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Abstract

Driven by novel biological wet lab techniques such as

pyrosequencing there has been an unprecedented molecular

data explosion over the last 2-3 years. The growth of bio-

logical sequence data has significantly out-paced Moore’s

law. This development also poses new computational and

architectural challenges for the field of phylogenetic infer-

ence, i.e., the reconstruction of evolutionary histories (trees)

for a set of organisms which are represented by respective

molecular sequences. Phylogenetic trees are currently in-

creasingly reconstructed from multiple genes or even whole

genomes. The recently introduced term “phylogenomics”

reflects this development. Hence, there is an urgent need

to deploy and develop new techniques and computational

solutions to calculate the computationally intensive scoring

functions for phylogenetic trees.

In this paper, we propose a dedicated computer architecture

to compute the phylogenetic Maximum Likelihood (ML)

function. The ML criterion represents one of the most

accurate statistical models for phylogenetic inference and

accounts for 85% to 95% of total execution time in all

state-of-the-art ML-based phylogenetic inference programs.

We present the implementation of our architecture on an

FPGA (Field Programmable Gate Array) and compare the

performance to an efficient C implementation of the ML

function on a high-end multi-core architecture with 16 cores.

Our results are two-fold: (i) the initial exploratory imple-

mentation of the ML function for trees comprising 4 up to

512 sequences on an FPGA yields speedups of a factor 8.3

on average compared to execution on a single-core and is

faster than the OpenMP-based parallel implementation on

up to 16 cores in all but one case; and (ii) we are able to

show that current FPGAs are capable to efficiently execute

floating point intensive computational kernels.

1. Introduction

Significant advances in biological sequencing techniques,

such as pyrosequencing [1], in combination with techno-

logical advances in the area of computer architectures pose

new challenges for parallel computing in Bioinformatics.

The field of Bioinformatics currently faces an unprecedented

data flood that needs to be analyzed.

In this paper, we assess how the compute- and memory-

intensive Phylogenetic Likelihood Function (PLF [2], hence-

forth we use ML and PLF as equivalent terms) can be

mapped onto dedicated hardware and what the expected

performance gains of such a specialized PLF architecture

are.

The field of phylogenetic inference deals with the recon-

struction of the evolutionary history for a set of organisms,

in form of an unrooted binary tree, based on a multiple

sequence alignment of molecular DNA or protein sequence

data from these organisms. An example of a small alignment

of DNA sequences for the Human, the Mouse, the Cow, and

the Chicken is provided below:

Cow ATGGCATATCCCA-ACAACTAGGATTCCAA

Chicken ATGGCCAACCACTCCCAACTAGGCTTTC-A

Human ATGGCACAT---GCGCAAGTAGGTCTAC-A

Mouse ATGG----CCCATTCCAACTTGGTCTACAA

The PLF is one of the most widely used optimality cri-

teria to score and thus chose among distinct evolutionary

scenarios (phylogenetic trees). The underlying optimization

problem, that consists in conducting a tree search to find

the best-scoring ML tree is NP-hard [3]. Phylogenetic trees

have many important applications in medical and biological

research (see [4]).

While there are many program packages available that

implement the PLF, either for standard Maximum Likelihood

based optimization (e.g. RAxML [5], GARLI [6]) or to

conduct Bayesian phylogenetic inference (MrBayes [7]), the

underlying computational problems are identical: all PLF-

based phylogenetic inference programs spend the largest

part of the overall run time, typically between 85% and

95% in the computation of the PLF [5]. It is thus important

to assess and devise architectural solutions for this widely

used and challenging Bioinformatics function. The need to

introduce HPC expertise into the field of Bioinformatics and

phylogenetics in particular is underlined by the significantly

higher pace at which biological data accumulates compared

to the increase in transistor count, i.e., Moore’s law (see



Figure 1 in [8] for a respective plot).

In this paper we exclusively focus on exploitation of fine-

grained instruction-level parallelism in the PLF, despite the

fact that, both ML and Bayesian phylogenetic inference also

provide a source of coarse-grained parallelism. In standard

ML analyses embarrassing parallelism is implemented via

independent tree searches on bootstrap replicates [9] or

through independent parallel searches for the best-scoring

ML tree on distinct starting trees [5]. The main reason

to focus on fine-grained parallelism is the current trend in

systematics towards analyses of phylogenomic alignments.

