
Dynamic Parallelization for RNA Structure Comparison

Eric Snow, Eric Aubanel, and Patricia Evans
Faculty of Computer Science
University of New Brunswick

Fredericton, New Brunswick, Canada E3B 5A3
Email: {eric.snow, aubanel, pevans} @unb.ca

Abstract

In this paper we describe the parallelization of a dy-
namic programming algorithm used to find common RNA
secondary structures including pseudoknots and similar
structures. The sequential algorithm is recursive and uses
memoization and data-driven selective allocation of the ta-
bles, in order to cope with the high space and time demands.
These features, in addition to the irregular nature of the data
access pattern, present particular challenges to paralleliza-
tion. We present a new manager-worker approach, where
workers are responsible for task creation and the manager’s
sole responsibility is overseeing load balancing. Special
considerations are given to the management of distributed,
dynamic task creation and data structures, along with gen-
eral inter-process communication and load balancing on a
heterogeneous computational platform. Experimental results
show a modest level of speedup with a highly-scalable
level of memory usage, allowing the comparison of much
longer RNA molecules than is possible in the sequential
implementation.

1. Introduction

Dynamic programming algorithms, known for both their
high complexity and high computational demands, have the
potential to benefit greatly from the increase in resources
available from parallel computers. However, a considerable
amount of thought must be given to the design of the parallel
versions of such algorithms, as communication overhead
caused by intermediate result dependencies can potentially
result is designs that cannot run efficiently in practice [7].

Parallelization of iterative implementations of dynamic
programming algorithms with high space and time complex-
ities may not be sufficient to allow the solution of large
problems. In [6], Evans presented an algorithm to find com-
mon RNA pseudoknot structures in polynomial time. Given
this algorithm’s worst case O(n10) time and O(n8) space
complexities, a recursive implementation was presented,
using memoization and data-driven selective allocation of
the tables, which dramatically reduced the actual space
requirement and running time. In this paper we consider the
parallelization of this implementation, since parallelization

of an iterative implementation of the algorithm would not
be feasible.

There has been significant recent work on the paralleliza-
tion of dynamic programming algorithms in computational
biology [9], [10], [11], including implementations suitable
for computational grids [5]. What distinguishes this work
is the data-driven recursive implementation, with resulting
dynamically allocated tasks.

The rest of this paper is organized as follows. In section
2, we introduce the sequential version of the algorithm
and discuss its qualities with respect to how they affect
parallelization. Section 3 provides information regarding the
parallel algorithm design and implementation. The evalu-
ation of the implementation is shown in section 4, and
conclusions about the completed work are discussed in
section 5.

2. Finding Common RNA Pseudoknot
Structures in Polynomial Time

While sequence comparison in RNA has become a signif-
icant area of study in recent years [8], additional information
can be gleaned from the comparison of secondary structures
formed by the hydrogen bonds between pairs of bases.
These structures may not hold significant sequence similar-
ity but can impact functionality, making locating common
structures within a pair of RNA strands an area worthy of
study. In particular, finding the maximum common ordered
substructure (MCOS) between a pair of RNA strands, while
maintaining both the strands’ sequences and the ordering of
the bonds has been an area of focus [2], [6].

2.1. Sequential Algorithm

While finding the MCOS for an arbitrary set of structures
of length n and m (where n ≥ m) has been shown to
be NP-complete [12], an algorithm with worst-case time
and space complexity of O(n4) was created by disallowing
bonds which share endpoints and bonds which cross, while
continuing to allow bonds which precede one another or nest
within one another [2], as is illustrated below in Fig. 1.

While this algorithm is very efficient for finding the
MCOS of certain types of RNA, it disqualifies the com-



Start Start

Start

End

End

EndStart End(a) (b)

Figure 1. Illustration of bond structures with (a) nested
and preceding bonds and (b) crossing (knotted) bonds.

parison of many real-world RNA structures in which certain
types of knotting (including pseudoknots and pseudoknot-
like structures) do exist. By allowing only types of knot-
ting consistent with actual RNA, a dynamic programming
algorithm which we refer to as the Pseudoknot Algorithm
was developed in [6] which has worst-case time and space
complexities of O(n10) and O(n8), respectively.

