

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Impact of Multicores on Large-scale Molecular Dynamics Simulations

Sadaf R. Alam, Pratul K. Agarwal, Scott S. Hampton, Hong Ong, and Jeffrey S. Vetter

Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831

{alamsr,agarwalpk,hamptonss,hongong,vetter}@ornl.gov

Abstract

Processing nodes of the Cray XT and IBM Blue

Gene Massively Parallel Processing (MPP) systems

are composed of multiple execution units, sharing

memory and network subsystems. These multicore

processors offer greater computational power, but may

be hindered by resource contention. In order to

understand and avoid such situations, we investigate

the impact of resource contention on three scalable

molecular dynamics suites: AMBER (PMEMD

module), LAMMPS, and NAMD. The results reveal the

factors that can inhibit scaling and performance

efficiency on emerging multicore processors.

1. Introduction

Massively Parallel Processing (MPP) systems,

composed of thousands of multicore processing

devices, are becoming a dominant architectural

paradigm in high performance computing. The shift in

processor architecture focus from the traditional

improvement in clock speed to using multiple cores

introduces another level of parallelism at the

processing layer. As the number of cores increases per

chip, data locality, shared cache, bus contention, and

memory bandwidth limits become even more difficult

to manage due to increases in resource sharing.

Additionally, from a parallel application’s perspective,

the increase in number of cores indicates that there will

be more intensive intra-node communication.

Therefore, it is important to identify the factors that

could potentially limit the performance and scalability

of applications.

In this study, we aim to quantify the costs across

different variants of multicore devices and molecular

dynamics (MD) frameworks through a comprehensive

measurement. MD simulations typically repeat

identical sequences of operations and run for extended

periods. Therefore, a small improvement or

degradation in performance could have significant

implications. Performance and scaling improvements

across different multicore devices could be achieved by

identifying bottlenecks and by understanding and

identifying the cost factor in hardware and software

stack as well as the application implementation. In

particular, we present a methodology for characterizing

the performance of a diverse range of multicore devices

in the context of three scalable, production-level MD

simulation frameworks.

We use the JAC (Joint Amber [13] and CHARMM

[12]) test case [6], which contains 23,558 total atoms,

as an input to the two parallel versions of the MD

simulation frameworks, Amber PMEMD, and

LAMMPS [5][17]. NAMD [8][16] is another well-

known framework based on the Charm++ runtime

system. For MPP runs, we selected medium-scale

biological systems of few hundred thousands atoms to

large-scale systems of up to 3 million atoms. We

analyze performance and scaling of MD test cases on

these tightly integrated MPP systems and compare and

contrast these with emerging, stand-alone multicore

microprocessors. On the emerging quad-core

microprocessors systems [2], our finding indicates that

the MD applications performance is highly sensitive to

the MPI communication library implementation,

tuning, and usage in the application. MPP systems,

including Cray XT [3][9][10] and IBM Blue Gene

[4][15], offer high network injection and bisection

bandwidth to tens of thousands of processing cores.

We subsequently evaluate the impact of network

performance on scalable MD applications. The unique

contribution of this study is a comprehensive

evaluation and analysis of a range of biological systems

using the major scalable MD frameworks on emerging

multicore and MPP systems.

The paper outline is as follows: Section II provides

an overview of the scalable MD frameworks and the

motivation of the proposed study. Section III describes

the testing environment, including the hardware,

software, and test cases. Performance evaluation results

and analysis of simulation runs is presented in section

IV. Section V concludes with the key findings of this

study and directions for future plans.

2. Background and Mativation

MD simulations enable the study of complex,

dynamic processes that occur in biological systems.