As already mentioned, such phylogenomic alignments con-

sist of a large number of concatenated genes —a current

study with collaborators from Biology consists of almost

1,500 genes and required 2.25 million CPU hours on

an IBM BlueGene/L supercomputer— and are hence ex-

tremely memory- and compute-intensive. Therefore, a large

amount of computational resources needs to be allocated

for concurrently computing the likelihood on a single large

tree topology. Generally, fine-grained loop-level parallelism

fits well to current trends in Systematics and super-linear

speedups (because of increased cache efficiency) can be

achieved on large phylogenomic datasets [10], [11]. Finally,

parallelization at a fine grained level naturally maps better to

a FPGA architecture, while coarse grained parallelism can

be exploited at a higher level, e.g., by a cluster of CPU-

FPGA nodes.

Our initial PLF architecture only covers a subset of the

operations and functions required to conduct a full real-

world tree search as implemented in RAxML. However, the

subset of computations we consider here, which corresponds

to conducting a full tree traversal to score a given fixed

tree topology using Felsenstein’s pruning algorithm (see [2]

and Section 2), adequately represents the characteristics of

the required computations. We hence explore the potential

speedups that can be obtained by a one to one mapping of

the computations required for full tree traversals from an

efficient C source code on a high-end multi-core machine to

an FPGA on trees comprising 4 up to 512 taxa. Compared

to execution on a single core, FPGA speedups for a full

tree traversal range from factor 3.07 up to 13.68 (average:

8.3) on the largest input dataset with 512 taxa (taxa is used

as a synonym for sequences/organisms). With respect to

the fastest execution time achieved by an OpenMP-based

parallel SW implementation on 2, 4, 8, and 16 cores the

FPGA is still faster in all but one case (16 taxa on 8 cores).

The remainder of this paper is organized as follows: In

Section 2 we describe the basic mathematical operations and

concepts required to implement the PLF kernel. Thereafter,

(Section 3) we discuss related work on exploiting FPGAs

for phylogenetic inference under Maximum Likelihood and

other models. In Section 4 we propose an architecture for

computing the PLF. In the following Section 5 we present

experimental results for the FPGA implementation compared

instantaneous transition

probability from A to C

and from C to A.

C

A G

T

Figure 1. Statistical nucleotide substitution model for

DNA data.

to a high-end 16-core Sun x4600 system. We conclude in

Section 6 and address areas of future work.

2. Computation of the Phylogenetic Likelihood

Function

As already mentioned the computational kernel of all cur-

rent ML based implementations consists of the Phylogenetic

Likelihood Function (PLF). To compute the PLF on a given

fixed tree topology, i.e., we do not consider the problem

of tree search algorithms here, one needs to estimate the

branch lengths and the parameters of the statistical model

of nucleotide substitution. In the case of DNA data, an

appropriate statistical model of nucleotide substitution is

provided by a 4x4 matrix usually denoted as Q, that contains

the instantaneous transition probabilities for a nucleotide

A to mutate to a nucleotide A, C, G, or T, within time

dt (see Figure 1). To compute the nucleotide substitution

probabilities given a branch length t (t essentially represents

the evolutionary time between two nodes in the tree) one

has to compute P (t) = eQt. In typical real world analysis

this model is extended by additional ML model parameters

to accommodate for rate heterogeneity, i.e., the biological

fact that different columns of nucleotides in the alignment

evolve at different speeds. The branch lengths are optimized

in order to improve the likelihood given the tree and the

substitution model.

To compute the likelihood of a fixed unrooted tree

topology with given branch lengths and model parame-

ters, one initially needs to compute the entries for all

internal likelihood vectors which are located at the in-

ner nodes of the tree. They contain the four probabil-

ities P (A), P (C), P (G), P (T ) of observing a nucleotide

A,C,G, or T at an inner node for each column of the input

alignment. The probabilities at the tips of the tree for which

observed data is available are set to 1.0 for the observed

nucleotide character, e.g., for the nucleotide A: P (A) = 1.0
and P (C) = P (G) = P (T ) = 0.0 for all remaining

characters.Apart from A,C,G,T there also exist ambiguous

characters like, e.g., M that stands for A or C and is thus rep-

resented by P (A) = 1.0, P (C) = 1.0, P (G) = P (T ) = 0.0
at the tip vector level. Hence, the likelihood vectors at the