2.2. Sequential Implementation

Based on the significant amount of recurrence and call
repetition, the pseudoknot algorithm is implemented as a
recursive dynamic programming algorithm using memo-
ization, with 4- and 8-dimensional tables used to store
intermediate results. Due to the extreme time and space
requirements of calculating all intermediate points in the
8-dimensional table for even small-sized input structures,
a selective computation and allocation approach is used.
The algorithm allocates slices in the tables and performs
calculations only when they correspond to cases consistent
with the input RNA structures. The implementation was
shown to use an average of only 10−14 of the worst-case
space, supporting input structures of up to 400 bonds in
4Gb of memory [6].

The motivation behind the parallelization of the algorithm
is twofold. First, while the implementation is able to avoid
the the pitfall of being impractical due to its worst case
time and space complexities, the amount of time and more
importantly, space required does still increase at a high rate
as the size and complexity of input structures increases.
Any attempt at work with such structures would be difficult
without the large amounts of main memory available through
parallel machines. Additionally, the sequential algorithm and
implementation have several qualities that make it interesting
and unusual for a problem that needs parallelization.

2.3. Sequential Analysis

A primitive task in the sequential implementation, indicat-
ing the smallest piece of stand-alone work, is represented by
a call to return a point in one of the dynamic programming
tables. If the point already exists, a simple return of the

stored result ends the task, while a full computation of the
task’s result must occur prior to returning if it has yet to
be found. At the beginning of the algorithm, a single task is
created, which will contain the solution to the problem when
it completes. During the solution of a task, other tasks are
created dynamically when the solution of a point in the table
is needed.

The pseudoknot algorithm can be classified as a non-serial
polyadic dynamic programming algorithm with irregular
dependency. The non-serial classification refers to the fact
that to find the solution to a given task in the recursion
tree, one of the tasks needed to complete the solution may
be more than one level away. The polyadic nature of the
algorithm means that the solution of any task will require
the results of at least two other tasks. Finally, the algorithm
exhibits irregular dependency in that the solution of a task
can require a variable number of solutions of other tasks.
This classification makes the pseudoknot algorithm amongst
the most difficult to parallelize efficiently, as the potential for
high communication costs is significant. This ensures that a
traditional static communication design will not be possible.

The major difficulty with the parallelization, including the
irregular dependency, stems from the selective calculation
and allocation used in the implementation. This technique,
which allows the input data to drive computation, is invalu-
able to reducing memory and time requirements, far more
than could be saved by a normal parallel implementation
that did away with it to use a simpler data decomposition.
As a result, the inherent parallelism in the problem is greatly
diminished.

The selective nature of the implementation places an order
on the calculations that would not be present otherwise.
Because it is not possible to determine whether a given point
is going to be valid prior to reaching it during execution,
it is not possible to simply guess whether a task will be
necessary without potentially adding a significant amount of
unnecessary time- and space-consuming calculations. This
leaves only one true starting point for calculation, ensuring
that a staggered processor execution order is the only viable
option.

The data structures worthy of concern are the 4- and 8-
dimensional dynamic programming tables used to hold the
results of tasks. These tables can grow to be extremely
large, and due to selective allocation gain an irregular shape,
with different indices of the same dimension containing
different numbers of entries. This irregular shape is prevalent
only in certain dimensions of each table. Specifically, the
arrays making up the first and third dimensions of the
4-dimensional table are always constant sizes n and m
respectively, as are the arrays making up the first and fifth
dimensions of the 8-d table. The sizes of the arrays making
up the other dimensions of each table are not known until
that particular slice is needed.

2



3. Parallel Algorithm and Implementation

The parallelization of the pseudoknot algorithm uses a
heterogeneous distributed-memory underlying platform with
message passing capabilities as the basis for its design and
implementation. Constrained by the fact that it must make
use of the selective computation and allocation discussed
previously, along with the need for the dynamic program-
ming tables to be distributed to allow for more available
memory, the design follows a new parallel programming
paradigm known as manager-worker. Manager-worker is a
highly modified version of the master-slave paradigm, shar-
ing some similarities with the recently proposed scheduler-
worker paradigm, which is designed for robustness under
disturbance on heterogeneous platforms [5]. Where the
manager-worker differs from the scheduler-worker is in the
management of its tasks and task-related communication.
The scheduler-worker paradigm was designed for parallel
algorithms with a static number of tasks, allowing the
scheduler to quickly redistribute the task allocation to every
worker whenever a round of load balancing takes place.
However, since task generation in the pseudoknot problem
is extremely dynamic and unpredictable, the opportunity for
one large schedule to be efficiently created and distributed
to the workers is not feasible. Instead, based on periodic
updates from the worker nodes, the manager has the op-
portunity to initiate load balancing procedures between two
workers if needed, moving certain tasks and structural data
between them. Fig. 2 shows an illustration of the manager-
worker paradigm.

