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Abstract— The Smith Waterman algorithm for sequence 

alignment is one of the main tools of bioinformatics. It is used 

for sequence similarity searches and alignment of similar 

sequences. The high end Graphical Processing Unit (GPU), 

used for processing graphics on desktop computers, deliver 

computational capabilities exceeding those of CPUs by an 

order of magnitude. Recently these capabilities became 

accessible for general purpose computations thanks to CUDA 

programming environment on Nvidia GPUs and ATI Stream 

Computing environment on ATI GPUs. Here we present an 

efficient implementation of the Smith Waterman algorithm on 

the Nvidia GPU. The algorithm achieves more than 3.5 times 

higher per core performance than previously published 

implementation of the Smith Waterman algorithm on GPU, 

reaching more than 70% of theoretical hardware performance. 

The differences between current and earlier approaches are 

described showing the example for writing efficient code on 

GPU.   

Keywords- sequence alignment; GPGPU; CUDA; Smith 

Waterman; 

I.  INTRODUCTION 

In recent years the traditional method of improving the 
performance of CPUs, namely by increasing the clock 
frequency has exhausted its potential and performance 
growth is achieved by increasing the number of computing 
cores and the size of the on-chip cache. Current top of the 
line traditional CPUs are built with four cores and eight core 
designs are already in development. In the near future one 
can expect designs with more than 30 cores. In the seminal 
report Berkeley team [1] argues that future computers will be 
built around processors with hundreds, or even thousands of 
cores.  

One should note that chips with comparable number of 
computing cores are already present on the market in large 
quantities. Current generation of graphic cards, such as 
Nvidia GeForce or ATI Radeon contain hundreds of 
computing cores. The peak performance of these cards is at 
least one order of magnitude higher than that of traditional 
CPUs and they and are capable of performing large scale 
computations for all problems where data parallel approach 
is feasible. Algorithms for several suitable problems have 
been already implemented for these platforms; in many cases 
showing a very good performance. The examples from 
diverse disciplines, such as quantum chemistry [2, 3], 

computational fluid dynamics [4-6], astrophysics [7],  
computer science [8] as well as search of similar sequences 
of biological macromolecules [9, 10] have been recently 
reported. All these examples fall into categories, which have 
been mentioned in the report of the Berkeley group as most 
challenging for the new massively parallel paradigm for 
software development. Therefore one may argue, that 
General Purpose GPU computing is the first step towards 
this new paradigm.  

Programs for searching similarity between biological 
macromolecules are ubiquitous tools of  molecular biology. 
The most common approach is based on representing 
molecules as strings of symbols and finding statistically 
important matches between those strings. The score of the 
match is obtained using the so-called amino acid similarity 
matrices (AASM) [11, 12]. The program cited most often, 
BLAST [13, 14], performs an alignment of a query molecule 
against all molecules in a database. It uses an approximate 
heuristic algorithm which is about two orders of magnitude 
faster than exact Smith and Waterman algorithm (SW) [15, 
16]. Nevertheless, SW algorithm is widely used in many 
bioinformatical applications, either as the last stage of 
sequence similarity search performed with approximate 
algorithms [17, 18], or within more advanced algorithms, 
such as profile-profile methods [19]. Algorithms for 
sequence matching are also used in the so-called next 
generation sequencing methods [20, 21], which are used for 
rapid sequencing of whole genomes. These methods generate 
millions of relatively short sequences, which then need to be 
assembled. It has been shown that application of the exact 
SW algorithm as a part of the assembly algorithm 
significantly improves the quality of  assembled sequence 
data [22]. 

Over the years there were several attempts to improve 
execution speed of the SW algorithm. In particular vector 
instructions of modern scalar processors were used for 
improving speed of execution of a single alignment of two 
sequences [23-26]. An alternative idea is to execute 
alignment of several database sequences with a single query 
[27, 28]. In these implementations the speed increase was 
achieved for a simplified version of the algorithm, which 
does not store information required for alignment 
reconstruction, and uses one byte integers for scores. This 
algorithm is used to detect scores above certain limit and 
reject non-similar sequences. Then the hits are processed 



again with a full version of the algorithm which finds correct 
alignments. The overall speedup is achieved due to the fact, 
that only a very small fraction of sequences in a database is 
similar to the query and need to be processed again.  