tips and inner nodes have the same number of columns

as the sequences in the input alignment, e.g., a length of

30 in our small example alignment in Section 1. Every

vector entry contains 4 floating-point numbers to store the

respective probabilities. However, for the significantly more

realistic models, such as the Γ [12] model, that accommodate

for rate heterogeneity among columns, 16 floating-point

numbers need to be stored per vector entry. This is due

to the fact that the Γ function is discretized into, e.g., 4

discrete rates, r0, ..., r3. Then, for each discrete rate one

needs to compute the individual likelihood vector entries,

hence 4x4 values for each column of the alignment. The

entries of the inner likelihood vectors are computed (filled)

bottom-up from the tips towards a virtual root that can be

placed into any branch of the tree. Let us consider a small

three-node subtree (see Figure 2) with two child nodes (tips

in this case) and an inner node at the root of the subtree.

The entries of the likelihood vectors of the child nodes are

initialized in order to calculate the likelihood vector at the

common ancestor. For every child there is one entry for

each column of the alignment and for every branch there is

one transition probability matrix, P (t1) and P (t2). A series

of operations (multiplications and additions) are conducted

using the entries at position i of both likelihood vectors at

the child nodes and the two transition probability matrixes

P (t1) and P (t2) in order to calculate the respective entry at

position i of the parent likelihood vector.These operations

are executed for all columns i=1...alignmentLength

of the input alignment. The procedure outlined in Figure 2

is known as Felsenstein’s pruning algorithm. Under certain

standard model restrictions, namely time reversibility of the

nucleotide substitution model, i.e., in principle a symmetric

nucleotide substitution model, the likelihood will be the

same regardless of the placement of the virtual root. This

means that the virtual root can be placed into an arbitrary

branch of the tree. Once a virtual root has been placed

into the tree the pruning algorithm can be applied bottom-

up towards this root. An important practical implementation

issue is that the likelihood vector entries need to be scaled, in

order to avoid numerical underflow because of very small

probability values. Once all likelihood vector entries have

been computed towards the virtual root, the log likelihood

value can then be calculated by essentially summing up

over the likelihood vector values to the left and right of the

virtual root. Note that, in order to compute the likelihood at

the root the prior probabilities πA, πC , πG, πT (nucleotide

frequencies) of observing A,C,G,T at the virtual root are

required. These frequencies can either all be set to 0.25 (as

in our architecture), be obtained empirically by counting the

occurrences of A,C,G,T in the input alignment, or via an

ML estimate.

Due to the high complexity of implementing the PLF

function on an FPGA our exploratory architecture currently

only computes a subset of the PLF. We have made the fol-
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Figure 2. Schematic representation of Felsenstein’s

pruning algorithm.

lowing simplifications: we only conduct full tree traversals

from the leaves (tips) towards the virtual root of the tree

to compute the likelihood score on a fixed topology with

fixed branch lengths and fixed model parameters. In addition,

for the time being we assume that all branch lengths are

equal, i.e., the matrix P (t) = eQt, where t is the branch

length, is constant across the tree. We have currently not

implemented a scaling procedure for very small likelihood

vector entries since scaling only affects very large trees with

hundreds to thousands of sequences. In addition, we have

not implemented a model of rate heterogeneity. However,

the Γ model of rate heterogeneity can be accommodated

by conducting as many tree traversals as there are discrete

Γ rates (typically 4 or 8) with appropriate rate-dependent

P matrices. Nonetheless, the architecture is based on the

computations required for the most complex general time

reversible (GTR [13]) model of nucleotide substitution.

Finally, the likelihood score can currently only be computed

on fully balanced binary trees of size 4, 8, 16, 32, etc.