Current Load
Information

Load Balancing
Updates

Task Evaluation
Requests/Results

Worker nWorker 2Worker 1

Table/Task Data
(Load Balancing)

Manager

Figure 2. The manager-worker paradigm. Dashed ar-
rows are blocking messages, while bold arrows show
non-blocking messages.

The design of the manager processor’s role is that of an
overseer of the entire operation, without having to know
which individual tasks are being created and carried out.
This relegates the manager to the evaluator of whether load
balancing must occur at any given time, a responsibility that
is vital in a situation where both tasks and data structures

are created dynamically. The probability of a skewed data
distribution is quite high, and measures must be taken
whenever necessary to ensure that workers have both enough
work and enough space in which to do it.

The workers are responsible for task creation and evalua-
tion, the creation and maintenance of dynamic programming
tables, and the majority of communication that takes place
during the course of the program. The tasks dynamically cre-
ated during evaluation can require communication with other
processors for results, and the load balancing procedures
themselves involve only the worker processors. Pseudocode
1 shows a high-level view of the worker program flow;
note that the portion of the 4-dimensional table located on
processor 1 will always contain the final solution (assuming
that the manager is processor 0).

Pseudocode 1 Worker Processor Functionality
findSolution():

receive initial data structures from manager
if processor id = 1

while table4[0, n, 0, m] has not been solved
if this processor’s task list is empty or threshold tasks have
been evaluated since the last communication phase

enter communication phase
else, evaluate the node on top of the task list

send table4[0, n, 0, m] to manager
else

while no completion message has been received
if this processor’s task list is empty or threshold tasks have
been evaluated since the last communication phase

enter communication phase
else, evaluate the node on top of the task list

The implementation begins with the first worker attempt-
ing to evaluate a single task, which will result in more tasks
being created, some of which may require requests from
other workers. The involvement of additional workers is
staggered in an unpredictable manner, in that it is dependent
on the input structure, and as such it can fall to the manager
to use load balancing to get more workers involved. The
manager, in addition to monitoring for uninvolved proces-
sors, also monitors for processors running out of available
memory used for dynamic programming tables, and can take
load balancing measures to remedy any issues.

3.1. Data Structures

The 4- and 8-dimensional dynamic programming tables
are distributed amongst the worker processors at the be-
ginning of execution. The tables are split along the first
dimension’s indices due to the fact that the length of the
dimension is static in both tables, and it allows for a short,
simple mapping array to be used to represent the distribution
of the data structure on all processors.

A copy of this mapping array is held by each processor,
allowing workers to quickly identify which processor a piece
of data is located on in a single operation. Additionally, it

3



allows a simplification of load balancing procedures, as the
shifting of task and tabular data can be described simply by
changes to the mapping array. It is assumed that each worker
always holds a contiguous selection of indices to minimize
the amount of inter-worker data requests. This also helps
to simplify load balancing by only allowing processors to
exchange indices with those directly before and after them.

The final wrinkle with respect to the data structures is
the need for reallocation. In the sequential implementation,
the allocation of each non-static dimension was final due to
the strict order of task completion. However, in parallel, this
order cannot be maintained and allocations can potentially
occur out-of-order, leaving a need for re-allocation. While
this reallocation is extremely rare, it still necessitates the
need for assistant tables which are used to keep track of
the lengths of each array the non-static dimensions, as is
illustrated in Fig. 3.