Recently parallel versions of the simplified SW 
algorithms have been implemented  on Nvidia GPU, first 
using graphic library [29] and, after introduction of CUDA 
environment for GPU programming [30], also on this 
platform [10]. The CUDA implementation is using two byte 
integers, which is sufficient for all practical applications and 
its performance does not depend on the similarities between 
sequences. Moreover, changing the representation of 
numbers to four bytes and including the backtracking 
information is possible in CUDA, with much smaller 
decrease in performance than in vectorised versions.  
Therefore GPU implementation of SW could be used in most 
applications of SW algorithm. The comparison of the 
theoretical peak performance of  Intel CPU, Cell processor 
and GPU shows, that the GPU version should be faster than 
vectorised implementations on other platforms. 
Unfortunately, the implementation of Manavski and Valle, 
while delivering good performance, does not fully exploit the 
potential of the hardware. The highest up to date 
performance of SW algorithm was reported for parallel 
implementation on Cell processor [28], with the peak 
performance on a single CPU reaching 9 GCUPS (giga cell 
updates per second). The result reported for GPU 
implementation was 1.7 GCUPS on single GPU.   

In the current paper we present a significantly improved 
implementation of the SW algorithm on GPU using CUDA 
toolkit. The differences between the two implementations are 
discussed and suggestions for development of efficient codes 
are proposed.  

II. METHODS 

A. CUDA Programming Model 

Implementation of the SW algorithm was performed 
using CUDA library on nvidia GPU. CUDA is a 
library/extension of C/C++ programming language [30]. It 
gives a programmer relatively deep control of hardware 
within a familiar environment. Programming for CPU in a 
high level language isolates programmer from the hardware 
details. Most of the CPU transistors are used for this purpose. 
Programming on GPU is more demanding on a programmer. 
An efficient implementation of an algorithm on GPU 
requires in-depth understanding of the device architecture 
and constraints.  

Our implementation of the SW algorithm was developed 
for and tested on GeForce 9800 GX2 dual core card. A 
single core of GeForce 9800 GX2 is almost identical with 
the core of the first generation of CUDA enabled cards. 
Newer generation of cards share the basic design, with 
increased number of processing units. There are 128 
processing units in a single core of a G92 processor used in 
the card. Eight processor units, along with 2 special function 
units are grouped in one Multiprocessor (MP). There is only 
one instruction issuing unit in a single multiprocessor, 
therefore all processors perform identical operations on 

different data. A 16KB on chip cache is dedicated for single 
MP. Multiprocessor has hardware support for multiple 
threads. It can execute up to 768 threads concurrently (1024 
on newer cards). The bandwidth to the main memory is high 
(almost 100 GB/s) but the latency is about 500 cycles. High 
number of threads is used for hiding the high latency of the 
main memory access. Once the thread requests memory 
access it can be put to rest waiting for memory, while 
another threads are executed. On the other hand using shared 
memory is as efficient as using registers, provided that a 
right access pattern is employed [30]. Therefore the effective 
method for programming is based on the following principle: 
copy the required data from global memory to shared 
memory, perform as many operations as possible using 
shared memory write the results to the global memory.   

The threads are organised in a structured hierarchical 
way. The main unit is a block of threads, which for 
efficiency reasons should be a multiply of and not less than 
64. All threads from single block are executed on the same 
multiprocessor. It is recommended to use at least 192 or 256 
threads in order to hide the latency of the main memory. 
Within a block the threads are organised in warps, each 
consisting of 32 threads. All threads in the same warp are 
executed concurrently.  

B. Algorithm 

Finding similar sequences in the database is performed 
by string matching. Macromolecular sequences are 
represented as strings, composed either of 4 or 20 characters 
for nucleic acids and proteins, respectively. In both 
sequences the algorithm finds a pair of substrings, which 
have maximal similarity. The similarity function is given in 
the form of similarity matrix, such as BLOSUM62, [12] 
PAM250 [11], for proteins or identity matrix for nucleic 
acids. Amino acid similarity matrices are based on the 
statistics of observed mutations of amino acids in the 
biologically related proteins. The score for aligning two 
amino acids is highly positive for identical ones.  It is 
positive if mutations involving exchanging one by another 
are observed more often than by pure chance and it is 
negative when such mutations are observed less often. The 
alignment may contain gaps in both sequences, but the 
introduction of a gap to the alignment is penalised. The 
penalty is usually a sum of a constant opening penalty and a 
gap extension penalty which is proportional to the length of 
the gap. The optimal alignment is defined as the alignment 
with highest possible score. It cannot be improved neither by 
elongation nor by trimming.  