MD methods are now routinely used to investigate the

structure, dynamics, function, and thermodynamics of

biological molecules and their complexes. A typical

bimolecular simulation contains atoms for the solute,

ions, and the solvent molecules. The motions of

individual atoms can be determined by numerically

solving Newton’s equations of motion, which relate the

total force on an atom to its mass and acceleration.

maFi

The total force on each atom is a contribution from

individual forces due to chemical bonds, as well as

non-bonded interactions with all other atoms. The

force is calculated from the negative gradient of the

potential energy function, U, which is given by,

N

i

N

j ij

ji
N

i

N

j ijij

torsions

t

bonds angles

iaib

r

qq

rr

nccllcU

1 11 1

612

2

0

2

0

4

))cos(1()()(

The latter two terms represent the van der Waals

and electrostatics terms, respectively. Although forces

are defined among all atom pairs, in practice, MD

simulations evaluate only those pairs within a cutoff

distance for computational efficiency. Each particle

interacts with the nearest images of the other N-1

particles only in a sphere of radius Rcutoff. The cutoff

limits the number of non-bonded interactions in the

sum to be Nρ, with ρ the atom density, as compared to

N(N-1) interactions without the cutoff. For the van der

Waals interactions, the cutoff error is negligible within

a reasonable distance since it is proportional to rij
-6

.

However, the electrostatic sum has a much larger error,

as it is proportional to rij
-1

. Ignoring the electrostatic

interactions beyond the cutoff can introduce spurious

effects in the energy and forces, resulting in artificial

force magnitudes. The Particle Mesh Ewald (PME)

method provides a solution to this problem by

interpolating energies to a grid and then using a fast

Fourier transform for the calculations. PME is nearly as

accurate as computing all pairs, but reduces the number

of non-bonded interactions to N log N [11][14]. A

number of established MD codes implement PME,

including AMBER, LAMMPS, and NAMD.

3. Testing Environment

Hardware

The experimental data collection for this study is

undertaken on x86-based standalone systems, Cray

XT3 [9], Cray XT4 [10], IBM Blue Gene/L [15], and

Blue Gene/P [4] systems. The x86-based standalone

systems include an eight socket, dual-core AMD

Opteron 8216 [2], an eight socket, quad-core AMD

Opteron 8350 [1], and an Intel quad-core Clovertown

system [18]. The AMD based systems use PGI

compilers, whereas the Intel compiler is used on their

platform. The cluster systems run standard versions of

the Linux operating system. The Cray XT3 and XT4

systems are composed of dual-core Opteron processors.

Cray XT4 contains Rev F Opteron while the Cray XT3

system is composed of an earlier release of dual-core

Opteron processor. Additionally, the XT3 uses the

SeaStar NIC, while the XT4 uses the SeaStar2 NIC.

The SeaStar2 increases the peak network injection

bandwidth of each node from 2.2 GB/s to 4 GB/s when

compared to SeaStar, and increases the sustained

network performance from 4 GB/s to 6 GB/s. The

IBM Blue Gene/L and Blue Gene/P systems are

composed of PowerPC processors. The Blue Gene/L

systems has 2 compute cores per processing node,

while the Blue Gene/P system, a predecessor of the

Blue Gene/L system with higher frequency, has 4

execution cores per processing node. IBM compilers

are used on the Blue Gene systems. Note that many of

the results on the MPP systems were collected as a part

of the early performance evaluation effort. We

anticipate that the achievable performance and scaling

could be improved by system-specific optimization and

tuning as well as with the maturity of the software stack

including compilers, operating and runtime systems

that control the mapping and placement of parallel MPI

tasks.

Software

The three MD frameworks that we used are PMEMD,

LAMMPS, and NAMD. PMEMD is a module of

AMBER that has been written with the major goal of

improving performance of PME in molecular dynamics

simulations and minimizations by Robert E. Duke and

Lee G. Pedersen. PMEMD is implemented in Fortran

90 and MPI. LAMMPS models an ensemble of

particles in a liquid, solid, or gaseous state, and can be

used to model atomic, polymeric, biological, metallic

or granular systems. The version we used for our

experiments is written in C++ and MPI. It is the only

implementation that is reported to scale to 64K Blue

Gene/L processors. It should be noted that the scaling

numbers are reported in the weak scaling mode, i.e.,

not for a fixed-size problem. NAMD is a C++ based

parallel program, implemented using the Charm++

parallel programming system. It uses object-based

decomposition methods and measurement-based

dynamic load balancing to achieve its high

performance. NAMD uses a combination of spatial

decomposition and force decomposition techniques to

generate a high degree of parallelism. NAMD

developers describe several techniques to scale it to

8,192 processors on Blue Gene/L.