While the above restrictions only cover a small subset of

the computations required by RAxML or MrBayes for real-

world biological analyses, they allow to accurately explore

the performance of the computational kernel of the PLF on

an FPGA. To ensure a fair comparison, our C reference

program (a significantly strapped-down version of RAxML,

available as open-source code at http://wwwkramer.in.tum.

de/exelixis/software.html) was implemented to conduct ex-

actly the same computations as the FPGA, i.e., we removed

code for branch length optimization, per-branch substitution

matrix computation, model parameter optimization, likeli-



hood vector entry scaling, and rate heterogeneity. As already

mentioned, the Γ model of rate heterogeneity can be im-

plemented using the architecture we propose by repeatedly

traversing the tree for the individual discrete Γ rates. This

approach will provide savings of factor 4 (if a Γ model with

4 discrete rates is used) with respect to memory requirements

as well as transistor count. The computation of full tree

traversals, which are not necessary when techniques such as

Lazy Subtree Rearrangements (LSRs [5]) are deployed that

only require partial tree traversals, i.e., the re-computation of

a subset of the likelihood vectors, is however still required

during certain phases of all ML programs. When ML model

parameters like the substitution rates of the GTR model or

the α shape parameter of the Γ model of rate heterogeneity

are changed during optimization, full tree traversals are

required because the changes in these model parameters

affect the entire tree and hence the resulting likelihood score.

In programs such as MrBayes or RAxML model parameter

optimization phases (as opposed to tree search phases) that

require full tree traversals can consume up to 20-30% of

overall execution time. In addition, an FPGA implementation

that conducts full tree traversals could be useful for the

optimization of the 20x20 GTR model substitution matrix

for protein data. While so far the ML estimate of a GTR

model for protein alignments was considered to be over-

parameterizing the model, this has changed with new large

phylogenomic datasets. The computational requirements for

estimating those 190 GTR rate parameters are enormous,

e.g., almost 16 hours are required to optimize GTR rate

parameters for a fixed tree topology on a 16-core AMD

Barcelona system using RAxML on a dataset with 191 se-

quences and 17,472 protein data columns. Another potential

application scenario for full tree traversals on fixed tree

topologies is that of ML-based inference of internal states,

i.e., the optimal assignment of internal/ancestral sequences

to the inner nodes in order to maximize the likelihood score.

3. Related Work

There is comparatively little related work that deals with

the implementation of phylogenetic inference methods on

FPGAs. Bakos et al [14], [15] focus on evolutionary recon-

struction based on gene order input data, i.e., the order or

permutation by which corresponding genes are placed within

a genome. Corresponding genes with the same function can

be placed within different parts of the genome in distinct

organisms. Thus, they focus on mapping GRAPPA [16],

one of the standard implementations for gene order based

phylogenetic inference onto FPGAs. The major difference to

ML-based phylogenetic inference in a computational context

is that the scoring function used in gene order analyses is

mostly discrete, i.e., only few floating point operations need

to be performed.

Davis et al [17] present an implementation of the UPGMA
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which is considered to be the most simple tree reconstruction

algorithm currently available. It is based on a clustering

algorithm that uses a pairwise distance matrix. Due to several

methodological concerns the UPGMA method is practically

not used any more for real-world phylogenetic studies.

The most popular models for tree reconstruction in current

biological practice are Maximum Parsimony (MP [18]) and

Maximum Likelihood. We are not aware of any work on

mapping the MP function to an FPGA. This is surprising,

because the MP scoring function is discrete as well as

significantly less memory intensive and thus more straight-

forward to efficiently implement on an FPGA. As for ML,

the MP phylogeny problem is NP-hard [19], but there also

exist efficient heuristics like those implemented in TNT [20].

Finally, Mak and Lam have published a series of articles

that deal with mapping the ML function to FPGAs [21],

[22]. However, their architectures only implement the Jukes-

Cantor (JC69 [23]) model of nucleotide substitution, which

represents the most simple statistical model of DNA sub-

stitution and is rarely used in present-day biological anal-

yses [24]. In addition all performance tests have been

conducted on 4-taxon trees (trees with 4 leaves) only, and

execution times are not explicitly provided for larger trees,

such that we do not know if and how their implementation

scales to larger tree sizes as well as to longer alignments.

4. An Architecture for the Phylogenetic Like-

lihood Function

The architecture we propose takes as input the aligned

DNA sequences, and then computes and stores the entries

of the inner likelihood arrays in the internal (embedded)

memory of the FPGA. The values of the tip and inner

likelihood arrays are then successively re-used to compute

all internal likelihood vectors bottom-up towards the virtual

root of the tree. As described in Section 2 we need to devise

components that (i) read the sequence data, (ii) compute the

entries of the inner likelihood vectors and (iii) compute the

likelihood score at the virtual root of the tree. In Figure 4

we depict the block diagram of the proposed architecture.