The Smith Waterman algorithm for finding optimal local 
alignment is based on dynamic programming approach. The 

M×N  matrix A  is constructed, where M  and N  are 

lengths of two sequences. A matrix element 
,i jA  is filled by 

a score for aligning i-th amino acid in the first protein with 
j-th one in the second protein. Then the problem of finding 
optimal local alignment is defined as finding a path 

connecting any starting point ( )0 0,i j  in the matrix with any 

point ( ) 0 0, , , ,i j i i j j> >  with the highest sum of scores 



along this path. The perfect alignment without gaps would be 
a path along  single diagonal in the matrix. Alignment with 
gaps may contain vertical and horizontal segments.  To this 
end the matrix is processed, starting from the upper left 
corner using the following formula 
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where 
,i jH denotes processed matrix element, 
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the score of the best alignment terminated at ( )1, 1i j− − , 

,i jE  is a score for an alignment with gap along column 

terminated at ( ),i j and 
,i jF  is a score for an alignment with 

gap along row terminated at ( ),i j  and ,i jE  and ,i jF  are 

computed earlier using the following formulas 
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where extG  and 
openG  are penalty for extending and 

opening gap, respectively.  
It is easily seen, that all cells, which are in the left upper 

corner with respect to the current cell, must be already 
processed.  Each cell update requires reading 6  values 
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,i jA ), writing 3 values 

(
,i jH ,

,i jE ,
,i jF ) and performing five additions and five calls 

to function max()  (it takes two arguments, hence evaluation 

of the formula (1) requires three function calls). One 

additional call to max() is required for checking if the 

current value of processed matrix is the maximal value. In 
practical implementations some additional operations may be 
required for indexing. The main loop of the SW algorithm 
requires performing 11 arithmetic operations, reading 6 
values form the memory and writing 3 values back to the 
memory. GPU uses 4 bytes integers, therefore a single step 
of the straightforward implementation involves reading and 
writing 36 bytes.  

Maximal theoretical performance of a single core of the 
GeForce 9800 GX2 card is 192 billion integer operations per 
second. The memory bandwidth is 64 GB/s. Maximal 
theoretical performance of the SW algorithm is therefore 
192/11 = 17.3 GCUPS (giga cell updates per second) per 
core, if limited by operation count (without bookkeeping 
operations). On the other hand the global memory bandwidth 
limits performance of the naïve implementation to 
64/36 = 1.8 CUPS. It is clearly seen that efficient algorithm 
needs to be written in such a way that minimizes 
communication with a main memory.  

In practice a small number of additional addressing and 
bookkeeping operations may be required, decreasing the 
maximal performance. Their number depends on the 
implementation details. 

One should note that backtracking information for 
alignment reconstruction is not preserved in this algorithm. 
Preserving it significantly increases the number of 
arithmetical and memory operations. When the algorithm is 
used for scanning database of mostly non-similar sequences, 
the hits are found in a small fraction of runs. Therefore, it is 
more efficient to discard the backtracking information for all 
sequences and repeat the computation with a more costly 
version including backtracking information for significant 
hits only.  

 
Figure 1.  Processing od the dynamic programming matrix. It is processed in horizontal bands. The cells which have been processed are represented 

in dark gray, cells which are currently processed are represented in red the cells and remaining cells are light gray.  



C. Implementation 

The program is executed concurrently on CPU and GPU. 
The control loop resides on CPU. Program reads pre-
formatted database to the GPU memory, and waits for 
queries. The database is sorted according to size (starting 
with the longest sequences) and organized in blocks 
consisting of 256 sequences.  
Once the query is received it executes the CUDA kernels 
which perform database scan with the query. Kernels return 
the highest alignment score for each sequence. The main 
program selects the sequences with the score above 
threshold, which are realigned on the CPU using the 
algorithm with enabled backtracking. The result is output in 
the standard BLAST format.  Program can utilize either one 
or both cores.  

