The basic idea behind OpenMP is the existence of 
multiple threads in the shared memory programming 
paradigm which enables data-shared parallel execution. In 
OpenMP, the unit of work is a thread and the fork-join 
model is used for parallel execution. An OpenMP program 
begins as the master thread, and executes sequentially until 
encountering a parallel region construct specified by the 
programmer. Successively, the master thread creates a team 
of parallel threads to execute in parallel the statements that 
are enclosed by the parallel region construct. Having 
completed the statements in the parallel region construct, the 
team threads synchronize and terminate, leaving only the 
master thread. 

D. The MPI Programming Model 
MPI is a de facto standard for developing portable 

parallel applications using the message passing mechanism 
[20]. MPI works on both shared and distributed memory 
architectures and platforms, offering a highly portable 
solution to parallel programming on a variety of hardware 
topologies.  

In MPI, it defines each worker as a process and enables 
the processes to execute different programs. This multiple 
program, multiple data model offers more flexibility for 
data-shared or data-distributed parallel program design. 
Within a computation, processes communicate data by 
calling runtime library routines, specified for the C/C++ and 
Fortran programming languages, including point-to-point 
and collective communication routines. Point-to-point 
communication is used to send and receive messages 
between two named processes, suitable for local and 
unstructured communications. Collective (global) 
communication is used to perform commonly used global 
operations (e.g. reduction and broadcast operations). 

III. METHODS 
mCUDA-MEME employs a hybrid CPU+GPU 

computing framework for each of its MPI processes in order 
to maximize performance by overlapping the CPU and GPU 
computation. A MPI process therefore consists of two 
threads: a CPU thread and a GPU thread. mCUDA-MEME 
requires a non-overlapping one-to-one correspondence 
between a MPI process and a GPU device. Unfortunately, 
the MPI runtime environment does not provide a mechanism 
to perform the automatic mapping between MPI processes 
and GPU devices. In this case, mCUDA-MEME employs a 
registration-based management mechanism (as shown in Fig. 
1) to dynamically map GPU devices to MPI processes. 

429425425



*****************************************************************

Define S̅i to denote the reverse complement of Si.

*****************************************************************

Step 1: Load letter frequency matrix to shared memory from constant memory;

Step 2: Get the sequences information;

Step 3: All threads calculate the probability scores{P(Si,0, Sk,l)} and {P(Si,0, S̅k,l)}

in parallel, and select and save the highest-scoring substring Sk,maxk for Si,0, 

as well as its strand orientation.

Step 4:

for j from 1 to li – w

All threads calculate the probability scores {P(Si,j, Sk,l)} and {P(Si,j, S̅k,l)}

in parallel using {P(Si,j-1, Sk,l-1)} and {P(Si,j-1, S̅k,l-1)}, and select and save 

the highest-scoring substring Sk,maxk for Si,j, as well as its strand orientation.

end  
Figure 2.  CUDA kernel pseudocode for probability score calculation 

from two strands. 

Firstly, a master process is specified and each worker process 
(including the master process) registers the name of the host 
machine in which it resides, as well as the number of 
qualified GPUs in the host, to the master process. Secondly, 
the master process iterates each registered host and checks 
the number of processes distributed to it and the number of 
qualified GPUs it has. The registration is acceptable if each 
registered host does not have more processes than qualified 
GPUs, and is unacceptable, otherwise. If the mapping 
between processes and GPUs is valid, the master process 
enumerates each host and assigns a unique GPU identifier to 
each process running in the host. 

For the starting point search, most execution time is spent 
on the computation of probability scores to select the 
highest-scoring substring Sk,maxk for each Sk. mCUDA-
MEME selects the highest-scoring substrings while 
computing the scores from the forward or reverse strands on 
GPUs. When using the reverse complements, mCUDA-
MEME calculates the probability scores {P(Si,j, Sk,l)} and 
{P(Si,j, S̅k,l)} simultaneously and selects the highest-scoring 
substring in a single CUDA kernel launch. This is different 
to MEME which performs two iterations of probability score 
calculation separately from the two strands of Sk. Fig. 2 
shows the CUDA kernel pseudocode. Hence, when 
searching from two strands, MEME will (nearly) double the 
execution time compared with that from a single strand, 
whereas mCUDA-MEME is able to save some execution 
time by reusing common resources (e.g., the reference 
substring Si,j is fetched only once from texture memory 
instead of twice). Our benchmarking shows that when 
searching from two strands, the execution time of mCUDA-
MEME only increases by about 60% compared to MEME. 

