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Abstract—Millions of DNA sequences (reads) are generated
by Next Generation Sequencing machines everyday. There
is a need for high performance algorithms to map these
sequences to the reference genome to identify single nucleotide
polymorphisms or rare transcripts to fulfill the dream of per-
sonalized medicine. In this paper, we present a high-throughput
parallel sequence mapping program pFANGS. pFANGS is
designed to find all the matches of a query sequence in the
reference genome tolerating a large number of mismatches
or insertions/deletions. pFANGS partitions the computational
workload and data among all the processes and employs load-
balancing mechanisms to ensure better process efficiency. Our
experiments show that, with 512 processors, we are able to map
approximately 31 million 454/Roche queries of length 500 each
to a reference human genome per hour allowing 5 mismatches
or insertion/deletions at full sensitivity. We also report and
compare the performance results of two alternative parallel
implementations of pFANGS: a shared memory OpenMP
implementation and a MPI-OpenMP hybrid implementation.
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I. INTRODUCTION

DNA sequencing is used in a variety of applications in
medicine, such as SNP discovery, comparative genomics,
gene expression, genotyping, metagenomics and personal
genomics. Recent developments in Next Generation Se-
quencing (NGS) technology have resulted in affordable
desktop-sized sequencers with low running costs and high
throughput. These sequencers produce small fragments
(reads) of the genome being sequenced as a result of
the sequencing process. For example, the Illumina-Solexa
system can generate 50 million sequences of length 30-50
nucleotides in just 3 days [10]. The Roche-454 system can
generate 400, 000 sequences of length 250-500 nucleotides

in a 7.5 hour run [20]. The ABI-SOLiD system can also gen-
erate data at a similar rate [10]. NGS is a rapidly advancing
field with a very high rate of increase in throughput. It is
speculated that eventually the running costs of sequencing
a genome will be as low as $1000 [24]. This will trigger
the use of such systems in laboratories around the world.
The computational demands for processing NGS data are
tremendous and far exceed current capabilities. In fact,
without substantial advances in high-performance, scalable
algorithms, very little progress would be made to extract
knowledge from such a rich set of data. Therefore, there
is a need to design powerful algorithms and systems which
can efficiently handle the computational challenges posed by
NGSs.

An important step in many of the applications mentioned
above is mapping a set of read sequences to a canonical
genomic database. A typical genomic database, for instance,
the human genome, can be 3 billion nucleotides in length.
The length of the read sequences depends on the sequencing
technology. In this article, we focus on the mapping of
the longer reads produced by Roche-454 system. A 454
sequencer was recently used for sequencing the DNA se-
quence of James D. Watson to 7.4 fold redundancy in just
two months [27]. The authors used BLAT [11] to map
the 454 reads to a reference genome, which is not at par
with the sequencing speed. Moreover, BLAT is designed for
local alignment, while sequence mapping requires the entire
length of a query to be mapped. There have been consider-
able efforts to develop faster sequence mapping tools which
can match the speed of Next Generation Sequencers, but
most of them have been for reads generated by Illumina-
Solexa machines (for example, ELAND, MAQ [13], SOAP
[14] and BowTie [12]). Even though 454 sequencers are



widely used by researchers, there has not been sufficient
research to develop faster tools for mapping 454 reads. To
the best of our knowledge, the only algorithms which are
specifically designed for 454 data are BWA and FANGS
[17]. BWA is an unpublished package written by the authors
of Maq. BWA is based on Burrows-Wheeler Transform
(BWT). It supports gapped global alignment with respect
to queries and is one of the fastest short read alignment
algorithms while also finding suboptimal matches. However,
[17] demostrates that BWA suffers from low sensitivity.
FANGS dynamically reduces the search space by using q-
gram filtering and the pigeonhole principle, to rapidly map
454 reads onto a reference genome. FANGS allows a large
number of mismatches and insertion/deletions. It tries to find
all matches of a read in the reference genome and maps
nearly 100% of the reads. FANGS is shown to be upto an
order of magnitude faster than the state-of-the-art techniques
for 454 reads as long as the number of mismatches and
insertion/deletions allowed is small. However, the execution
time of FANGS increases dramatically with the increase
in number of mismatches and insertion/deletions allowed.
Therefore, there is a need to design powerful high through-
put parallel programs and systems which can efficiently and
accurately map 454 reads.

To the best of our knowledge, very little work has been
done to parallelize sequence mapping algorithms. The ap-
proaches to parallelize high throughput sequence mapping
tools typically include running a separate instance of the
tool on each compute node and dividing the queries equally
among these nodes. If the genome database occupies only
a small amount of memory, this approach can give close
to linear speedups. However, for large databases, like the
human genome, the amount of memory required may not
be available on one node. Moreover, the large memory
requirement is also prone to having cache-misses and page-
faults. MPIBLAST [9], one of the most prominent parallel
sequence alignment tools, tries to solve this problem by
distributing the database across processors. It uses a master-
slave paradigm in which the master assigns each slave
a batch of queries to process. Once a slave finishes its
batch of queries, it requests the master for more queries.
If there are more queries to be processed, the master sends
another batch of queries to the worker. More recently, [6]
focusses on the short read sequence mapping problem and
discusses six different strategies of parallelization of hashing
and indexing based algorithms. While the sequential and
parallel tools mentioned above demonstrate a significant
performance improvement over earlier sequence mapping
tools, the throughput requirement of NGSs is also increasing
rapidly and developing faster tools is constantly needed.