Each thread performs a complete processing of single 
pair of sequences. The query sequence is shared by all 
threads. Since all threads are synchronized the length of the 
database sequences processed by a single block should be 
similar (preferably identical). Otherwise all threads would be 

waiting for the one performing alignment of the longest 
database sequence.  

The dynamic programming matrix is processed 
horizontally. In each sweep 12 cells high band is processed, 
see Figure 1. The main loop is executed for 12 cells columns 
of this band. Slow global memory is accessed only at the 
initialization and termination of the loop. All operations 
within the loop are performed in fast shared memory and 
registers. The width of the band is limited by availability of 
shared memory.  

The pseudocode for the computing loop in the individual 
thread is displayed in Figure 2. There are only 2 global 

memory transactions per 12 steps. Additionally 
,i jH  and 

,i jF  are stored as half-word integers in the single integer 

variable. Therefore the total required bandwidth is 8 bytes 
per 12 cell updates. A detailed representation of memory 
operations is displayed in Figure 3. Therefore, due to 
efficient usage of shared memory we managed to raise the 
memory constraint of the theoretical performance at  

64 GB/s 8 /12 Cell Updates 96 GCUPSB = .  

Taking into account that computational capabilities of 

the core limit performance at 17 GCUPS we may conclude 

that our implementation is not limited by memory 

bandwidth.  

Each kernel has 16 blocks in each kernel, and a single 

block consists of 256 threads – each thread processes a 

single sequence. The choice of 4096 threads per kernel is 

dictated partially by limitations of architecture and partially 

by optimization of performance. There are 16 

multiprocessors in each core, each executes a single block 

of threads. The number of 256 threads per block is limited 

by the number of registers (8192 per multiprocessor). The 

SW main routine needs 29 registers, and therefore the 

highest multiply of 64 that can be concurrently executed is 

256. In the current ‘proof of concept’ version of the code all 

threads perform identical operations. It is preferable to 

minimize the number of sequences executed by a single 

kernel, to minimize length differences within a single 

kernel. Altogether a single kernel performs comparison of 

the single query with 4096 database sequences. This 

configuration gives the optimal results on the 9800 GX2 

card. 

D. Tests 

Tests were performed on the SwissProt sequence 
database, release 56.5 of 25-Nov-08 from Swiss Institute of 
Bioinformatics. Due to some technical limitations of the 
current implementation the practical limit for the database 
sequence length is slightly less than 1000 amino acids. This 
is a limit of the ‘proof of concept’ version of the code, which 
will be removed in further development. The subset of 
SwissProt contains 388517 proteins (124041327 residues - 
85% of total database length). The database was sorted 
according to size. Thirty seven sequences were randomly 
chosen from the database and used as a query. The lengths of 
the selected queries varied between 10 and 1000 residues, 
with coverage density decreasing with the length. Each query 

// All matrices are located either in  

// global memory (suffix Global) or in  

// shared memory (suffix Shared). Other  

// variables are located in registers 

 

H_up=GlobalH[j];// read from global memory 

F_up=GlobalH[j];//  

H_upleft=H_init;// register operation 

For (k=0;k<12;k++) do 

 // read similarity score from the 

 // shared memory 

 A = Similarity[query[i],db[j]]; 

 // read H and E from previous sweep 

 H_left=Shared_H[k]; // shared memory 

 E_left=Shared_E[k]; // shared memory 

 // Compute auxiliary variables 

 E=max(E_left-Gext,H_left-Gopen); 

 F = max(F_up-Gext,H_up-Gopen); 

 // Compute H 

 H = max(0,E); 

 H = max(H,F); 

 H = max(H,H_upleft+A); 

 // if this is a first step store H_up 

 // in a register for initializing next  

 // column 

 If (k==0) H_init = H_up; 

 // initialize variables for the  

 // next step 

 Shared_H[k]=H; 

 Shared_E[k]=E; 

 H_upleft = H_left; 

 H_up = H; 

 F_up = F;  

Done 

// Write variables to global memory for  

// next sweep 

Global_H[j]=H; 
Global_F[j]=F; 

Figure 2.   Pseudocode for the inner loop of the program. 



was run both in a single and dual core version. To estimate 
the asymptotical performance of the code we ran also two 
runs on two synthetic databases. The first database 
comprised of 81920 identical sequences, each 1000 residues 
long and second one equal number of random sequences of 
the same length. The first case is an ideal case for shared 
memory access, since all threads read the same location from 
the shared memory when accessing similarity score. The 
second case represents ideally aligned independent 
sequences.   

