
An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs

Yongchao Liu, Bertil Schmidt, Douglas L. Maskell
School of Computer Engineering

Nanyang Technological University
Singapore

e-mail: {liuy0039, asbschmidt, asdouglas}@ntu.edu.sg

Abstract—The identification of genome-wide transcription
factor binding sites is a fundamental and crucial problem to
fully understand the transcriptional regulatory processes.
However, the high computational cost of many motif discovery
algorithms heavily constraints their application for large-scale
datasets. The rapid growth of genomic sequences and gene
transcription data further deteriorates the situation and
establishes a strong requirement for time-efficient scalable
motif discovery algorithms. The emergence of many-core
architectures, typically CUDA-enabled GPUs, provides an
opportunity to reduce the execution time by an order of
magnitude without the loss of accuracy. In this paper, we
present mCUDA-MEME, an ultrafast scalable many-core
motif discovery algorithm for multiple GPUs based on the
MEME algorithm. Our algorithm is implemented using a
hybrid combination of the CUDA, OpenMP and MPI parallel
programming models in order to harness the powerful
compute capability of modern GPU clusters. At present, our
algorithm supports OOPS and ZOOPS models, which are
sufficient for most motif discovery applications. mCUDA-
MEME achieves significant speedups for the starting point
search stage (and the overall execution) when benchmarked,
using real datasets, against parallel MEME running on 32
CPU cores. Speedups of up to 1.4 (1.1) on a single GPU of a
Fermi-based Tesla S2050 quad-GPU computing system and up
to 10.8 (8.3) on the eight GPUs of a two Tesla S2050 system
were observed. Furthermore, our algorithm shows good
scalability with respect to dataset size and the number of GPUs
(availability:https://sites.google.com/site/yongchaosoftware/mc
uda-meme).

Motif discovery; MEME; CUDA; MPI; OpenMP; GPU

I. INTRODUCTION
De novo motif discovery is crucial to the complete

understanding of transcription regulatory processes by
identifying transcription factor binding sites (TFBSs) on a
genome-wide scale. Algorithmic approaches for motif
discovery can be classified into two categories: iterative and
combinatorial. Iterative approaches generally exploit
probabilistic matching models, such as Expectation
Maximization (EM) [1] and Gibbs sampling [2]. These
approaches are often preferred because they use position-
specific scoring matrices to describe the matching between a
motif instance and a sequence, instead of a simple Hamming
distance. Combinatorial approaches employ deterministic

matching models, such as word enumeration [3] and
dictionary methods [4].

MEME [5] is a popular and well established motif
discovery algorithm, which is primarily comprised of the
starting point search (SPS) stage and the EM stage.
However, the high computational cost of MEME constrains
its application for large-scale datasets, such as motif
identification in whole peak regions from ChIP-Seq datasets
for transcription factor binding experiments [6]. This
encourages the use of high-performance computing solutions
to meet the execution time requirement. Several attempts
have been made to improve execution speed on conventional
computing systems, including distributed-memory
workstation clusters [7] and special-purpose hardware [8].
The emerging many-core architectures, typically Compute
Unified Device Architecture (CUDA)-enabled GPUs [9],
have demonstrated their power for accelerating
bioinformatics algorithms [10] [11] [12] [13]. This convinces
us to employ CUDA-enabled GPUs to accelerate motif
discovery. Previously we have presented CUDA-MEME,
based on MEME version 3.5.4, for a single GPU device
which accelerates motif discovery using two parallelization
approaches, namely: sequence-level parallelization and
substring-level parallelization. The detailed implementations
of the two approaches have been described in [14].