In this article, we describe our high-throughput paral-
lel sequence mapping program pFANGS, a parallel Fast
Algorithm for Next Generation Sequencers. pFANGS is
a parallel implementation of FANGS. We discuss three

parallel implementations of FANGS: (a) a shared mem-
ory task-parallel implementation using OpenMP, (b) an
MPI-OpenMP task-parallel hybrid implementation, and (c)
pFANGS: a fully data- and task-parallel MPI implementation
(Section VI). The first two implementations are based on
query segmentation principle. The third implementation fully
distributes the computational workload and data among all
the processes and employs load-balancing mechanisms to
ensure better process efficiency. We present the performance
results in Section VII.

In comparison with existing tools, the most significant
features of pFANGS are:
• High flexibility. It allows a large number of mismatches

and insertions/deletions in mapping.
• High Sensitivity. It tries to find all the matches for each

query and maps nearly 100% of the queries.
• Ability to handle large datasets. Using pFANGS, we

have mapped approximately 31 Million queries of
length 500 each to a reference human genome per
hour allowing 5 mismatch or insertion/deletion at full
sensitivity.

• Nearly linear scalability. With 512 processors, pFANGS
achieves a speedup of upto 225 over the the time taken
with 2 processors.

The remainder of the paper is organized as follows. We
give a formal definition of the problem in Section II followed
by a background in Section III. Section IV describes our key
idea. Section V describes the sequential FANGS algorithm in
detail. We describe our parallel implementations in Section
VI followed by results in Section VII and conclusion in
Section VIII.

II. PROBLEM DEFINITION

The sequence alignment problem has been studied in
great detail in literature. However, it has become even more
significant in the wake of the new sequencing technologies
in the form of Next Generation Sequencers. Consider, for
example, using a 454 sequencer [20] to sequence a human
genome. It produces a collection of small DNA fragments
called reads. These reads are about 250-500 bases in length.
Now, we need to search a read, Q, in the database consisting
of a reference human genome, G. The database and the reads
are from the genomes of different human beings. Moreover,
there can be sequencing errors also. Hence, we may not be
able to find an exact match of the read Q in the database.
However, since both G and Q are from the genomes of the
same species, we should be able to find a near-exact match
of Q in G. Hence, while searching for Q in G, we only
look for alignments which have less than a certain number
of mismatches and insertion/deletions.

Given a string S over a finite alphabet Σ, we use |S| to
refer to the length of S, S[i] to denote the ith character of
S and S[i, j] to denote the substring of S which starts at
position i and ends at position j. A q-gram of S is defined



as a substring of S of length q > 0. The unit cost edit
distance between two strings S1 and S2 is defined as the
minimum number of substitutions, insertions and deletions
required to convert S1 to S2 [23]. We will use edist(S1, S2)
to refer to the unit cost edit distance between S1 and S2. It
can be calculated by using Needleman-Wunsch algorithm in
O(|S1||S2|) time [18]. For a string S, we will refer to the
natural decimal representation of S over Σ as dec(S,Σ). For
example, for Σ = {A,C,G, T}, the nucleotides A,C,G, T
are mapped to the numbers 0, 1, 2, 3 respectively. Therefore:

f(A) = 0, f(C) = 1, f(G) = 2, f(T ) = 3,

And, dec(S, {A,C,G, T}) =
∑|S|−1

i=0 4if(S[i])
This brings us to the formal definition of the sequence

mapping problem. We can represent every genomic sequence
as a string over the alphabet Σ = {A,C,G, T}. Given a
genomic database G of subject sequences {S1, S2, · · ·, Sl},
a query sequence (read) Q of length m and an integer n, we
are required to find all substrings from G, such that for each
substring B, edist(B,Q) ≤ n. We will denote the integer
n as the maxEditDist parameter.

III. BACKGROUND

The classical approach to sequence alignment involves
several variants of dynamic programming, the most promi-
nent of which are the algorithms of Needleman-Wunsch
[18] and Smith-Waterman [26]. Dynamic programming is
excessively expensive in terms of time and space for larger
databases like the human genome, and this has led to the
development of faster hash-table based heuristic methods
like FASTA [21], BLAST [4], BLAT [11] and SSAHA
[19] and greedy algorithm based methods like MegaBLAST
[29]. BLAST has been the most popular tool for sequence
alignment. However, it usually takes several hundreds of
days for the data generated by the latest sequencers in just
a few hours and hence is not a feasible option.

Recently, the advent of Next Generation Sequencers has
inpired the researchers to develop high-speed sequence map-
ping tools. Some of the most prominent recent tools for se-
quence mapping include ELAND, SHRiMP [1], RMAP [25],
SOAP [14], MAQ [13], SWIFT [23], SeqMap [10], BowTie
[12], GMAP [28], Mosaik [2], BWA [3] and SSAHA2 [19].
The primary idea behind these algorithms is the following
lemma from [22].

Lemma 1: If two strings A[1..m] and B[1..m] have at
most n mismatches and p = b m

n+1c, then there must be an
integer x such that A[x : x+ p− 1] = B[x : x+ p− 1]. In
other words, A and B share a common substring of length
p.

We can easily derive the following corollary from Lemma
1.

Corollary 1: Given a genome G[1..L] and a query
Q[1..m] (L > m), if there is a substring α of G, such
that α and Q match with an edit distance of at most

n and p = b m
n+1c, then there must exist x, y such that

G[x : x+ p− 1] = Q[y : y + p− 1].
The substring α is called a homologous region of Q in G.