2
3
1

1
2
1
1

2
1
2
2
1
2

2
2

4-Dimensional Table Dim-2 Assistant Dim-4 Assistant

Figure 3. An illustration of the additional tables required
by the 4-d table, used to track the lengths of the second
and fourth dimensions

3.2. Task Creation, Evaluation, and Management

Each task in the parallelization is equivalent to a call
to return a position in the 4- or 8-d table. The distributed
nature of the tables in the parallel version adds a wrinkle to
this, dividing tasks into groups, those requiring results from
another worker and those whose results can be calculated
on the current worker. A traditional use of recursion is not
viable for handling such a situation, as massive portions of
the recursion tree would need to be kept in memory while
waiting on results from other workers.

To deal with the possible need for communication, a list
acting as a modified stack is used on each worker to keep
track of tasks. The task at the top of the list is evaluated,
with any tasks generated during evaluation pushed to the top.
To ensure that nodes waiting on results from other workers
do not stall the list, they are appended to the rear instantly

if they are at the top of the list and their communication
has not yet returned. This setup ensures that the order-of-
evalution of points in the table is as similar to the original
sequential implementation as possible (reducing the num-
ber of reallocations needed), while allowing for flexibility
needed by communication-based tasks. Pseudocode 2 shows
a high-level view of the work that must take place when a
call is made to evaluate a task.

Pseudocode 2 Worker processor evaluation of a task
evaluateNode(headNode):

check the score in the dynamic programming table for headNode
if the score has been successfully calculated

if headNode is a request from another processor
add headNode to the outgoing list

else, pop the headNode and destroy it
else

if headNode is a duplicate task, append it to the rear of the list
else

for each point p in the table required to find
the solution of headNode

if the solution has not been found for p
if a node representing p has already been created,
but is waiting on communication

append headNode to the rear of the list
else

if p’s location in the table is on another processor
create a node for p in the request list

else, create a node for p to add to the main list
else

if p’s solution is maximal
set the current score of headNode to p’s solution

if each point’s solution was found
enter the score of headNode into the table
if headNode is a request from another processor

add headNode to the outgoing list
else, pop and destroy headNode

else, push all newly-created nodes onto the main list

3.3. Communication

Inter-processor communication is required to deal with
two separate areas: task requests/results and load balancing.
In order to simplify the process as much as possible, commu-
nication does not take place during general task evaluation
but rather is confined to the communication phase, entered
depending on the current state of the worker. This entry
is triggered whenever a worker is starved or has gone
above a threshold of attempted task evaluations since its last
communication phase.

Load-balancing communication between manager and
workers is kept relatively simple, with workers sending
messages containing current load and list length information,
and managers sending new mapping array information when
load balancing occurs. These messages are passed in a non-
blocking format and are short to prevent the manager from
becoming a bottleneck.

Communication related to requesting task evaluation and
the return of task results between workers, simply titled task
communication, is extremely unpredictable in the sense that

4



it is not possible for one worker to predict the phase of
communication during which the result of its request will be
returned. The number of calculations performed by another
processor to find a certain point is not predictable, so it is
possible for a request sent out during one communication
phase to not be returned for a long period, while another
request may be calculated and returned almost immediately.

To accommodate this, communication is designed to take
advantage the fact that tasks do not need to be evaluated in
an exact order. While the evaluation of a task does depend
on an exact set of intermediate points from the dynamic
programming tables, it is possible to move on to another
task if the current one is waiting for a result from another
worker. This means that workers need not wait for results to
continue working, and allows for a flexible communication
style that works well to alleviate some of the issues limiting
parallelism.

Specifically, unless a worker’s task list is empty or all
its remaining tasks are waiting on communication, there is
no need to wait during task communication. Task commu-
nication is performed in a non-blocking fashion, such that a
worker can first send out any task communication that it has
created since the last phase using non-blocking messages,
and then receive any messages that have already arrived by
probing for incoming messages using a non-blocking probe,
exiting the communication phase immediately afterwards.
Outgoing and incoming task communication can involve any
other worker processor depending on the requests/results
required, but messages will never be sent out to workers
whose work is not required.

3.4. Load Balancing

Load balancing can be divided into two logical categories:
the decision making process and the execution. The decision
making process falls entirely to the manager, and is depen-
dent upon the most recent load-related information from the
workers, along with information describing the underlying
platform. In addition, historical information detailing recent
load balancing attempts on the processor are also considered,
as due to the time overhead, repeated load balancing of
the same processor can potentially cause it to become a
bottleneck for other processors waiting on its results.