However, the increasing size and availability of ChIP-
Seq datasets established the need for parallel motif discovery
with even higher performance. Therefore in this paper, we
present mCUDA-MEME, an ultrafast scalable many-core
motif discovery algorithm for multiple GPUs. Our algorithm
is designed based on MEME version 4.4.0 which
incorporates position-specific priors (PSP) to improve
accuracy [15]. In order to harness the powerful compute
capability of GPU clusters, we employ a hybrid combination
of CUDA, Open Multi-Processing (OpenMP) and Message
Passing Interface (MPI) parallel programming models to
implement this algorithm. Compared to CUDA-MEME,
mCUDA-MEME introduces four new significant features:

• Supports multiple GPUs in a single host or a GPU
cluster through a MPI-based design;

• Supports starting point search from the reverse
complements of DNA sequences;

• Employs multi-threaded design using OpenMP to
accelerate the EM stage;

• Incorporates PSP prior probabilities to improve
accuracy.

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.183

427

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.183

423

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.183

423

Since the sequence-level parallelization is advantageous
to the substring-level parallelization in execution speed [14],
our following discussions only refer to the sequence-level
parallelization. Real datasets are employed to evaluate the
performance of mCUDA-MEME and parallel MEME (i.e.
the MPI version of MEME distributed with the MEME
software package). Compared to parallel MEME (version
4.4.0) running on 32 CPU cores, mCUDA-MEME achieves
a speedup of the starting point search stage (and the overall
execution) of up to 1.4 (1.1) times on a single GPU of a
Fermi-based Tesla S2050 quad-GPU computing system and
up to 10.8 (8.3) times on eight GPUs of a two Tesla S2050
system. Furthermore, our algorithm shows good scalability
with respect to dataset size and the number of GPUs.

The rest of this paper is organized as follows. Section 2
briefly introduces the MEME algorithm and the CUDA,
OpenMP and MPI parallel programming models. Section 3
details the new features of mCUDA-MEME. Section 4
evaluates the performance using real datasets, and Section 5
concludes this paper.

II. BACKGROUND

A. The MEME Algorithm
Given a set of protein or DNA sequences, MEME

attempts to search for statistically significant (unknown)
motif occurrences, which are believed to be shared in the
sequences, by optimizing the parameters of statistical motif
models using the EM approach. MEME provides support for
three types of search modes: one occurrence per sequence
(OOPS), zero or one occurrence per sequence (ZOOPS), and
two component mixture (TCM). The OOPS model postulates
that there is exactly one motif occurrence per sequence in the
dataset, the ZOOPS model postulates zero or one motif
occurrence per sequence, and the TCM model postulates that
there can be any number of non-overlapping occurrences per
sequence [5]. Since the OOPS and ZOOPS models are
sufficient for most motif finding applications, our algorithm
in this paper concentrates on these two models.

MEME begins a motif search with the creation of a set of
motif models. Each motif model θ is a position specific
probability matrix representing frequency estimates of letters
occurring in different positions. Given a motif of width w
defined over an alphabet Σ = {A1, A2, ... , A|Σ|}, each value
θ(i, j) (1≤ i ≤ |Σ| and 0≤ j ≤w) of the matrix is defined as:

probability of at position of the motif, 1
(,)

probability of not in the motif, = 0
i

i

A j j w
i j

A j
θ

≤ ≤⎧
= ⎨

⎩
 (1)

A starting point is an initial motif model θ(0) from which
the EM stage runs for a fixed number of iterations, or until
convergence, to find the final motif model θ(q) with maximal
posterior probability. To find the set of starting points for a
given motif width, MEME converts each substring in a
sequence dataset into a potential motif model and then
determines its statistical significance by calculating the
weighted log likelihood ratio [15] on different numbers of
predicted sites, subject to the model used. The potential

motif models with the highest weighted log likelihood ratio
are selected as starting points for the successive EM
algorithm.