Most sequence mapping algorithms first find regions in the
database that share a substring of length p with the query in
order to get the locations of all the candidate homologous
regions of G which can potentially have an edit distance
of less than the maxEditDist. These candidate regions are
then checked using an accurate algorithm to verify if the
edit distance is indeed less than maxEditDist.

FANGS also uses the above corollary to filter out non-
homologous regions. A q-hit between two strings S1 and S2

is defined as the tuple (x, y) such that S1[x : x+ q − 1] =
S2[y : y+ q−1]. FANGS creates an index of all q-grams in
the database, called q-gram index, and uses it to find all q-
hits of Q and G. Using the q-hits and corollary 1, it identifies
regions in the reference genome that can potentially be
homologous to the query. FANGS further analyzes these
regions to check if the edit distance is within limits. We
explain FANGS in complete detail in Section V.

Since BLAST is the most popular sequence alignment
tool, several attempts have been made to parallelize it. Early
attempts at parallelization have used query segmentation
approach [7], [8], where individual compute nodes inde-
pendently search disjoint sets of queries against the whole
database. This technique works well when the database can
fit in the memory of a compute node. However, this ap-
proach suffers from caching and paging overheads when the
database requires large amount of memory as the database is
randomly accessed. This led to the development of database
segmentation [5], [9], [15], [16], where the genomic database
is evenly distributed across compute nodes. This reduces
the caching and paging overheads as each compute node
uses a small amount of memory for its part of the database.
Database segmentation divides the database into mutually
exclusive parts and assigns one part to each node. Every
node searches for the query in its own part of the database
and results from all processes are merged in the end. In
particular, mpiBLAST [9] uses a master-worker paradigm
in which the master gives each worker a batch of queries
to process. Once a worker finishes its batch of queries, it
notifies the master. If there are more queries to be processed,
the master sends another batch of queries to the worker.

Six parallelization methods for short sequence mapping
algorithms are proposed in [6]. The methods are general
and should work for most hashing and indexing based
algorithms. The first three methods are: (i) Partition Read
Only (PRO) partitions the reads into equal parts and sends
each part to one processing node. Each node keeps its own
copy of the index of the whole genome. This method is
useful to match very large number of reads to a relatively
short reference genome. If the genome is large, the index
may not fit in the memory available on one node. (ii)
Partition Genome Only (PGO) partitions the genome equally



amongst all processing nodes. Each node creates the index of
only the assigned part of the genome and processes all reads
against it. PGO performs well when the genome size is large
and the number of reads is small but does not scale well if
the number of reads is large. (iii) Suffix Based Assignment
(SBA) assigns a set of suffixes to each processing node
and makes them only responsible for genome and read
sequences that end with the corresponding suffixes. The
other methods are combinations of the first three methods.
The authors compare the scalability of the proposed methods
using theoretical analysis and experimentation using SOLiD
System Color Space Mapping Tool.

IV. KEY IDEA

All the parallelization methods mentioned above are
coarse-grained in the sense that they treat the sequential
algorithm as one application and run separate instances of
the sequential application on different parts of the queryset
and the database. Many of the hashing and indexing based
algorithms have essentially four stages:
• Creating the index of the database.
• Finding hits in the database based on the index.
• Reducing the number of hits to be processed using a

filtering criteria.
• Processing the list of hits remaining to get the final

mapping.
In this paper, we exploit this generic structure to achieve a

more fine-grained parallelization. We parallelize each stage
separately and perform load balancing between stages to
achieve very high-throughputs. We also explore the possi-
bility of using shared memory OpenMP programming for
parallelization of hashing based sequence mapping algo-
rithms. We discuss the implementation and compare the per-
formance results of two alternative parallel implementations
of pFANGS: a shared memory OpenMP implementation
and a MPI-OpenMP hybrid implementation. Although we
demonstrate our parallelization techniques using FANGS,
they should be applicable to most hashing and indexing
based algorithms.

V. FANGS

The FANGS algorithm can be divided into the following
stages: 1) Creation of the q-gram index, 2) Finding q-hits
using the q-gram index, 3) Finding potential holomologous
regions and 4) Verifying the potential homologous regions
to check if the edit distance is within limits.

A. Preprocessing step: Creation of the q-gram index

Here we describe the construction of the q-gram index.
We preprocess the sequences in the database by breaking
them into non-overlapping q-grams and store the location
of each q-gram in the q-gram index. We will refer to the q-
gram index as the index-table. We refer to the size of these
non-overlapping q-grams, q, as tileSize. Each q-gram t can

Algorithm GetHits(seq, dbIndex, q)
Input:
seq : the query sequence.
dbIndex : The index-table of the database obtained after
preprocessing
q : q-gram size used for the creation of q-gram index.
Output:
hitList : List of all q-hits.
wildCardList : List of query indices for which the q-gram
starting at that index is more frequent than maxFreq

1: hitList⇐ φ
2: wildCardList⇐ φ
3: for i in 0 to len(seq)− q + 1 do
4: locations, numLocations ⇐ getDBLocations(

dbIndex, seq[i : i+ q − 1])
5: if numLocations = −1 then
6: addToList(wildCardList, i)
7: else
8: for j in 1 to numLocations do
9: hit.dStart = locations[j]

10: hit.qStart = i
11: addToList(hitList, hit)

Figure 1. Algorithm for obtaining q-hits

be uniquely mapped to a corresponding integer dec(t,Σ) as
defined in Section II.