The sequence-level parallelization uses multiple 
iterations to complete the starting point search [14]. 
Generally, the execution time of all iterations heavily 
depends on the grid size (dimGrid) and the thread block size 
(dimBlock) used in each iteration. When determining the grid 

size, we consider the maximum number of resident threads 
per SM. As in [14], we assume the maximum number of 
resident threads per SM is 1024, even though Fermi-based 
GPUs support a maximum number of 1536 resident threads 
per multiprocessor. Thus, mCUDA-MEME calculates the 
grid size per iteration as 

10242dimGrid #SM
dimBlock

= × ×                                        (4) 

where #SM is the number of SMs in a single GPU device and 
dimBlock is set to 64. For the sequence-level parallelization, 
the GPU device memory consumption only depends on the 
grid size and the maximum sequence length. The consumed 
device memory size can be estimated as 

32 max{ },   1imemSize dimGrid l i n= × × ≤ ≤                     (5) 

From (5), we can see that the device memory consumption is 
directly proportional to the maximum sequence length for a 
specific GPU device. Thus, mCUDA-MEME sets a 
maximum sequence length threshold (by default 64K) to 
determine the use of the sequence-level parallelization or the 
substring-level parallelization that is slower but much more 
memory efficient. 

When employing multiple GPUs, an appropriate load 
balancing policy is critical for high overall performance. In 
this paper, we assume that mCUDA-MEME is deployed in a 
homogenous GPU cluster, which is often the case. Since the 
workload is aware of S, our assumption simplifies the 
workload distribution between GPUs. In mCUDA-MEME, 
both the SPS stage and the EM stages are parallelized using 
MPI. For the SPS stage, to achieved good workload balance, 
we calculate the total number of bases in the input 
sequences, and (nearly) equally distribute these bases to all 
processes using a sequence as a unit, because a thread block 
in the CUDA kernel processes a sequence pair every time 
[14]. This makes each process hold (nearly) equal number of 
bases in (likely) different number of sequences distributed to 
it, thus having (nearly) equal number of substrings for a 
specific motif width. In this case, each MPI process holds a 
non-overlapping sequence subset of S, where the process 
converts each substring of this subset into a potential motif 
model and calculates the highest-scoring substrings of all 
sequences in S for this substring by invoking the CUDA 
kernels. After each process obtains the best starting points in 
its subset, a reduction operation is conducted across all 
processes to compute the new best starting points. For the 
EM stage, as we are aware of the number of initial models, 
we simply divide the set of initial models equally among all 
processes as in [7]. Unfortunately, because the execution 
time of the EM algorithm from each initial model is not 
equal and is dependent on the real data, we might not be able 
to balance the workloads perfectly. However, considering 
that the EM stage takes only a very small portion of the total 
execution time, the imperfect workload balancing does not 
impact significantly. After obtaining the best motif model for 
each MPI process from its subset of initial models, all 
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TABLE I.  PEAK DATASETS FOR PERFORMANCE EVALUATION 

Datasets No. of 
Sequences 

Min 
(bps) 

Max 
(bps) 

Total 
(bps) 

NRSF500 500 307 529 226070 

NRSF1000 1000 307 589 506378 

NRSF2000 2000 307 747 1169957 

TABLE II.  EXECUTION TIME (IN SECONDS) AND SPEEDUP COMPARISON BETWEEN MCUDA-MEME AND PARALLEL MEME 

Datasets 
mCUDA-MEME  parallel MEME Speedups 

8 GPUs 1 GPU 32 CPU cores 8 GPUs 1 GPU 
SPS All SPS All SPS All SPS All SPS All 

NRSF500 72 115 532 698 486 523 6.8 4.5 0.9 0.7 
NRSF1000 279 392 2129 2699 2489 2615 8.9 6.7 1.2 1.0 
NRSF2000 1244 1663 9554 12150 13428 13830 10.8 8.3 1.4 1.1 

 

processes conduct a reduction operation to get the final motif 
model. Since all processes only need to communicate to 
collect the final results in the SPS and EM stages, the 
communication overhead can be neglected. 

When executing mCUDA-MEME with only one MPI 
process, the sequential EM stage limits the overall speedup 
as per Amdahl's law, after accelerating the SPS stage. As 
multi-core CPUs have become commonplace, we employ a 
multi-threaded design using OpenMP to parallelize the EM 
stage to exploit the compute power of multi-core CPUs. 
Since the number of threads used can be specified using 
OpenMP runtime routines, the multi-threaded design is well 
exploited when running multiple MPI processes. As 
mentioned above, each MPI process consists of a CPU 
thread and a GPU thread. We generally recommend that each 
MPI process runs the two threads on two CPU cores to 
maximize the performance. In this case, after completing the 
SPS stage, the one CPU core for the GPU thread of each 
MPI process will be wasted if the successive EM stage does 
not use it. Hence, it is viable to employ two threads to 
parallelize the EM algorithm within each MPI process. By 
default, mCUDA-MEME  uses as many threads as the 
available CPU cores in a single machine when running our 
algorithm with only one MPI process, and two threads when 
using multiple MPI processes. Note that the number of 
threads used can also be specified by parameters. 

As mentioned above, the accuracy of MEME 4.4.0 has 
been improved by incorporating PSP, as described in [15], 
which defines prior probabilities that a site starts at each 
position of each input sequence. The PSP approach enables 
the incorporation of multiple types of additional information 
into motif discovery and converts the additional information 
into the measure of the likelihood that a motif starts at each 
position of each input sequence. When incorporating PSP, 
for the SPS stage, the highest-scoring substring of each 
sequence Sk is determined using scores calculated from P(Si,j, 
Sk,l) (or P(Si,j, S̅k,l)) and PSP prior probabilities, and for the 
EM algorithm, it substitutes the uniform assumption with the 
PSP prior probabilities. Details about the PSP approach in 
MEME can be obtained from [15]. Since mCUDA-MEME is 
implemented based on MEME 4.4.0, the PSP approach is 
also incorporated in our algorithm. 