When performing the starting point search, independent
computation from each substring of length w in the dataset
S={S1, S2, ..., Sn} of n input sequences is conducted to
determine a set of initial motif models. The following
notations are used for the convenience of discussion: li
denotes the length of Si, S̅i denotes the reverse complement
of Si, Si,j denotes the substring of length w starting from
position j of Si, Si(j) denotes the j-th letter of Si, where 1 ≤ i ≤
n and 0 ≤ j ≤ li-w. The starting point search process is
primarily comprised of three steps for the OOPS and ZOOPS
models:

• Calculate the probability score P(Si,j, Sk,l) from the
forward strand (or P(Si,j, S̅k,l) from the reverse
complement), which is the probability that a site
starts at position l in Sk when a site starts at position j
in Si. The time complexity is O(li·lk) for each
sequence pair Si and Sk.

• Identify the highest-scoring substring Sk,maxk (as well
as its strand orientation) for each Sk. The time
complexity is O(lk) for each sequence Sk.

• Sort the n highest-scoring substrings {Sk,maxk} in
decreasing order of scores and determine the
potential starting points. The time complexity is
O(nlogn) for OOPS and O(n2w) for ZOOPS.

The probability score P(Si,j, Sk,l) is computed as:

-1

, ,
0

(,) [()][()]
w

i j k l i k
p

P S S mat S j p S l p
=

= + +∑ (2)

where mat denotes the letter frequency matrix of size |Σ|×|Σ|.
To reduce computation redundancy, (2) can be further
simplified to (3), where the computation of the probability
scores {P(Si,j, Sk,l)} in the j-th iteration depends on the
resulting scores {P(Si,j-1, Sk,l-1)} in the (j-1)-th iteration.
However, P(Si,j, Sk,0) needs to be computed individually
using (2).

, , , 1 , 1(,) (,) [(1)][(1)]

 - [(1)][(1)]
i j k l i j k l i k

i k

P S S P S S mat S j w S l w

mat S j S l
− −= + + − + −

− −
 (3)

B. The CUDA Programming Model
More than a software and hardware co-processing

architecture, CUDA is also a parallel programming language
extending general programming languages, such as C, C++
and Fortran with a minimalist set of abstractions for
expressing parallelism. CUDA enables users to write parallel
scalable programs for CUDA-enabled processors with
familiar languages [16]. A CUDA program is comprised of
two parts: a host program running one or more sequential
threads on a host CPU, and one or more parallel kernels able
to execute on Tesla [17] and Fermi [18] unified graphics and
computing architectures.

428424424

WORKER 1 WORKER 2

MASTER

HOST
DATABASE

1 REGISTER1 5 5

SAVE
HOST
DATA

VERIFICATION

VERIFY3VALIDITY 4

ASSIGN
GPU ID

2

GPU MAPPING MANAGEMENT

Figure 1. Registration-based GPU mapping management diagram.

A kernel is a sequential program launched on a set of
lightweight concurrent threads. The parallel threads are
organized into a grid of thread blocks, where all threads in a
thread block can synchronize through barriers and
communicate via a high-speed, per block shared memory
(PBSM). This hierarchical organization of threads enables
thread blocks to implement coarse-grained task and data
parallelism and lightweight threads, comprising a thread
block, to provide fine-grained thread-level parallelism.
Threads from different thread blocks in the same grid are
able to cooperate through atomic operations on global
memory shared by all threads.

The CUDA-enabled processors are built around a fully
programmable scalable processor array, organized into a
number of streaming multiprocessors (SMs). For the Tesla
architecture, each SM contains 8 scalar processors (SPs) and
shares a fixed 16 KB of PBSM. For the Tesla-based GPU
series, the number of SMs per device varies from generation
to generation. For the Fermi architecture, it contains 16 SMs
with each SM having 32 SPs. Each SM in the Fermi
architecture has a configurable PBSM size from the 64 KB
on-chip memory. This on-chip memory can be configured as
48 KB of PBSM with 16 KB of L1 cache or as 16 KB of
PBSM with 48 KB of L1 cache. When executing a thread
block, both architectures split all the threads in the thread
block into small groups of 32 parallel threads, called warps,
which are scheduled in a single instruction, multiple thread
fashion. Divergence of execution paths is allowed for threads
in a warp, but SMs realize full efficiency and performance
when all threads of a warp take the same execution path.