For each q-gram t, we calculate two values: (1)
tileHead(t) = dec(t[1 : 12],Σ) and (2) tileTail(t) =
dec(t[13 : q],Σ). The index-table consists of two arrays.
The first array occurrenceTable stores (i) the location of
t[1 : 12] in the database G and (ii) tileTail(t) for each
q-gram. Hence, occurrenceTable contains the concatenation
of lists L(t[1 : 12]) = {i, tileTail(G[i : i + q − 1])|G[i :
i + 11] = t[1 : 12]}, where t is a q-gram, that is t ∈ Σq .
For each q-gram t ∈ Σq , the position tileHead(t) in the
second array lookupTable contains the pointer p(t), which
points to the beginning of the correponding list L(t[1 : 12])
in the occurrenceTable; and the count c(t) of the number
of occurences of t[1 : 12] in G. Hence the length of the
lookupTable is |Σ|12. In order to find hits for a q-gram
t, it first indexes the lookupTable with tileHead(t). Let
L(t[1 : 12]) be the corresponding list. The q-hits can be
found by traversing through the list and outputting those
locations for which tileTail(t) matches.

The index-table is created in two passes. In the first pass,
we find the number of non-overlapping occurrences of each
q-gram in the database, so that we can allocate appropriate
amount of memory to the occurrenceTable and calculate the
pointer positions for lookupTable. In the second pass, we fill
the array occurrenceTable with appropriate values for the q-
grams. Note that creation of index need to be done only
once for a given value of q. After that, we can process any



Algorithm CheckRegions(seq, n, db, regionList)
INPUT:
seq : the query sequence.
n : maximum edit distance allowed in the mapping
(maxEditDist).
db : genomic database.
regionList : list of candidate homologous regions.
Output:
All mappings of the query sequence seq in the database db

1: for all region in regionList do
2: if edist(region, seq) ≤ n then
3: outputmapping(region, seq)

Figure 3. Algorithm for checking the candidate homologous regions to
see if they are within the maxEditDist

number of queries.
The above structure of q-gram index is similar to the

one used by [11]. The main difference is that [11] stores
the locations of all the q-grams for q > 12. But this
greatly reduces the speed of the algorithm. We ignore all
the q-grams with number of occurrences in the database
greater than a certain threshold frequency, say maxFreq.
Hence for such highly frequent q-grams, FANGS makes the
locations corresponding to frequently occurring q-grams in
the occurrenceTable as −1. This filtering step helps us in
two ways. First, it reduces the index table size. Second,
it avoids unnecessary false hits due to repetition of DNA
thereby improving efficiency. Due to this technique, we need
only 1GB memory to store the index of the human genome
that is 3GB in size.

B. Using index-table to map sequences

A substring of size p has at least bp−(q−1)
q c q-grams.

Substituting p from corollary 1, we get:
Corollary 2: Given a query Q[1..m] and database G[1..L]

(m < L). For all substrings α of G such that edist(Q,α) <
n, ∃x, y such that Q[x : x+q−1] = α[y : y+q−1], Q[x+q :
x+ 2q − 1] = α[y + q : y + 2q − 1], · · · , Q[x+ (T − 1)q :
x + Tq − 1] = α[y + (T − 1)q : y + Tq − 1], where T is
given by:

T = b
b m

n+1c − (q − 1)
q

c

We use the above corollary to dynamically reduce the
search space and map query sequences at a very high speed.
For each query, we first find the list of candidate homologous
regions and then verify each region to check whether the edit
distance is within maxEditDist. The complete algorithm can
be divided in three steps:
• GetHits: First we find all the q-hits of the query in the

database. Each q-hit consists of two values - starting
position of the q-gram in the query (qStart) and in the

Algorithm MapSequences(seqList, seqCount, db,
dbIndex, n, q, outF ile)
INPUT:
seqList : list of query sequences.
seqCount : total number of query sequences
db : genomic database.
dbIndex : The index-table of the database obtained after
preprocessing
n : maximum edit distance allowed in the mapping
(maxEditDist).
q : q-gram size used for the creation of index-table.
outF ile : file where output has to be written.
Output:
All mappings of each query sequence in seqList in the
database db

1: for all seq in seqList do
2: hitList⇐ GetHits(seq, dbIndex, q)
3: T = b b

m
n+1 c−(q−1)

q c
4: matchingBlockList ⇐

GetMatchingBlocks(hitList, wildCardList,
q, T )

5: regionList⇐ GetRegionList(matchingBlockList,
q, size)

6: CheckRegions(seq, n, db, regionList)

Figure 4. The sequence mapping algorithm

database (dStart). The algorithm is given in Figure 1.
The algorithm takes each overlapping q-gram in the
database and finds the locations of all occurrence of
the q-gram in the database using the index-table. The
algorithm creates a hit with each location and adds it
to the hitList. For some of the q-grams which are more
frequent than the maxFreq parameter, the number of
locations numLocations is returned as −1. We add
all such query indices to the wildCardList.