The unit designated as Likelihood Vector

Creator reads the sequence data and generates a



likelihood vector for every nucleotide by converting the 4-bit

word that encodes a DNA character to four double precision

floating point numbers. The conversion is performed via a

look-up table which complies with the standard definition for

ambiguous DNA character encoding (see http://www.hgu.

mrc.ac.uk/Softdata/Misc/ambcode.html and also Section 2).

The output of the Likelihood Vector Creator

is then forewarded to the Computational Core.

The Computational Core consists of seven

Basic Cell (BC) units (see Figure 4) that can

operate in two distinct modes (see below) and are arranged

in a binary tree as shown in Figure 5 which also reflects

the datapath of the system. Each BC unit consists of nine

multipliers and six adders that are organized as outlined

in Figure 4 and conducts the main bulk of the likelihood

computations. The multipliers and adders in a BC are

pipelined with a throughput of one result per cycle and

a latency of fifteen and fourteen cycles respectively. Due

to the limited amount of DSP48E slices on the FPGA,

that are available to implement floating point operations,

several multiplexer units are deployed to optimally exploit

the computational resources available. Each BC has an

input steering signal of 1 bit that is used to select among

two basic operations. When a Basic Cell works in

mode 0, it calculates the inner likelihood vector from two

child nodes that can either be tip vectors or inner vectors

respectively. Mode 1 is invoked, when the basic cell needs

to calculate the likelihood vector at the virtual root of the

tree, which requires distinct arithmetic operations.

All blocks of embedded memory are organized in eight

parts of size 9,216x256 bits. Each of the eight parts is

used to store inner likelihood arrays which may need to

be read again—depending on the input tree size—by the

Basic Cells after several hundreds of cycles. As the

computation proceeds bottom-up towards the virtual root

those eight parts of embedded RAM are read or written

several times depending on the tree depth. Data stored in

these memory locations can be overwritten several times but

we maintain a distance of 174 positions, which corresponds

to the latency of the datapath, between the read index and

the write index for each of the eight memory parts. When

the likelihood vector at the virtual root has been computed

by the Basic Cells for a set of alignment columns, the

Tree Likelihood Calculation unit then computes

and combines the per-site (per-column) likelihood scores

and returns the overall likelihood score of the tree. The

basic components of this unit are illustrated in Figure 6.

Finally, the Control Unit consists of a hierarchy of five

simple FSMs (Finite State Machines) which concurrently

control the datapath. We use a master FSM to synchronize

the 4 remaining worker FSMs. The worker FSMs are used

to generate the required control signals.

Our architecture operates in three phases: During the first

phase, the system reads the nucleotide sequences at the
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Figure 4. Arrangement of multipliers and adders within

a Basic Cell unit. Vectors X1[] and X2[] represent the

likelihood vectors entries of the right and left child,
and P[] a single row of the transition probability matrix

Pi,j(t). The mode multiplexer is used to select among
functions for computations at the virtual root and and

at inner nodes below the virtual root. The output Lx

corresponds to one of the 4 probability values P(A),
P(C), P(G), P(T) that are written to to the likelihood

vector above the input vectors.

tips and initially translates them to sequences of likelihood

vectors as described in Section 2. Then, it calculates the

likelihood vectors of their common ancestors bottom-up,

up to two levels above the tips and stores the results in

embedded RAM. This first phase (computation of inner

likelihood vector for 8-taxon trees) is successively executed

for the entire input tree in groups of 8 taxa, e.g., 4 times

for a 32-taxon tree. The first phase is completed, when the

entire input tree and data have been read and the likelihood

vectors of the ancestors of the respective 8-taxon trees have

been computed (e.g., 4 likelihood vectors in the 32-taxon

case).

The second phase is very similar to the initial phase.

However, instead of using the DNA sequence information

at the tips of the tree as input, it uses the likelihood vectors

of the ancestors (previously computed internal nodes of the

tree) that have been stored in embedded RAM during the

first phase. The results of the computations of the second

phase (if the virtual root of the tree has not already been

reached) are then stored again in embedded RAM. Phase 2

is repeated for a maximum of 8 internal nodes at a time (if

the number of taxa is a power of eight) until all the internal

likelihood vectors at the input level have been used and the

inner likelihood vectors two levels above the input level have

been computed. At the end of phase 2 the likelihood vector

at the virtual root has been calculated.
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In the third and final phase our system loads the in-

ner likelihood vector at the virtual root from embedded

RAM and calculates the per-column likelihood score L(i)
for every column of the input alignment. A multiplier is

used to compute the overall product L = L(0) · L(1) ·
... · L(n − 1) over all n per-column likelihood scores.