C. The OpenMP Programming Model
OpenMP is a compiler-directive-based application

program interface for explicitly directing multi-threaded,
shared-memory parallelism [19]. This explicit programming
model enables programmers to have a full control over
parallelism. OpenMP is primarily comprised of compiler
directives, runtime library routines and environment
variables that are specified for C/C++ and Fortran
programming languages. As an open specification and
standard for expressing explicit parallelism, OpenMP is
portable across a variety of shared memory architectures and
platforms.

The basic idea behind OpenMP is the existence of
multiple threads in the shared memory programming
paradigm which enables data-shared parallel execution. In
OpenMP, the unit of work is a thread and the fork-join
model is used for parallel execution. An OpenMP program
begins as the master thread, and executes sequentially until
encountering a parallel region construct specified by the
programmer. Successively, the master thread creates a team
of parallel threads to execute in parallel the statements that
are enclosed by the parallel region construct. Having
completed the statements in the parallel region construct, the
team threads synchronize and terminate, leaving only the
master thread.

D. The MPI Programming Model
MPI is a de facto standard for developing portable

parallel applications using the message passing mechanism
[20]. MPI works on both shared and distributed memory
architectures and platforms, offering a highly portable
solution to parallel programming on a variety of hardware
topologies.

In MPI, it defines each worker as a process and enables
the processes to execute different programs. This multiple
program, multiple data model offers more flexibility for
data-shared or data-distributed parallel program design.
Within a computation, processes communicate data by
calling runtime library routines, specified for the C/C++ and
Fortran programming languages, including point-to-point
and collective communication routines. Point-to-point
communication is used to send and receive messages
between two named processes, suitable for local and
unstructured communications. Collective (global)
communication is used to perform commonly used global
operations (e.g. reduction and broadcast operations).

III. METHODS
mCUDA-MEME employs a hybrid CPU+GPU

computing framework for each of its MPI processes in order
to maximize performance by overlapping the CPU and GPU
computation. A MPI process therefore consists of two
threads: a CPU thread and a GPU thread. mCUDA-MEME
requires a non-overlapping one-to-one correspondence
between a MPI process and a GPU device. Unfortunately,
the MPI runtime environment does not provide a mechanism
to perform the automatic mapping between MPI processes
and GPU devices. In this case, mCUDA-MEME employs a
registration-based management mechanism (as shown in Fig.
1) to dynamically map GPU devices to MPI processes.

429425425

Define S̅i to denote the reverse complement of Si.

Step 1: Load letter frequency matrix to shared memory from constant memory;

Step 2: Get the sequences information;

Step 3: All threads calculate the probability scores{P(Si,0, Sk,l)} and {P(Si,0, S̅k,l)}

in parallel, and select and save the highest-scoring substring Sk,maxk for Si,0,

as well as its strand orientation.

Step 4:

for j from 1 to li – w

All threads calculate the probability scores {P(Si,j, Sk,l)} and {P(Si,j, S̅k,l)}

in parallel using {P(Si,j-1, Sk,l-1)} and {P(Si,j-1, S̅k,l-1)}, and select and save

the highest-scoring substring Sk,maxk for Si,j, as well as its strand orientation.

end
Figure 2. CUDA kernel pseudocode for probability score calculation

from two strands.

Firstly, a master process is specified and each worker process
(including the master process) registers the name of the host
machine in which it resides, as well as the number of
qualified GPUs in the host, to the master process. Secondly,
the master process iterates each registered host and checks
the number of processes distributed to it and the number of
qualified GPUs it has. The registration is acceptable if each
registered host does not have more processes than qualified
GPUs, and is unacceptable, otherwise. If the mapping
between processes and GPUs is valid, the master process
enumerates each host and assigns a unique GPU identifier to
each process running in the host.