IV. PERFORMANCE EVALUATION 
We use the peaks identified by MICSA [6] in the ChIP-

Seq data for neuron-restrictive silencer factor (the peaks are 
available at http://bioinfo-out.curie.fr/projects/micsa) to 
evaluate the performance of mCUDA-MEME. To evaluate 
the scalability of our algorithm with respect to dataset size, 
three subsets of peaks with different numbers of sequences 
and base pairs (bps) are selected from the whole peaks (as 
shown in Table 1). 

All the following tests are conducted on a computing 
cluster with eight compute nodes that are connected by a 
high-speed Infiniband switch. Each compute node consists of 
an AMD Opteron 2378 quad-core 2.4 GHz processor and 8 
GB RAM, running the Linux OS with the MPICH2 library. 
Furthermore, two Fermi-based Tesla S2050 quad-GPU 
computing systems are installed and connected to four nodes 
of the cluster, with each node having access to two GPUs. A 
single GPU of a Tesla S2050 consists of 14 SMs (a total of 
448 SPs) with a core frequency of 1.15GHz and has 2.6 GB 
user available device memory. The common parameters used 
for all tests are "-mod zoops -revcomp", and the other 
parameters use the default values. 

We have evaluated the performance of mCUDA-MEME 
running on a single GPU and on eight GPUs respectively, 
compared to parallel MEME (version 4.4.0) running on the 
eight compute nodes with a total of 32 CPU cores (as shown 
in Table 2). From Table 2, the mCUDA-MEME speedups, 
either on a single GPU or eight GPUs, increase as the dataset 
size grows, suggesting a good scalability for dealing with 
large-scale datasets. On eight GPUs, mCUDA-MEME 
significantly outperforms parallel MEME on 32 CPU cores 
for all datasets, where it achieves an average speedup of 8.8 
(6.5) with a highest of 10.8 (8.3) for the SPS stage alone (and 
for the overall execution). Even on a single GPU, our 
algorithm still holds its own compared to parallel MEME on 
32 CPU cores, with a highest speedup of 1.4 (1.1) for the 
SPS stage (and for the overall execution) for the large 
dataset, even though it only gives a speedup of 0.9 (0.7) for 
NRSF500 dataset.  

In addition to the scalability with respect to dataset scale, 
we further evaluated the scalability of our algorithm with 
respect to the number of GPUs. Figures 3 and 4 show the 
speedups of mCUDA-MEME on different numbers of GPUs 
compared to parallel MEME on 32 CPU cores for all 
datasets. From the figures, we can see that for each dataset, 
the speedup increases (nearly) linearly as the number of 
GPUs increases both for the SPS stage and for the overall 
execution. 

The above evaluation and discussions demonstrate the 
power of mCUDA-MEME to accelerate motif discovery for 
large-scale datasets with relatively inexpensive GPU 
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Figure 3.  The speedups for the SPS stage of mCUDA-MEME on 
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Figure 4.  The speedups for the overall execution of mCUDA-MEME 
on different numbers of GPUs. 

clusters. The genome-wide identification of TFBSs has been 
heavily constrained by the long execution time of motif 
discovery algorithms. Thus, we believe biologists will 
greatly benefit from the speedup of our algorithm. 

V. CONCLUSION 
In this paper, we have presented mCUDA-MEME, an 

ultrafast scalable many-core motif discovery algorithm for 
multiple GPUs. The use of hybrid CUDA, OpenMP and MPI 
programming models enables our algorithm to harness the 
powerful compute capability of GPU clusters. mCUDA-
MEME achieves significant speedups for both the starting 
point search stage (and the overall execution) when 
benchmarked, using real datasets, against parallel MEME 
running on 32 CPU cores. Speedups of up to 1.4 (1.1) on a 
single GPU of a Fermi-based Tesla S2050 quad-GPU 
computing system and up to 10.8 (8.3) on the eight GPUs of 
a two Tesla S2050 system were observed. Furthermore, our 
algorithm shows good scalability with respect to dataset size 
and the number of GPUs. Since the long execution time of 
motif discovery algorithms has heavily constrained the 
genome-wide TFBS identification, we believe that biologists 
will benefit from the high-speed motif discovery of our 
algorithm on relatively inexpensive GPU clusters. As 
mentioned above, the load balancing policy of mCUDA-
MEME is targeted towards homogenous GPU clusters, 
distributing workload symmetrically between GPUs. 

However, our current load balancing policy might not be 
able to work well for heterogeneous GPU clusters. Hence, 
designing a robust and appropriate load balancing policies 
for heterogeneous GPUs clusters is part of our future work. 
The source code of mCUDA-MEME and the benchmark 
datasets are available for download at 
https://sites.google.com/site/yongchaosoftware/mcuda-
meme. 
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