Test Cases

The bio-molecular systems used for our experiments

were designed to represent the variety of complexes

routinely investigated by computational biologists. We

considered the following three test cases for our

experiments:

• Small: 23,558 atoms (JAC) and 61,641 atoms

(HhaI).

• Medium: 290,220 atoms (RuBisCO).

• Large: 1,066,628 atoms and 2,640,030 atoms

The smallest system is the JAC (Joint Amber

CHARMM) benchmark. JAC is a dihydrofolate

reductase (159 residue protein) in TIP3P water (23,558

total atoms), in a periodic box with constant volume

and explicit solvent. PME is used for electrostatics,

and van der Waals interactions are truncated at 9Å.

The HhaI system is a model for protein-DNA complex

(enzyme m5C-methyltransferase M. HhaI with its

target DNA sequence), in explicit solvent and counter-

ions to allow the system to be charge neutral. This

model consists of 61,641 atoms with explicit treatment

of solvent using the TIP3P water model. AMBER’s

tleap module was used for system preparation and the

AMBER parm98 force-field was used. The system was

equilibrated before benchmarking runs. The time-step

is (10
-15

 seconds). The long-range forces are

calculated using PME. A medium-scale system we

considered is the RuBisCO enzyme, which is based on

the crystal structure 1RCX. The RAQ system is a

model of the RuBisCO enzyme in explicit solvent and

was prepared in a way similar to the HhaI system. This

model consists of 290,220 atoms with explicit

treatment of solvent. The time-step for each run is also

1 fs. We consider two representative large-scale

biological systems with 1,066,628 atoms and 2,640,030

atoms, respectively. The first test case models Satellite

Tobacco Mosaic Virus (STMV) [7]. It uses periodic

boundary conditions and the PME for electrostatics.

The other test case has a similar configuration except

that it uses slightly different PME parameters.

4. Experiments and Results

To understand the impact of multicore technologies

on MD simulation, we evaluate performance of two

out-of-the-box applications on an AMD quad-core

processor. Figure 1 shows the parallel efficiency

results (speedup/number of cores). Note that these

results compare performance starting from 2 cores

rather than 1 core. This is because PMEMD requires a

minimum of 2 MPI tasks. Therefore the actual

efficiency could be in fact slightly smaller. We ran a

small (JAC, 24K atoms) and a medium (RUB, 290K

atoms) size problem on two scalable MD frameworks,

LAMMPS and PMEMD. We observe that on a system

with 8 quad-core processors connected in a SMP

manner, the efficiency could be lower than 50% just by

using only half of the total cores.

Figure 1: Parallel Efficiency on a quad-core

processor

Quadcore Performance and Scaling

We begin by evaluating performance and scaling of

a small-scale test case, JAC, using the PMEMD and

LAMMPS frameworks. A single MPI task is mapped

onto a single core in all test cases. We compare these

results with the Cray XT3 and XT4 results, systems

that have similar characteristics except for a high

memory bandwidth and high network injection

bandwidth. The bisection bandwidth of the XT3 and

XT4 systems is the same. Figure 2 shows performance

results in (10
-12

 seconds) per simulation day on a

dual-core AMD Opteron and two contemporary quad-

core systems along with MPP system results by

simulating the JAC benchmark in LAMMPS

framework. On smaller core count, we observe that the

Intel Clovertown system outperforms all other

multicore systems as a result of a higher clock

frequency system and a large shared cache per die.