• FindRegions: In the next step, we stitch together q-
hits which are adjacent to each other both in the query
and the database to create maximal matchingBlocks. We
define a block as a contiguous sequence of q-grams in a
sequence. Also, a matchingBlock is defined as a block
in the query that perfectly matches a block of same
length in the database. We represent a matchingBlock
as a tuple (qStart, dStart, len), where qStart and
dStart are the starting locations of the first q-gram
of the matchingBlock in the query and the database
respectively and len is the number of q-grams in the
matchingBlock. A maximal matchingBlock is a match-
ingBlock which will result in a mismatch if extended
any further on either side. The algorithm is given in
Figure 2.
As the hits are obtained in the order of increasing



Algorithm FindRegions(hitList, wildCardList, q, size,n, T (> 1))
Input:
hitList : List of all q-hits ¡dj , rk¿, where dj is the dStart value and rk is the qStart value.
wildCardList : List of query indices for which the q-gram starting at that index is more frequent than maxFreq
q : q-gram size used for the creation of index-table.
size : size of the query sequence.
n : maximum edit distance allowed in the mapping (maxEditDist).
T : T as given in corollary 2
Output:
regionList : list of candidate homologous regions.

1: sortList(hitList, dStart)
2: Let d1, d2, ..., dx be the distinct dStart values in ascending order.
3: for all i do
4: Let < di, ri,1 >,< di, ri,2 >, · · ·, < di, ri,y > be the hits containing di

5: Let < di+1, ri+1,1 >,< di+1, ri+1,2 >, · · ·, < di+1, ri+1,z > be the hits containing di+1

6: if there exists a, b such that ri+1,b − ri,a = di+1 − di then
7: if di+1 and di are either adjacent in the database or are separated only by highly frequent q-grams then
8: add < di+1, ri+1,b > to the matchingBlock containing < di, ri,a >
9: if size of matchingBlock ≥ T then

10: add the matchingBlock to the matchingBlockList
11: regionList⇐ φ
12: for all blockHit in matchingBlockList do
13: region.dBegin⇐ blockHit.dStart− blockHit.qStart− n
14: region.dEnd⇐ blockHit.dStart− blockHit.qStart+ size− 1 + n
15: addToRegionList(regionList, region)

Figure 2. Algorithm for stitching together q-hits to find candidate homologous regions

qStart values, the hitList is already sorted according
to the qStart values. Now we sort the list according
to database positions (dStart values). As a result, the
list is now sorted according to the dStart values and
for each dStart value, it is sorted according to the
qStart values. Let d1, d2, ..., dx be the distinct dStart
values in ascending order. For each i, we check if
di+1−di is equal to q; i.e.; they are the neighboring q-
grams in the database. Let < di, ri,1 >,< di, ri,2 >,
· · ·, < di, ri,y > be the hits containing di and <
di+1, ri+1,1 >,< di+1, ri+1,2 >, · · ·, < di+1, ri+1,z >
be the hits containing di+1. If di+1 − di = q, then
we search for a pair of hits < di, ri,a > and <
di+1, ri+1,b > such that ri+1,b − ri,a = q. This means
the pair of hits has neighboring tuples both in the query
and the database. Hence, we have a matchingBlock of
length 2 q-grams. This way we keep on combining hits
to form matchingBlocks. If the length of a matching-
Block ≥ T , we store it in the matchingBlockList.
This technique does not capture all the matchingBlocks
with length greater than or equal to T because we
do not store the database locations of very frequently
occuring q-grams. Since multiple matchingBlocks may
contain the frequently occuring q-grams, this leads to

some of them not being detected. In order to solve this
problem, we give a wildcard to all the frequently occur-
ing q-grams. According to this wildcard, the frequently
occuring q-grams can be part of any matchingBlock.
Therefore, if two matchingBlocks are separated only by
frequently occuring q-grams, the two of them together
with the frequently occuring q-grams are combined to
form one big matchingBlock.
Once we have the matchingBlockList, we extend each
matchingBlock in the list to create a candidate homol-
ogous region. We also keep a buffer of size n on either
side to account for gaps in the alignment. Each region
consists of two values - beginning location, dBegin
and end location, dEnd of the region in the database.
Hence the beginning of the matchingBlock would be:

dBegin = dStart− qStart− n

and the end would be:

dEnd = dStart− qStart+ size− 1 + n

Thus the homologous region is created by extending
the matchingBlock on either side to cover the whole
query and adding a buffer of n bases on either side.
The function addToRegionList ensures that we do not



add two regions which have a huge overlap as they will
result in the same mapping. If one region completely
covers another region, we only include the former.
Moreover, if two regions have an overlap of more than
a certain value, then we merge them together into one
region. This is done to avoid multiple outputs for the
same homologous region.

• CheckRegions: The potential homologous region is
further processed by using an adaptation of the
Needleman-Wunsch algorithm to check if the homolo-
gous region actually has an edit distance ≤ n as given
in Figure 3.

The complete algorithm is as given in Figure 4. The
novelty of FANGS lies in the fact that it stitches the hits
obtained into contiguous blocks of query which exactly
match a contiguous block in the database. Another important
contribution is that it gives a wildcard to all highly frequent
q-grams. Hence, even though we do not store the highly
occurring q-grams in the index-table, we can still map
queries with 100% sensitivity. The above algorithm, though
very fast, is still not at par with the current sequencing
speeds. Hence there is a need to parallelize the algorithm.
For the human genome, the algorithm needs 1GB memory
for the index-table. Moreover, it also needs to keep the
database G in memory as it needs the database to create the
index-table and also to examine the candidate homologous
regions in the end. Hence, the algorithm requires about
4.5GB memory for mapping reads to a reference human
genome. This large amount of memory usage can potentially
lead to a number of cache-misses and page-faults due to
random access and hence slows down the execution. Hence,
we need to distribute both the index and the database across
processor nodes in order to run it efficiently on a cluster.