For the starting point search, most execution time is spent
on the computation of probability scores to select the
highest-scoring substring Sk,maxk for each Sk. mCUDA-
MEME selects the highest-scoring substrings while
computing the scores from the forward or reverse strands on
GPUs. When using the reverse complements, mCUDA-
MEME calculates the probability scores {P(Si,j, Sk,l)} and
{P(Si,j, S̅k,l)} simultaneously and selects the highest-scoring
substring in a single CUDA kernel launch. This is different
to MEME which performs two iterations of probability score
calculation separately from the two strands of Sk. Fig. 2
shows the CUDA kernel pseudocode. Hence, when
searching from two strands, MEME will (nearly) double the
execution time compared with that from a single strand,
whereas mCUDA-MEME is able to save some execution
time by reusing common resources (e.g., the reference
substring Si,j is fetched only once from texture memory
instead of twice). Our benchmarking shows that when
searching from two strands, the execution time of mCUDA-
MEME only increases by about 60% compared to MEME.

The sequence-level parallelization uses multiple
iterations to complete the starting point search [14].
Generally, the execution time of all iterations heavily
depends on the grid size (dimGrid) and the thread block size
(dimBlock) used in each iteration. When determining the grid

size, we consider the maximum number of resident threads
per SM. As in [14], we assume the maximum number of
resident threads per SM is 1024, even though Fermi-based
GPUs support a maximum number of 1536 resident threads
per multiprocessor. Thus, mCUDA-MEME calculates the
grid size per iteration as

10242dimGrid #SM
dimBlock

= × × (4)

where #SM is the number of SMs in a single GPU device and
dimBlock is set to 64. For the sequence-level parallelization,
the GPU device memory consumption only depends on the
grid size and the maximum sequence length. The consumed
device memory size can be estimated as

32 max{ }, 1imemSize dimGrid l i n= × × ≤ ≤ (5)

From (5), we can see that the device memory consumption is
directly proportional to the maximum sequence length for a
specific GPU device. Thus, mCUDA-MEME sets a
maximum sequence length threshold (by default 64K) to
determine the use of the sequence-level parallelization or the
substring-level parallelization that is slower but much more
memory efficient.

When employing multiple GPUs, an appropriate load
balancing policy is critical for high overall performance. In
this paper, we assume that mCUDA-MEME is deployed in a
homogenous GPU cluster, which is often the case. Since the
workload is aware of S, our assumption simplifies the
workload distribution between GPUs. In mCUDA-MEME,
both the SPS stage and the EM stages are parallelized using
MPI. For the SPS stage, to achieved good workload balance,
we calculate the total number of bases in the input
sequences, and (nearly) equally distribute these bases to all
processes using a sequence as a unit, because a thread block
in the CUDA kernel processes a sequence pair every time
[14]. This makes each process hold (nearly) equal number of
bases in (likely) different number of sequences distributed to
it, thus having (nearly) equal number of substrings for a
specific motif width. In this case, each MPI process holds a
non-overlapping sequence subset of S, where the process
converts each substring of this subset into a potential motif
model and calculates the highest-scoring substrings of all
sequences in S for this substring by invoking the CUDA
kernels. After each process obtains the best starting points in
its subset, a reduction operation is conducted across all
processes to compute the new best starting points. For the
EM stage, as we are aware of the number of initial models,
we simply divide the set of initial models equally among all
processes as in [7]. Unfortunately, because the execution
time of the EM algorithm from each initial model is not
equal and is dependent on the real data, we might not be able
to balance the workloads perfectly. However, considering
that the EM stage takes only a very small portion of the total
execution time, the imperfect workload balancing does not
impact significantly. After obtaining the best motif model for
each MPI process from its subset of initial models, all

430426426

TABLE I. PEAK DATASETS FOR PERFORMANCE EVALUATION

Datasets No. of
Sequences

Min
(bps)

Max
(bps)

Total
(bps)