However, as all cores begin sharing the bus and cache,

the resource contentions result in slower performance

and limit scaling to large number of cores. The

Opteron systems, on the other hand, have relatively low

clock frequencies, but the on-chip memory controller

and the Hyper-transport (HT) links provide better

scaling. Still at the higher core count, scaling in the

SMP configuration of 8 cores suffer while the 100

series single-chip, dual-core XT3 and XT4 systems that

are connected to the network via HT links provide

much higher efficiencies.

Figure 2: Per core (x-axis) performance in

pico-seconds per day (y-axis) LAMMPS

simulation of the JAC test case.

To quantify and understand the scaling behavior of the

results presented in Figure 2, we calculated speedup on

multiple cores or MPI tasks with respect to single core

runtimes (speedup equals time on one core divided by

time on P cores). The results are shown in Figure 3.

The speedup on the XT4 system is the highest while

the Clovertown system is the lowest. The two Opteron

SMP systems with 8 sockets provide similar levels of

scaling despite having different number of cores per

socket and slightly lower frequency on the quad-core

system. In other words, the performance of this

simulation run is probably less sensitive to sharing

resources per socket than sharing resources across

sockets.

Figure 3: Speedup (Y-axis) on number of cores

(X-axis) for JAC simulation using LAMMPS

We repeat the similar set of experiments with the

PMEMD simulations of the JAC benchmark. The

results are shown in Figure 4. Although the

implementation of LAMMPS and PMEMD are

significantly different, the scaling behavior of these

applications is similar across the five targeted

multicore platforms. In other words, the Clovertown

system outperforms the other multicore platforms on

smaller core counts but the scaling is limited to a few

cores. Another interesting observation is the scaling of

the PMEMD simulation runs on the target multicore

systems. Despite the different usage patterns of MPI

communication operations in PMEMD and LAMMPS,

these exhibit similar scaling behavior for simulating

JAC on up to 32 cores.

Figure 4: Per core (x-axis) performance in

pico-seconds per day (y-axis) PMEMD

simulation of the JAC test case

Scaling with Workload Size

Since JAC is a small problem case, one could argue

that it is not capable of exploiting and saturating the

computing resources available on the multicore

systems. At the same time, we are also interested in

understanding the scaling behavior and impact of

resource contention on multicore systems with

increased workload volume. We therefore ran

experiments on the AMD quad-core system and

compared results of two test cases, small (JAC) and

medium (RUB) using LAMMPS and PMEMD.

Results are shown in Figure 5. Here we note that the

scaling of PMEMD is not sensitive to the problem size

(24K atoms as compared to 290K atoms) while the

LAMMPS scaling behavior changes significantly on

the higher processor count. We attribute this behavior

to the increase in the workload volume as a function of

problem size. In LAMMPS the workload volume per

processor does not increase with the same rate as the

PMEMD communication volume. Increase in the

computation volume, however, is proportional in the

two implementations.

Figure 5: Per core (x-axis) performance in

pico-seconds per day (y-axis) on AMD quad-

core system

Parallel Efficiency on MPP Systems

We compare applications performance and scaling on

Teraflop-scale contemporary MPP systems. For these

experiments, we selected medium to large-scale test

cases (up to 3M atoms) and ran experiments using the

simulation frameworks that are known to scale to tens

of thousands of MPI tasks.

A set of experiments is conducted using LAMMPS

with a atom system (HhaI) and atom system (RUB),

both with explicit solvent. The sizes of the FFT grid in

these simulations determine the scaling limits. The

HhaI system could scale to 1024 MPI tasks while the

system could scale to 4096 MPI tasks. Figure 6 shows

performance slowdown for HhaI and RUB runs using

LAMMPS on Cray XT3 and XT4 systems. These

results on the dual-core systems show that the

performance slow-down could be as high as 50% if an

application is built and run in the default mode. Our

earlier results showed that this slowdown could be even

higher for the quad-core processors.