VI. PARALLEL APPROACHES

In this section, we investigate three parallelization ap-
proaches for FANGS: (a) a shared memory task-parallel
implementation using OpenMP, (b) an MPI-OpenMP task-
parallel hybrid implementation, and (c) a fully data- and
task-parallel MPI implementation called pFANGS.

A. Shared Memory Parallel Implementation

Since the human genome database occupies significant
amount of memory, a shared memory parallel implementa-
tion seems like a natural choice as we can load both index
and database in the shared memory. The target platform
is the parallel machine equipped with multiple CPU cores
sharing a large sized main memory. We adopt the query
segmentation strategy in which each thread takes a subset
of the queries and processes them independently. In other
words, we parallelize the outermost loop of the sequen-
tial algorithm. The algorithm divides the queries equally
amongst all threads. All the threads access the same copy of
the database and the index-table stored in shared memory.

Each thread uses FANGS to perform the alignments and
stores the results in the localOutputList data structure. The
globalOutputList is shared across all threads. Once a thread
finishes processing all its queries it acquires exclusive access
to the globalOutputList and concatenates its localOutputList
to it. After all the children threads have merged their results
to the global list, the parent thread writes all the outputs to
the output file.

Accessing the shared data structures, such as genome
database, index table, and globalOutputList, must be serial-
ized in order to achieve data atomicity and cache coherence.
This can become a major performance bottleneck as the
number of threads increase.

B. MPI-OpenMP Hybrid Implementation

In order to overcome the drawbacks of the shared memory
approach, we have also designed an MPI-OpenMP hy-
brid approach. This approach targets the parallel computers
equipped with multiple SMP compute nodes interconnected
with a high speed communication network and the memory
in each node is not directly accessible to a remote node. In
this hybrid approach, the index-table is built independently
in each compute node. All processes running on the same
node share the index-table by accessing the shared memory.
The queries are evenly assigned to the MPI processes across
all compute nodes. The alignment outputs produced at each
node are saved locally, which are later sent to the root
process. The root process concatenates all the partial results
and writes to the output file.

There is a single MPI process running on each compute
node and OpenMP is used to enable thread parallelism using
all cores in each node. Even though the memory size per
processing core is small, the combined shared memory of all
cores on a node is sufficient to hold both the database and the
index-table. Compared to the shared-memory method, this
approach alleviates the congestion problem by reducing the
number of processes accessing the shared memory. However,
since we are using more than 4GB of the memory on each
node, the problem of cache misses is still unsolved.

C. pFANGS: Fully Data and Task Distributed MPI Imple-
mentation

The above hybrid implementation may not be very scal-
able as it requires about 4.5GB memory per node. In this
section we describe a completely task and data parallel MPI
implementation, named pFANGS.

The idea is to distribute the entire database and the index-
table equally among all MPI processes. Recall that the
genomic database is available as a set of sequences {S1,
S2, · · ·, Sl}. As a preprocessing step, for each sequence
Si,we remove |Si|mod q nucleotides from the end so that
the length of each sequence is a multiple of q. Then we
store all the sequences in a file named genomeFile by
concatenating the sequences. To keep track of the positions
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Figure 5. Execution and flow of data through various stages of the
distributed MPI implementation

of these sequences, we also maintain a metadata file that
stores the name and length of each sequence.

PFANGS starts by having each process read an equal
contiguous portion of the genomeFile. For example, if the
length of the file is L and there are p processes, process
0 will read the first L

p nucleotides, process 1 will read the
second L

p nucleotides and so on. Recall that the length of
the lookupTable is 4q . In order to create the index-table in a
distributed manner, process 0 is responsible for the first 4q

p
entries of the lookupTable and the corresponding part of the
occurrenceTable, process 1 is responsible for the second 4q

p
entries of the lookupTable and so on. Each process creates
non-overlapping q-grams from its chunk of the database
and sends each q-gram to the process responsible for the
corresponding part of the index-table. After receiving all
the q-grams, each process creates its part of the index-table.
This way we create the index-table in a distributed manner.
Each process discards its chunk of the database read after
the creation of the index-table.

Figure 5 shows the execution stages and the communica-
tion patterns for the query processing phase of the distributed
MPI implementation with p processes. The queries are
equally assigned to all processes. The query processing
phase is divided into five stages.

• GetHits: Each MPI process takes its assigned queries
and finds all the overlapping q-grams. Each q-gram is
represented using three numbers: tileHead, tileTail
and queryId; and stored in an array. The array is
sorted according to the tileHead value. Hence, the q-
grams that whose corresponding index-table entries are
on one process are located in contiguous locations in
the array. The process then sends each q-gram to the
process which has the corresponding part of the index-
table. It also receives q-grams which correspond to its

part of the index-table. For all these q-grams, it hashes
the corresponding hits using the index-table. Each hit
consists of three values: the database location (dStart)
the query location (qStart) and the queryId. It also
finds all the wildcard hits. Each wildcard hit consists
of the query location (qStart) and the queryId.

• RedistributeHits: We redistribute the hits and wildcards
across all processes such that after redistribution, all
hits and wildcard hits corresponding to one query are on
one process and hits are approximately evenly divided
across all processes.