NRSF500 500 307 529 226070

NRSF1000 1000 307 589 506378

NRSF2000 2000 307 747 1169957

TABLE II. EXECUTION TIME (IN SECONDS) AND SPEEDUP COMPARISON BETWEEN MCUDA-MEME AND PARALLEL MEME

Datasets
mCUDA-MEME parallel MEME Speedups

8 GPUs 1 GPU 32 CPU cores 8 GPUs 1 GPU
SPS All SPS All SPS All SPS All SPS All

NRSF500 72 115 532 698 486 523 6.8 4.5 0.9 0.7
NRSF1000 279 392 2129 2699 2489 2615 8.9 6.7 1.2 1.0
NRSF2000 1244 1663 9554 12150 13428 13830 10.8 8.3 1.4 1.1

processes conduct a reduction operation to get the final motif
model. Since all processes only need to communicate to
collect the final results in the SPS and EM stages, the
communication overhead can be neglected.

When executing mCUDA-MEME with only one MPI
process, the sequential EM stage limits the overall speedup
as per Amdahl's law, after accelerating the SPS stage. As
multi-core CPUs have become commonplace, we employ a
multi-threaded design using OpenMP to parallelize the EM
stage to exploit the compute power of multi-core CPUs.
Since the number of threads used can be specified using
OpenMP runtime routines, the multi-threaded design is well
exploited when running multiple MPI processes. As
mentioned above, each MPI process consists of a CPU
thread and a GPU thread. We generally recommend that each
MPI process runs the two threads on two CPU cores to
maximize the performance. In this case, after completing the
SPS stage, the one CPU core for the GPU thread of each
MPI process will be wasted if the successive EM stage does
not use it. Hence, it is viable to employ two threads to
parallelize the EM algorithm within each MPI process. By
default, mCUDA-MEME uses as many threads as the
available CPU cores in a single machine when running our
algorithm with only one MPI process, and two threads when
using multiple MPI processes. Note that the number of
threads used can also be specified by parameters.

As mentioned above, the accuracy of MEME 4.4.0 has
been improved by incorporating PSP, as described in [15],
which defines prior probabilities that a site starts at each
position of each input sequence. The PSP approach enables
the incorporation of multiple types of additional information
into motif discovery and converts the additional information
into the measure of the likelihood that a motif starts at each
position of each input sequence. When incorporating PSP,
for the SPS stage, the highest-scoring substring of each
sequence Sk is determined using scores calculated from P(Si,j,
Sk,l) (or P(Si,j, S̅k,l)) and PSP prior probabilities, and for the
EM algorithm, it substitutes the uniform assumption with the
PSP prior probabilities. Details about the PSP approach in
MEME can be obtained from [15]. Since mCUDA-MEME is
implemented based on MEME 4.4.0, the PSP approach is
also incorporated in our algorithm.

IV. PERFORMANCE EVALUATION
We use the peaks identified by MICSA [6] in the ChIP-

Seq data for neuron-restrictive silencer factor (the peaks are
available at http://bioinfo-out.curie.fr/projects/micsa) to
evaluate the performance of mCUDA-MEME. To evaluate
the scalability of our algorithm with respect to dataset size,
three subsets of peaks with different numbers of sequences
and base pairs (bps) are selected from the whole peaks (as
shown in Table 1).

All the following tests are conducted on a computing
cluster with eight compute nodes that are connected by a
high-speed Infiniband switch. Each compute node consists of
an AMD Opteron 2378 quad-core 2.4 GHz processor and 8
GB RAM, running the Linux OS with the MPICH2 library.
Furthermore, two Fermi-based Tesla S2050 quad-GPU
computing systems are installed and connected to four nodes
of the cluster, with each node having access to two GPUs. A
single GPU of a Tesla S2050 consists of 14 SMs (a total of
448 SPs) with a core frequency of 1.15GHz and has 2.6 GB
user available device memory. The common parameters used
for all tests are "-mod zoops -revcomp", and the other
parameters use the default values.