Note that the Tree Likelihood Calculation unit

actually computes the likelihood score and not the more

commonly used log likelihood score. The implementation of

a Tree Likelihood Calculation unit that returns

the log likelihood score is subject of future work. If the

input data has 8 taxa or less, phase 2 will be omitted since

the internal likelihood vector two levels above the input

sequences already is the virtual root of the tree. For a 64-

taxon input tree, phase 1 will be executed 8 times and will

produce 8 internal likelihood vectors. Then, phase 2 will be

executed only once for the resulting 8 likelihood vectors and

yield the likelihood vector at the virtual root. Analogously,

for a 512-taxon tree, phase 1 will be executed 64 times,

phase 2 will be executed 8 times for the first set of internal

likelihood vectors two levels above the tips, and 1 more time

for the calculation of the likelihood vector at the virtual root.

5. Results

5.1. Experimental Setup

To conduct performance analyses we generated 8 sim-

ulated DNA datasets containing 4, 8, 16, 32, 64, 128,

256, and 512 taxa (sequences/organisms) respectively. Ev-

ery simulated alignment contains 1,000 distinct alignment

columns, i.e., the alignment can not be further compressed

by merging identical column patterns. In addition, we gener-

ated respective fully balanced binary input trees in standard

NEWICK format. The datasets are available together with

the software implementation at http://wwwkramer.in.tum.de/

exelixis/software.html.

As already mentioned the software implementation repre-

sents a significantly strapped down version of RAxML that

executes exactly the same mathematical operations as our
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Figure 6. Tree Likelihood Calculation Unit: Likelihood

score computation L(i) for a single alignment column
at position i and likelihood accumulation over several

alignment columns i = 1...n. This unit takes as input the

inner likelihood vector entries La(i), Lc(i), Lg(i), Lt(i),
(denoted as Lx here since they are computed with the

Basic Cell in Mode 1) at position i of the virtual root and
the base frequencies (prior probabilities) fa, fc, fg, ft

(also denoted as πA, ..., πT ) and multiplies the result

L(i) with the product of the previous results L(0) ·L(1) ·
... · L(i − 1) such that L = L(0) · L(1) · ... · L(i).

computational kernel on the FPGA to ensure a fair com-

parison. The sequential as well as OpenMP-based version

of the code was compiled using the Intel icc compiler

(v 10.1, optimization option -O3) which generates faster

code than gcc for RAxML. The loop-level parallelization of

RAxML with OpenMP was re-implemented analogously to

the description in [11]. In order to obtain accurate software

timing results for the very fast tree traversal operation that

takes less than 0.015 seconds on all datasets, we measured

the time required by a loop that executes 20,000 full tree

traversals. As software test platform we used a high-end

8-way dual-core SUN x4600 system equipped with 8 dual-

core AMD Opteron processors running at 2.6 GHz with 64

GB of main memory. On long enough input alignments and

hence long enough for-loops we have measured super-linear

speedups for both Pthreads- and OpenMP-based paralleliza-

tions of the standard RAxML implementation running on all

16 cores [11]. The OpenMP-based strapped-down version of

RAxML was executed using 2, 4, 8, and 16 cores.

As HW platform for our FPGA implementation we used

the Xilinx Virtex 5 SX240T. This FPGA provides a large

number of 1,056 DSP48E slices. The DSP48E slices are

used to implement the double precision floating point mul-

tipliers and adders that form part of the Basic Cells.

The specific FPGA offers the largest number of embedded

memory blocks currently available in commercial FPGAs

and is hence well-suited for our purposes.

To validate the correctness of the results (likelihood

scores) returned by the FPGA implementation, we deployed

an accurate cycle-by-cycle, post place and route simulation

for datasets with 8, 64 and 512 taxa and 256 alignment

columns each. The FPGA yields exactly the same results as
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Figure 7. FPGA and multi-core execution times for full

tree traversals using Felsenstein’s pruning algorithm for

trees with 4, 8, 16, 32, 64, 128, 256, and 512 taxa

the software implementation. In order to measure execution

times for the FPGA implementation we used the static

timing report of the Xilinx tools (ADVANCED 1.53 speed

file). The reported clock speed was 284.152 MHz. According

to this clock speed and the number of cycles that the system

requires to perform likelihood calculations, we determined

projected execution times on the FPGA (see Figure 7).