Load balancing is limited to one pair of workers per
communication round, leaving the manager with the decision
of which two, if any, are most in need. The load balancing
score for each pair is calculated based on whether one
of the pair have achieved the critical level based on the
percentage of total memory in use. The critical level of a
worker varies based on the underlying connectivity, recent
load balancing involvement, and the potential amount of
data being transferred, each of which have the potential to
increase the critical level that must be achieved prior to a
pair of workers being considered.

If one pair of workers does reach the critical level, it
is assigned a score based on the relative severity of its
current load balancing situation. At the end of the manager’s
evaluation, the pair of processors with the highest score
(assuming there is one - often no pair will achieve the
critical level), will begin load balancing. This design is set
to encourage load balancing early in execution when it is
not as costly, to allow many processors to begin execution
as soon as possible.

When the decision to perform load balancing has been
made, each worker must synchronize its communication
prior to the execution of load balancing, including the
completion of any ongoing task communication. Once this
is completed, each worker not directly involved in the load
balancing must update its list of tasks, such that any task
currently waiting on a result from the processor losing its
indices must be sent to the processor receiving the new
indices during the next communication phase. After this is
complete, the uninvolved workers can resume their regular
task evaluation.

For the worker giving up its indices, tabular data must
be put into buffers for transfer (one for each dimension)
and the portions of the tables deallocated. One bonus of
this technique is that by using a buffer for each dimension,
the assistant tables used to aid in reallocation need not be
transferred, as their dimensions and data can be gleaned from
the buffers. The worker receiving indices can build the new
portion of the table and the assistant tables in a once-through
fashion once all buffers have been received.

4. Experimental Results

Coded in C using MPI, an implementation of the parallel
algorithm has been created to test the functionality and
efficiency of various aspects of the design. The testbed
for experiments is the hybrid parallel cluster Fundy at the
University of New Brunswick’s ACEnet-sponsored high-
performance computing facilities. Fundy is classified as a
“big node” cluster, characterized by a large processor-to-
node ratio [1]. The portion of Fundy used for the experi-
ments runs Red Hat Enterprise Linux AS 4 (Update 4) and
is composed of nodes containing 8 2.8 GHz dual-core AMD
Opteron processors with 64 Gb of memory available per
node, connected with Gigabit Ethernet. All experiments use
4 processors (cores) per node as their default distribution.

Test data for the experiments falls into two major groups:
ribosomal RNA [4] and M1 RNA from Ribonclease P [3]
and similar input structures. Input structures of the latter
type is generally more complex and use significantly more
space and time find the solution for an equivalently-sized
input structure. Sample data for ribosomal RNA with up to
4000 bases was used, whereas M1 RNA data with up to 600
bases was used. To test the memory growth at higher values,
artificial input structures similar to M1 RNA were created of

5



up to 1250 bases as well. Only RNA containing pseudoknots
and pseudoknot-like structures were considered.

4.1. Memory Usage

Unlike many other parallel implementations, speedup and
efficiency are not the only, nor even the main, factors in
determining whether the implementation can be declared a
success. More than any other factor, proper memory usage
and management is the motivation behind the parallelization
of the pseudoknot algorithm. While a great deal of the
time complexity is shaved off in the sequential version, the
memory requirements still grow at a rate which is nearly
impossible to manage on a single processor as the input
size and complexity increases. Thus, the parallel implemen-
tation’s main goal is to allow for larger and more complex
input structures by distributing memory usage. Fig. 4 shows
the average memory growth as the size of n increases.

Figure 4. Average memory usage as the size of input
increases

It is important to note that this is the average, as depending
on the input structures the memory usage can vary a great
deal. Estimates of sequential memory usage where total
memory usage is > 40 Gb were calculated by the parallel
implementation, as it was not possible to reserve more
than 40 Gb for a single processor. Knowing this, the graph
shows a significant number of new problem instances can be
calculated using the parallel version which were not possible
previously.

The sizes of the dynamic programming tables produced
in the sequential and parallel implementations are identical
because the positions calculated are identical. However, the
use of the assistant tables, as illustrated previously in Fig. 3,
is a pure parallel memory overhead which is not present in
the sequential implementation. The amount of extra memory
used to hold incomplete tasks in the task list is negligible
next to the overall size of the dynamic programming tables,
and shrinks as the size of the tables near their maximum, so
rarely factors into maximum memory usage.