We have evaluated the performance of mCUDA-MEME
running on a single GPU and on eight GPUs respectively,
compared to parallel MEME (version 4.4.0) running on the
eight compute nodes with a total of 32 CPU cores (as shown
in Table 2). From Table 2, the mCUDA-MEME speedups,
either on a single GPU or eight GPUs, increase as the dataset
size grows, suggesting a good scalability for dealing with
large-scale datasets. On eight GPUs, mCUDA-MEME
significantly outperforms parallel MEME on 32 CPU cores
for all datasets, where it achieves an average speedup of 8.8
(6.5) with a highest of 10.8 (8.3) for the SPS stage alone (and
for the overall execution). Even on a single GPU, our
algorithm still holds its own compared to parallel MEME on
32 CPU cores, with a highest speedup of 1.4 (1.1) for the
SPS stage (and for the overall execution) for the large
dataset, even though it only gives a speedup of 0.9 (0.7) for
NRSF500 dataset.

In addition to the scalability with respect to dataset scale,
we further evaluated the scalability of our algorithm with
respect to the number of GPUs. Figures 3 and 4 show the
speedups of mCUDA-MEME on different numbers of GPUs
compared to parallel MEME on 32 CPU cores for all
datasets. From the figures, we can see that for each dataset,
the speedup increases (nearly) linearly as the number of
GPUs increases both for the SPS stage and for the overall
execution.

The above evaluation and discussions demonstrate the
power of mCUDA-MEME to accelerate motif discovery for
large-scale datasets with relatively inexpensive GPU

431427427

0

2

4

6

8

10

12

1 2 4 6 8

Sp
ee

du
p

No. of GPUs

NRSF500
NRSF1000
NRSF2000

Figure 3. The speedups for the SPS stage of mCUDA-MEME on
different numbers of GPUs.

0
1
2
3
4
5
6
7
8
9

1 2 4 6 8

Sp
ee

du
p

No. of GPUs

NRSF500
NRSF1000
NRSF2000

Figure 4. The speedups for the overall execution of mCUDA-MEME
on different numbers of GPUs.

clusters. The genome-wide identification of TFBSs has been
heavily constrained by the long execution time of motif
discovery algorithms. Thus, we believe biologists will
greatly benefit from the speedup of our algorithm.

V. CONCLUSION
In this paper, we have presented mCUDA-MEME, an

ultrafast scalable many-core motif discovery algorithm for
multiple GPUs. The use of hybrid CUDA, OpenMP and MPI
programming models enables our algorithm to harness the
powerful compute capability of GPU clusters. mCUDA-
MEME achieves significant speedups for both the starting
point search stage (and the overall execution) when
benchmarked, using real datasets, against parallel MEME
running on 32 CPU cores. Speedups of up to 1.4 (1.1) on a
single GPU of a Fermi-based Tesla S2050 quad-GPU
computing system and up to 10.8 (8.3) on the eight GPUs of
a two Tesla S2050 system were observed. Furthermore, our
algorithm shows good scalability with respect to dataset size
and the number of GPUs. Since the long execution time of
motif discovery algorithms has heavily constrained the
genome-wide TFBS identification, we believe that biologists
will benefit from the high-speed motif discovery of our
algorithm on relatively inexpensive GPU clusters. As
mentioned above, the load balancing policy of mCUDA-
MEME is targeted towards homogenous GPU clusters,
distributing workload symmetrically between GPUs.

However, our current load balancing policy might not be
able to work well for heterogeneous GPU clusters. Hence,
designing a robust and appropriate load balancing policies
for heterogeneous GPUs clusters is part of our future work.
The source code of mCUDA-MEME and the benchmark
datasets are available for download at
https://sites.google.com/site/yongchaosoftware/mcuda-
meme.