• FindRegions: Every process processes all the hits for
each assigned query to obtain the candidate homol-
ogous regions using the algorithm given in Figure
2. A candidate homologous regions consists of three
numbers: (1) dBegin, (2) dEnd and (3) queryId,
where dBegin and dEnd are the start and end positions
of the candidate region in the database.

• RedistributeRegions: The candidate homologous re-
gions are redistributed across all processes such that
the number of regions on each process is approximately
equal and regions with close dBegin values are on the
same process. In order to do this, we perform a global
bucket sort on all the regions across all processes based
on the dBegin value. Then we divide the sorted list of
regions into equal parts and assign one part to each
process.

• CheckRegions: Each process takes the list of regions
(regionList) assigned to it. The regions are already
sorted according to dBegin values as a result of the
global bucket sort. Each process reads the genome
database from minimum of dBegin values to maximum
of dEnd values of all the assigned regions. Then it
checks each candidate region one by one to see if
the edit distance is indeed less than maxEditDist using
the algorithm given in Figure 4. All the homologous
regions, which satisfy the criteria, are sent to the root
process. The root process concatenates the results from
all processes and writes them to the output file. Since
the regions are processed in increasing order of dBegin
values and regions with close dBegin values are on the
same process, the disk IO cost due to random access is
minimized.

VII. EXPERIMENTS AND PERFORMANCE ANALYSIS

In our experiments, the human genome database is used.
The queries to be used to search against the database were
randomly sampled from the human genome into reads of
length 500. The number of queries is set to 10000 per
process. In this section, we will use the word ”process”
to refer to MPI process as well as OpenMP threads, so
that the presentation is consistent. The comparison of the
speed and the sensitivity and accuracy of FANGS with the
other existing tools is given in [17]. The paper shows that
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Figure 6. Number of queries mapped per hour to a reference human
genome using the shared memory OpenMP implementation for different
number of processes and different values of maxEditDist, n. Each query is
500 nucleotides long.
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Figure 7. Number of queries mapped per hour to a reference human
genome using the MPI-OpenMP hybrid implementation for different num-
ber of processes and different values of maxEditDist, n. We have used 2
shared memory cores per node. Each query is 500 nucleotides long.

sequential FANGS is upto an order of magnitude faster than
the state-of-the-art techniques for 454-Roche reads of length
500 allowing 5 mismatches or insertion/deletions. To the
best of our knowledge, there is no other published parallel
implementation for mapping 454-Roche sequencing data.
Hence, in this paper, we compare the parallel implementa-
tion with the sequential implementation of FANGS. All the
parallel implemantations retain the sensitivity and accuracy
of FANGS (data not shown here).

The experiments of using the shared-memory approach
were performed on the NCSA SGI Altix SMP machine
(Cobalt). Cobalt has two SMP nodes with 512 1.6 GHz Intel
Itanium 2 processors each. The machine has 4GB of memory
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Figure 8. Number of queries mapped per hour to a reference human
genome using the data and task parallel distributed memory MPI implemen-
tation for different number of processes and different values of maxEditDist,
n and tileSize, q. Each query is 500 nucleotides long.
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per processor. The SMP machine is running SGI ProPack 5
and Intel 10.1 C compiler. Figure 6 shows the number of
queries mapped per hour by using the shared memory par-
allel implementation. Since all the processes are accessing
the shared database and index-table, memory IO becomes a
major bottleneck when the number of processes increases.
Hence the number of queries mapped per hour increases first
and then starts decreasing when such bottleneck becomes
significant. It is clear that the shared memory approach
does not scale. It improves the performance up to a certain



number of threads beyond which the performance starts to
come down. Such performance saturation and degradation
are commonly seen on the SMP parallel machines, due to the
contention on the system bus as well as the system overhead
of cache coherence control.

The performance results of the MPI-OpenMP hybrid im-
plementation were collected from the NCSA IA-64 Teragrid
cluster (Mercury). Mercury consists of 887 IBM cluster
nodes: 256 nodes have dual 1.3 GHz Intel Itanium 2
processors and 631 nodes have dual 1.5 GHz Intel Itanium
2 processors. All the 1.5 GHz nodes and half of the 1.3
GHz nodes have 4GB of memory per node. The other
half of the 1.3 GHz nodes are large-memory processors
with 12GB of memory per node, making them ideal for
running applications which require large memory. The clus-
ter runs SuSE Linux and uses Myricom’s Myrinet cluster
interconnect network. We ran our experiments on the half
of the 1.3 GHz nodes which have 12GB of memory per
node. Figure 7 presents the performance results. The hybrid
approach scales much better than the pure shared-memory
approach, as each node has its own copy of the database
and the index-table. Only a limited number of threads share
each copy of the hash table using OpenMP. However, even
though there are a small number of OpenMP threads on each
node, they still have to contest for memory access thereby
resulting in a sub-optimal speedup. Recall that our algorithm
needs about 4.5GB memory to execute. Such large memory
requirement with random data accesses can cause significant
cache misses.