The extra memory added by assistant tables in ribosomal
RNA leaves the maximum memory usage between 1.2 and
1.8 times the amount needed in the sequential implemen-
tation. The M1 RNA on the other hand, which features
significantly more entries in the 8-dimensional table than
the 4-dimensional one (leading to more assistant table data),
used between 1.5 and 2.5 times the amount in the sequential
implementation. These values do not change based on the
number of processors used, minimizing the impact as more
processors are added, meaning the implementation is very
scalable with respect to memory usage.

4.2. Speedup and Efficiency

The average amount of speedup achieved by the parallel
implementation is shown in Fig. 5. Speedup achieved by
ribosomal and M1 RNA are on average very similar, with
M1 RNA showing slightly more speedup at each point.
Speedup is fairly modest overall, showing average speedup
of only 6.5 to 7 on 64 processors. Average efficiency drops
considerably as the number of processors increases as well,
going from 0.37 on 4 processors to 0.11 on 64 processors.

Figure 5. Average speedup achieved with 4-64 proces-
sors

The amount of speedup achieved becomes more variable
as the number of processors increases as well, varying from
3.4 to almost 11 on 64 processors. This variation is due to
the drastic variability of communication and load balancing
time based on the properties of the input structures.

4.3. Understanding the Speedup and Efficiency
Results

There is no all-encompassing cause of the modest levels
of speedup and efficiency, but rather a series of causes
stemming from the high memory usage, selective allocation
and computation, and the non-serial polyadic nature and
irregular dependency of the algorithm itself which make
obtaining high levels of speedup impossible. Table 1 shows

6



Table 1. Percentage of Wall Clock Time by Activity

p Calculation Comm. Polling Load Balancing Idling
1 100 0 0 0 0
4 45 2 40 8 5
8 31 2 44 16 7
16 24 3 45 19 9
24 19 3 48 20 10
32 17 2 48 21 12
48 13 2 48 22 15
64 11 2 49 22 16

the average amount of total wall-clock time performing each
activity.

The first major cause for the modest levels of speedup is
the inherent sequentiality imposed on the problem through
selective allocation and computation, specifically the stag-
gered start time for computation which cannot be avoided.
The staggered start time, along with dynamic task creation,
ensures that there are times when worker processors are idle,
meaning their task list is empty and they are simply waiting
for requests for work.

The second major cause of the lower levels of speedup is
the necessity of load balancing. As the problem size and/or
complexity increases, and as the number of processors
increases, load balancing overhead becomes more of an
issue. The two major causes of the lack of scalability of
load balancing are the need to synchronize workers, and the
increasing amount of data that can potentially be transferred.
As total memory usage increases into the hundreds of giga-
bytes, it is not impossible to find a load balancing situation
in which gigabytes of tabular data must be transferred.

The final major cause for the lowering of speedup is the
additional task communication overhead brought on by hav-
ing a non-serial polyadic dynamic programming algorithm
with irregular dependency as the basis for the parallel design.
While direct task communication is extremely quick due
to the use of non-blocking communication to send short
messages, the unpredictable nature of communication forces
a side-effect on workers which is very time consuming.

This side-effect, known as “polling”, occurs when an item
in the main list which requested a result from another worker
is checked to see whether the result has returned. If the result
has not returned and therefore is not ready to be solved,
the item is appended to the back of the list. This process
is not time consuming on its own, but can begin to take
large chunks of time as the number of list items waiting on
communication increases.

4.4. Load Balancing

Load balancing decisions can be broken down into two
categories for evaluation: those which are made to allow the
program to continue execution (mandatory), and those which
are made to increase the speedup and effciency of execution
(discretionary). The former occurs when a processor is

nearing the point at which it will no longer be able to
continue evaluating tasks due to a lack of memory, and is a
non-negotiable decision.

Load balancing decisions of the latter category are more
interesting to study. As noted in section 3.4, discretionary
load balancing decisions are designed to occur significantly
more often during the beginning stages of execution when
there are a large number of idling worker processors. Fig.
6 shows a comparison of the average amount of time
spent idling for two different managers: one which performs
discretionary load balancing during the early stages of the
program, and one which only performs load balancing in
non-negotiable situations.