REFERENCES
[1] C. E. Lawrence, and A. A. Reilly, “An expectation maximization

(EM) algorithm for the identification and characterization of common
sites in unaligned biopolymer sequences,” Proteins, vol. 7, no. 1,
1990, pp. 41-51

[2] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.
Neuwald, and J. C. Wootton, “Detecting subtle sequence signals: a
Gibbs sampling strategy for multiple alignment,” Science, vol. 262,
1993, pp. 208–214

[3] P. Sumazin, G. Chen, N. Hata, A. D. Smith, T. Zhang, and M. Q.
Zhang, “DWE: discriminating word enumerator,” Bioinformatics,
vol. 21, no. 1, 2005, pp. 31–38

[4] C. Sabatti, L. Rohlin, K. Lange, and J. C. Liao, “Vocabulon: a
dictionary model approach for reconstruction and localization of
transcription factor binding sites,” Bioinformatics, vol. 21, no. 7,
2005, pp. 922–931

[5] T. L. Bailey, and C. Elkan, “Fitting a mixture model by expectation
maximization to discover motifs in biopolymers,” Proceedings of the
Second International Conference on Intelligent Systems for
Molecular Biology, 1994, pp. 28-36

[6] V. Boeva, D. Surdez, N. Guillon, F. Tirode, A. P. Fejes, O. Delattre,
and E. Barillot, “De novo motif identification improves the accuracy
of predicting transcription factor binding sites in ChIP-Seq data
analysis,” Nucleic Acids Research, vol. 38, no.11, 2010, pp. e126

[7] W. N. Grundy., T. L. Bailey, and C. P. Elkan, “ParaMEME: a parallel
implementation and a web interface for a DNA and protein motif
discovery tool,” Comput. Appl. Biosci., vol. 12, no. 4, 1996, pp. 303-
310

[8] G. K. Sandve, M. Nedland, Ø. B. Syrstad, L. A. Eidsheim, O. Abul,
and F. Drabløs, “Accelerating motif discovery: Motif matching on
parallel hardware,” LNCS, vol. 4175, 2006, pp. 197–206

[9] NVIDIA CUDA C programming guide version 3.2,
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs
/CUDA_C_Programming_Guide.pdf.

[10] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled
graphics processing units,” BMC Research Notes, vol. 2, no. 73, 2009

[11] Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++2.0: enhanced
Smith-Waterman protein database search on CUDA-enabled GPUs
based on SIMT and virtualized SIMD abstractions,” BMC Research
Notes, vol. 3, no. 93, 2010

[12] Y. Liu, B. Schmidt, and D. L. Maskell, “MSA-CUDA: Multiple
Sequence Alignment on Graphics Processing Units with CUDA,”
20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, 2009, pp. 121-128

[13] H. Shi, B. Schmidt, W. Liu, and W. Müller-Wittig, “A parallel
algorithm for error correction in high-throughput short-read data on
CUDA-enabled graphics hardware,” J Comput Biol., vol. 17, no. 4,
2010, pp. 603-615

[14] Y. Liu, B. Schmidt, W. Liu, and D. L. Maskell, “CUDA-MEME:
accelerating motif discovery in biological sequences using CUDA-
enabled graphics processing units,” Pattern Recognition Letters, vol.
31, no. 14, 2010, pp. 2170 - 2177

[15] T. L. Bailey, M. Bodén, T. Whitington, and P. Machanick, “The value
of position-specific priors in motif discovery using MEME, “ BMC
Bioinformatics, vol. 11, no. 179, 2010

432428428

[16] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” ACM Queue, vol. 6, no. 2, 2008, pp. 40-
53

[17] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: a unified graphics and computing architecture,” IEEE Micro.,
vol. 28, no. 2, 2008, pp. 39-55

[18] Fermi: NVIDIA’s next generation cUDA compute architecture,
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_F
ermi_Compute_Architecture_Whitepaper.pdf

[19] OpenMP tutorial, https://computing.llnl.gov/tutorials/openMP
[20] MPI tutorial, https://computing.llnl.gov/tutorials/mpi

433429429