The distributed memory implementation was also evalu-
ated on Mercury. Figure 8 and Table II show the results.
It can be clearly seen that the distributed memory imple-
mentation scales very well. As the database and index-table
(See Table I for performance results of creation of the
index-table)are distributed across all processes, the memory
requirement on one process is smaller, thereby reducing the
number of cache-misses and page-faults. Another important
thing to note is that, for the shared memory and hybrid
implementations, we statically divided the queries equally
across all processes assuming that the amount of load is
equal for equal number of queries. Since our sequence map-
ping algorithm is heuristic based, the actual run times and
result sizes for queries are highly irregular and difficult to
predict. For the 128 process case, figure 9 displays the load
on each process for the hybrid and MPI implementations. It
is clear that there is significant load-imbalance for the hybrid
implementation, while the load for the MPI implementation
is much better balanced. For the MPI implementation, two
of the processes (0 and 85) always take significantly more
time in the CreateIndex and GetHits stage. Our initial
investigations reveal that the imbalance in load is due to
the irregular nature of the genomic databases.

Figure 10 shows the breakdown of time spent on each
stage of the query processing phase for various values of

Time taken (seconds)
q = 15 q = 20

# proc n=1 n=3 n=5 n=1 n=3 n=5
2 300.5 299.1 299.0 225.9 231.1 225.0
4 159.2 160.1 161.7 117.6 117.0 123.8
8 87.0 87.1 80.1 58.5 63.5 64.6

16 46.8 45.9 46.9 39.3 34.8 34.5
32 31.4 32.5 31.4 27.3 21.9 25.9
64 27.6 28.0 27.5 15.2 15.2 17.1
128 21.6 21.9 21.9 12.9 14.0 14.1
256 20.7 20.7 21.6 11.8 12.2 14.5
512 21.4 21.3 21.8 13.6 12.6 14.1

Table I
ABSOLUTE TIME TAKEN FOR THE CREATION OF INDEX TABLE FOR

DIFFERENT VALUES OF n AND q, FOR DIFFERENT NUMBER OF
PROCESSORS.

maxEditDist and number of processes used. As the value of
maxEditDist increases, more candidate homologous regions
are generated by FindRegions algorithm since the value of
T gets smaller. Moreover, CheckRegions stage has higher
computational complexity as compared to other stages.
Hence for larger values of maxEditDist, CheckRegions stage
consumes more than 85% of the overall execution time. Note
that each region can be examined independently of all other
regions. We dynamically balance the load across processes
by redistributing the candidate homologous regions evenly
across processes to achieve better process efficiency. Also
note that the percentage of time spent on the RedistributeHits
stage increases as the communication time increases with
the increase in the number of processes. This stage may
become a bottleneck and hinder scalability as the number
of processes increase. To avoid this, for larger number
of processes, we divide them into disjoint subsets of 128
processes each. The queries are equally divided among
these subsets. Each of these subsets work independently by
creating their own copy of the index. As a result of this, the
percentage of time spent on the RedistributeHits stage does
not increase as the number of processes increase beyond 128.
Notice from Figure 8 that we can process up to 31061118
queries per hour for n = 5 using 512 processors. Since
each query is of length 500, this means we can map 454-
Roche reads with a total of 31061118 ∗ 500 = 15.53 Billion
nucleotides per hour against a reference human genome.
Hence, with 512 processors, we are able to map 454/Roche
reads of 5.17x coverage of a human genome to a reference
human genome per hour allowing 5 mismatches or Indels
at full sensitivity. In other words, we can map 5.17 human
genomes per hour.

VIII. CONCLUSION

Advances in sequencing techniques necessitate the devel-
opment of high performance, scalable algorithms to extract
biologically relevant information from these datasets. In this
paper, we investigate different parallel implementations of a
fast sequence alignment tool FANGS. Firstly we develop
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Figure 10. Percentage of time spent on each stage of the distributed memory MPI implemenation for different number of processes and different values
of maxEditDist, n

Speedup with respect to two processes
q = 15 q = 20

# proc n=1 n=3 n=5 n=1 n=3 n=5
2 1.0 1.0 1.0 1.0 1.0 1.0
4 2.1 1.0 2.0 2.2 2.2 2.0
8 4.3 1.7 4.4 4.8 4.5 3.9

16 9.5 9.1 9.0 7.5 10.1 9.1
32 16.8 17.5 17.5 14.5 17.9 10.2
64 28.1 21.0 19.6 20.3 28.1 29.4
128 46.4 60.8 65.5 26.0 42.8 41.9
256 92.9 119.6 130.7 52.5 87.5 105.1
512 177.6 224.2 225.4 94.3 158.1 188.5

Table II
SPEEDUP FOR PROCESSING STAGE OF PFANGS WITH RESPECT TO TIME

TAKEN BY TWO PROCESSES FOR DIFFERENT VALUES OF n AND q, FOR
DIFFERENT NUMBER OF PROCESSES.

query segmentation based OpenMP and MPI-OpenMP hy-
brid implementations and discuss their limitations. We then
develop a highly optimized data- and task-distributed MPI
implementation with intelligent load-balancing techniques
that avoid problems of memory bandwidth and cache misses.
Our experimental evaluation shows that this technique re-
sults in excellent load-balance and process efficiency and

hence yield close to linear speedups.
With the advent of new technologies, we will need even

faster sequence mapping tools to stay at par with the
increasing sequencing speed. With the development of better
parallel algorithms, we can setup huge processing centers
which contain a large number of sequencers producing reads
and huge clusters working in tandem to rapidly process
them to extract a variety of information. The Next Genera-
tion Sequencers along with high-speed sequence processing
systems will enable us to realize the dream of personal
genomics. This can help us in using a patient’s DNA in
diagnosing a disease or even knowing in advance whether a
person’s DNA encodes a risk of a certain disease.
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