III. RESULTS AND DISCUSSION 

The measured performance in GCUPS is displayed in 
Figure 4. For a comparison we show the performance of our 
code, along with the reported results for earlier 
implementation of SW algorithm on GPU.   

The GPU implementation of the SW algorithm presented 
here is significantly improved over the previous version. The 
minimal performance was observed for query sequence only 
10 residues long.  It was 4.65 and 8.99 GCUPS for single 
and dual core configuration, respectively. For more 
practically relevant short query lengths (more than 30 
residues) performance was higher than 6 and 12 GCUPS for 
single and dual core configurations, respectively. The 
maximal performance, approaching 7.5 and 14.5 GCUPS for 
single and dual core configurations, respectively, was 
achieved for longest queries. This performance was close to 
the performance obtained for the random synthetic database, 
the latter being equal to 7.74 GCUPS. Performance 
measured on the ideal case synthetic database was 8.67 
GCUPS. Both results were obtained for a single core.  

Our implementation is computationally bound. 
Additional multiplication (equivalent to four additions) and 
one addition are required for address computation, increasing 

the total operation count to 16. This leads to the theoretical 
estimate of maximal achievable performance at 192 / 16 = 12 
GCUPS. The maximal performance observed on the artificial 
data, where all database sequences were identical was more 
than 72% of that theoretical limit.  

One should note that the tests were performed on the 
subset of database, with roughly twelve thousand longest 
sequences removed. This is because the current 
implementation is a proof of concept rather than a production 
quality code. The technical constraints will be removed in 
further development of the code. Nevertheless, with current 
implementation, including these sequences in a 
straightforward way would decrease achieved performance. 
This is because the number of proteins having the same 
length decreases quite rapidly with increasing length. This 
leads to a situation when many threads wait idle for the 
thread processing the longest sequence. The estimated 
decrease of performance on SwissProt database would be at 
around 5.5% in comparison with the results reported here. 
This reduction can be avoided either by removing the small 
fraction (slightly more than 1%) of longest sequences from 
the database and scanning them concurrently using CPU 
version of SW algorithm. Alternatively one could divide the 
longest sequences into overlapping segments, with length of 
each segment longer than that of largest known protein 
domains.  

Our results are not directly comparable to the results of 
Manavski and Valle, since they used a different card. 
Nevertheless, since the architecture of a single core in 9800 
GX2 card is very similar to that of the 8800 GTX card, a fair 
comparison can be taken by scaling up their results by a 
factor resulting from the main clock frequency difference 
(1.5 GHz versus 1.35 GHz). Both original and scaled up 
results are presented in Figure 4. 

 
 

Figure 3.  Memory operations in the inner loop of the algorithm at three stages, (a) initialisation, (b) continuation and (c) termination.  The global memory, 

shared memory and registers are represented by gray,  green and red rectangles, respectively.  At  the start of the loop (a) the Hi-1,j-1 value was already used 

in computations of the previous 12-element block and is remembered in a register. The Hi-1,j and Fi-1,j values are read from global memory, using one 32-

bit read operation.  The Ei,j-1 and Hi,j-1 values are read from shared memory also using one 32-bit read operation.  The Ai,j is also read from shared 

memory. Once values of Fi,j, Ei,j and Hi,j are computed, the Hi-1,j is stored in a register for initialisation of next block and values of Ei,j and Hi,j are stored 

in the shared memory, using one 32-bit write operation. One may notice, that writing values of Ei,j and Hi,j is performed at all steps of the inner loop.  Then 

for next ten steps (b) algorithm neither writes or reads from global memory. Each step is similar to the initalisation, but here Hi-1,j-1, Hi-1,j and Fi-1,j values 

are already present in the registers from previous iteration, therefore only Ai,j, Ei,j-1 and Hi,j-1 values are read from the shared memory.  Finally in the last 

step (c) values of Hi,j and Fi,j  are written into the global memory using a single 32-bit operation.  