Figure 6. A graph of the difference in idle time as a
percentage of total execution time based on a manager
that is aggressive about load balancing during the early
stages of execution versus one which is not.

Clearly, discretionary load balancing during early stages
of execution is extremely beneficial, which is not surprising
given that it is unlikely in a situation with a large number
of processors that they will all become involved during the
early stages without manager support.

Fig. 7 illustrates an example in which one manager
performs discretionary load balancing throughout the ex-
ecution of the program, while the other stops performing
discretionary load balancing after the initial phase, and
only performs non-negotiable load balancing thereafter. This
shows that the efforts of the manager to add efficiency are
overpowered by the overhead associated with load balancing
after a certain point.

5. Conclusions

In this paper we have described the parallelization of a
dynamic programming algorithm used to find the maximum
common ordered substructure of a pair of RNA strands
which include pseudoknots. The parallelization has to over-
come several obstacles including the non-serial, polyadic

7



Figure 7. A graph of the difference in speedup based on
a manager that performs discretionary load balancing
during all stages of execution versus one which only
does so during the early stages

nature of the algorithm and its irregular dependencies, and
the selective calculation and allocation employed by the
sequential implementation, which removes much of the
inherent parallelism from the problem.

The parallelization uses the newly proposed manager-
worker paradigm, which focuses on a hands-off manager
acting as a monitor for load balancing should the need arise.
Worker processors dynamically generate tasks and their own
section of the distributed data structures while requesting
results from other workers when necessary. Inter-worker task
communication is designed to be flexible, allowing workers
to deal with the unpredictable communication pattern while
attempting to minimize parallel overhead.

The experimental results show a modest level of speedup
with a highly-scalable level of memory usage, allowing
larger and more complex input structures to be solved than
were previously possible. While the results thus far do
not give nearly the speedup that more easily-parallelizable
problems are able to achieve, they do provide a necessary
avenue of exploration for future work in parallelizing this
type of problem.

References

[1] ACEnet: Atlantic Computational Excellence Network:
http://www.ace-net.ca

[2] V. Bafna, S. Muthukrishnan, R. Ravi. Computing Similarity
between RNA Strings. DIMACS Technical Report. Vol. 96, no.
30. 1996.

[3] J. Brown. The Ribonuclease P Database, Nucleic Acids Re-
search. Vol. 27, 1999, p. 314.

[4] J. Cannone et al. The comparative RNA web (CRW) site:
an online database of comparative sequence and structure
information for ribosomal, intron, and other RNAs, BMC
Bioinformatics. Vol. 3, no. 1, 2002, p. 15.

[5] C. Chen, B. Schmidt. An adaptive grid implementation of DNA
sequence alignment, Future Generation Computer Systems.
Vol. 21, no. 7, 2005, pp. 988-1003

[6] P. Evans. Finding Common RNA Pseudoknot Structures in
Polynomial Time. Combinatorial Pattern Matching, Lecture
Notes in Computer Science. Vol. 4009, 2006. pp. 223-232.

[7] A. Grama, A. Gupta et al. Introduction to Parallel Computing,
Second Edition. Addison-Wesley, 2003.

[8] N. Jones, P. Pevzner. An Introduction to Bioinformatics Algo-
rithms. MIT Press, 2004.

[9] W. Liu, B. Schmidt. Parallel Design Pattern for Computational
Biology and Scientific Computing Applications, IEEE Interna-
tional Conference on Cluster Computing, Proceedings. 2003,
pp. 456-459.

[10] W. Martins et al. Whole Genome Alignment using a Mul-
tithreaded Parallel Implementation. 13th Symposium on Com-
puter Architecture and High Performance Computing, Proceed-
ings. September 2001.

[11] G. Parmentier, D. Trystram, J. Zola. Large scale multiple
sequence alignment with simultaneous phylogeny inference.
Journal of Parallel and Distributed Computing. Vol. 66, no.
12, December 2006, pp. 1534-1545.

[12] K. Zhang. Computing similarity between RNA secondary
structures. Proceedings of IEEE International Joint Symposia
on Intelligence and Systems. 1998, pp. 126-132.

8