5.2. Experimental Results

The results outlined in Figure 7 depict the execution times

of one full tree traversal on the FPGA and of the software

implementation on 1, 2, 4, 8, and 16 cores on the Sun x4600

multi-core system. The slowdown that can be observed for

the OpenMP version with 16 cores is clearly due to the

relatively short alignment length and hence an unfavorable

communication to computation ratio. FPGA performance

improves slightly with increasing dataset size. As depicted

in Figure 7 the execution times on the FPGA for 4-, and

8-taxon trees, for 16-, 32-, and 64-taxon trees as well as for

128-, 256-, and 512-taxon trees are identical. This behavior

is related to the degree of utilization of the system. If

the number of taxa in the input tree is a power of 8, the

Basic Cells will be fully utilized at all times during the

entire computation until the virtual root is reached. If the

number of taxa is, e.g., 4, the same number of cycles as for

an 8-taxon tree will be required to reach the virtual root,

but 50% of the Basic Cells will not be used. Thus, the

execution times will remain constant for 8n < t ≤ 8n+1,

where t is the number of taxa in the input tree. Thus, the

computational resource utilization in our design is optimal

when the input comprises 8, 64, or 512 taxa.

In Table 1 we indicate the speedup values that the FPGA

achieved compared to the multi-core system on 1, 2, 4, 8,

# Cores 4 taxa 8 taxa 16 taxa 32 taxa 64 taxa 128 taxa 256 taxa 512 taxa

1 6.81 12.76 3.07 6.30 13.55 3.44 6.83 13.68

2 3.79 7.35 1.79 3.53 7.39 2.00 4.02 8.03

4 2.32 4.74 1.15 2.26 4.60 1.33 2.93 5.67

8 2.09 4.85 0.96 2.01 4.05 1.08 2.44 5.08

16 3.65 6.82 1.68 3.55 7.14 1.42 2.95 7.46

Table 1. FPGA speedups on 4- up to 512-taxon trees

compared to software execution times on 1 up to 16

cores. The worst speedup achieved by the FPGA on
the respective datasets is indicated by bold letters

and 16 cores/threads for all tree sizes. The respective worst

speedup obtained by the FPGA is shown in bold letters. In

all but one case (16 taxa, 8 cores) the FPGA is faster than

a high-end multi-core system executing a highly optimized

software implementation of the PLF that has been compiled

with the currently most efficient commercial compiler for

this type of application. While the worst speedup achieved

is 0.96, i.e., the slowdown is negligible, this only occurs in

the most unfavorable case—in terms of input tree size—

for the FPGA implementation, where a large number of

Basic Cells remains under-utilized.

6. Conclusion and Future Work

We have presented an exploratory FPGA design that can

conduct full tree traversals using Felsenstein’s pruning algo-

rithm on fully balanced binary trees under the realistic GTR

model of nucleotide substitution. Our FPGA implementation

achieves speedups of up to a factor of 13.68 compared to an

efficient software implementation running on a single core

and remains competitive when compared to an OpenMP-

based parallel implementation running on up to 16 cores on

a high-end multi-core system. The speedups achieved are

typical for floating point intensive computational kernels on

FPGAs. An implementation using single precision floating

point arithmetics or specifically adapted floating and/or fixed

point number formats (a technique also known as word-

length optimization, see, e.g., [25]) might yield substantial

additional speedups.

Future work will cover the implementation of the Γ model

of rate heterogeneity as well as the CAT approximation

of rate heterogeneity [26]. In addition, we will implement

additional control units to handle unbalanced trees and

enhance the design to explicitly calculate the P (t) transition

matrix at each branch individually. In order to devise a

more realistic design we also intend to integrate methods

for likelihood vector entry scaling and implement models

of amino acid substitution. Finally, in order to provide an

architecture that will be useful to Biologists we intend to

devise an FPGA-based optimization procedure of the GTR

substitution parameters for large protein alignments and to

develop an FPGA-based heuristic algorithm for ML-based

inference of ancestral sequences.
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