The difference of performance between the current and 
previous implementation arises due to different usage of 
memory. As discussed earlier, in our implementation the 
global memory is accessed only at the loop initialization and 
for writing the results at the exit.  This is quite different from 
the implementation of Manavski and Valle. Their 
implementation uses global memory intensively. Their 
algorithm uses one 128-bit write and one 128-bit read 
operation per four cell updates.  This is equivalent to 8 bytes 
of global memory read/write operations per cell update. The 
128-bit operations are the least efficient method of accessing 
data [30], two times slower than theoretical limit. Taking that 
into account the memory bandwidth limits the theoretical 
performance of this implementation to at most 4 GCUPS. 
Moreover, the additional operations necessary for the 
packing and unpacking take additional registers, lowering the 
number of threads that can be executed concurrently on a 
single multiprocessor. This in turn may expose the memory 
access latencies, limiting effective bandwidth even more.  

This difference in memory usage pattern resulted also in 
different organization of the code. The optimal kernel 
configuration in our implementation is 4096 threads in 16 
blocks (256 threads per block).  Thanks to the optimization 
of register usage we managed to use 256 threads in a single 

block, what allows for efficient hiding of the latency of main 
memory access. Nevertheless due to limited number of 
available registers we were unable to use full throughput of 
the multiprocessor, which is utilized best when the maximal 
number of threads is executing.  

In the previous implementation the optimal configuration 
was 64 threads per block with 450 blocks, what gives the 
total number of threads equal to 28 800. One should note, 
that this number is higher than a maximal number of threads 
which can execute concurrently in hardware, which is 12 288 
[31].  

IV. CONCLUSIONS 

Total performance of the dual core Nvidia 9800 GX2 
card is 14.5 GCUPS, which is currently the highest 
performance of the SW algorithm on commodity hardware, 
roughly twice the estimated performance on quad core 
Pentium processors with Farrar implementation [25] and 
more than 50% faster than our own implementation on 
SonyPlaystation 3 [28]. It is also comparable to the 
performance of BLAST heuristic on a single core Pentium 
processor.  One should note that CPU and PS3 
implementations rely on vector instructions and use only one 
byte to represent numbers, whereas GPU version uses 2-byte 

 
Figure 4.  Performance in GCUPS as a function of query length, measured on SwissProt database, for one (LR1core) and two cores (LR2core). The 



representation of integers (full 4-byte representation can be 
used with a small performance decrease). Therefore these 
vector implementations are suitable only for scanning large 
databases of non-similar sequences. Once the hit is found 
they have to call the exact version of the algorithm to 
generate alignment. On the other hand the GPU 
implementation uses full integer representation of numbers 
and can be easily extended to return alignment, with small 
decrease of performance.   

This makes GPU implementation suitable for 
applications where many similar sequences should be 
aligned – as for example in DNA assembly problems or in 
multiple sequence alignment.  

The results of this project are useful for bioinformatics, 
where one can find several practical applications of the very 
efficient implementation of the SW algorithm, but also have 
some further reaching implications. The Berkeley team 
called in their report [1] for development of tools, which can 
simplify design of massively parallel applications. The SW 
algorithm is relatively simple and very well known. 
Nevertheless, achieving a full potential of massively parallel 
solution requires rewriting the algorithm, taking into account 
several conflicting architectural constraints. The resulting 
codes may differ in performance by almost one order of 
magnitude. It is rather unlikely that achieving high 
performance level can be achieved by writing the algorithm 
in a generic way and then letting the compiler of some high-
level language do the optimization, protecting programmer 
from working with the details of the architecture.  On the 
other hand, once an efficient implementation has been 
written on the low level by a skilled programmer, it is 
straightforward to use such implementation in any other 
algorithm, like a standard library call.   

Recently the specification of the OpenCL environment 
for performing computations on a range of multicore 
computing devices has been published [32]. The overall 
design of OpenCL is very similar to CUDA and all CUDA 
compliant GPUs will be capable to run OpenCL codes. 
Therefore porting of our code to OpenCL should be 
straightforward. This extends possible applications to any 
hardware platform supporting OpenCL, including for 
example GPUs from AMD or Cell processors.   
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