Figure 6: Per core (x-axis) performance

slowdown with respect to single core (y-axis)

LAMMPS simulation

No system specific modifications and optimizations are

performed for these simulation runs. It is worth noting

here that all these results are collected as part of early

system evaluation and subsequent upgrades could

result in significant performance improvements, as we

note for the case of XT3 and XT4 runs.

We compare performance and scaling of the RUB test

case on the target MPP systems in Figure 7. Here we

note that subsequent generations of the systems, XT

series and Blue Gene series, result in performance

improvements for applications particularly on large

number of MPI tasks mainly due to improvements in

network and memory bandwidth. At the same time,

there are smaller changes in the speedup ratios

comparing the subsequent generations of the two

systems suggesting that additional efforts are needed to

exploit the enhanced architectural features of the target

systems efficiently. In the case of MD applications,

this is particularly challenging since the number of

atoms or workload volume per processor is not fixed

throughout the simulation runs. The result is load

imbalances in computation as well as in

communication. Our next set of experiments show that

the scaling and performance benefits could be seriously

limited due to the load imbalance and synchronization

on large number of cores.

Figure 7: Per core (x-axis) performance in psec

per day (y-axis) LAMMPS simulation of the

RUB test case

The analysis of NAMD simulation runs reveals a

slightly different set of issues. Unlike LAMMPS and

PMEMD, NAMD is built on the Charm++ execution

and runtime framework, which is being built on XT and

Blue Gene MPI libraries. Charm++ employs

virtualization techniques such that the programmer

divides the program into a large number of parts

independent of the number of processors. The scaling

on NAMD simulation on large-scale test cases (3M

atoms) is shown in Figure 8. In this particular case, we

observe the performance results converge especially at

higher number of MPI tasks. We used standard

runtime and MPI profiling tools and the Charm++

projection tool to understand the cause of this

performance behavior. Our analysis reveals that there

are some severe load balancing issues and the

difference between communication volume assigned to

one MPI task or core can vary significantly as the

numbers of cores increase.

Figure 8: Per core (x-axis) performance in time

per simulation step (y-axis) NAMD simulation

of the 3M atoms test case

5. Conclusions and Future Plans

There are many benchmarking tools for evaluating the

performance of hardware and software components.

However, a majority of these benchmarking tools

primarily focus on a particular system component.

Thus, these tools often do not present a holistic view of

a multicore based MPP system. This study showed

that a systematic evaluation of the interaction and

discovering the critical performance path is crucial to

solve the problem at hand.

We have shown that the performance and scaling of the

MD simulations on multicore platforms depend on a

range of factors including the hardware design features,

software stack and implementation of the simulation

framework. On stand-alone dual and quad-core

systems, the applications showed sensitivity to the

implementation and usage of the MPI communication

library. On the other hand, on the large-scale MPP

systems based on the multicore processors, the load

balancing and maturity of the software stack is more

critical for sustaining performance and scaling MD

applications. Our results capture the workload

characteristics of a production-level application and

scaling limiting factors for existing test cases and future

problem configurations.

We plan to develop platform-independent symbolic

models for our target applications to identify and to

subsequently address scaling-limiting features in their

computation and communication behavior. On the

multicore platforms, we will experiment with alternate

MPI library implementations and configurations. We

also plan to explore system software stack for optimal

scheduling and mapping of MPI tasks in MD

simulations. On the application front, particularly at

large scale, we anticipate that alternate algorithms,

programming models and implementation will be

investigated to reduce the load balancing problems.

Acknowledgements

The submitted manuscript has been authored by a

contractor of the U.S. Government under Contract No.

DE-AC05-00OR22725. The authors would like to

thank National Center for Computational Sciences

(NCCS) for access to Cray XT3 and support (INCITE

award).

References

[1] AMD Opteron Rev. F, details available at

http://multicore.amd.com/

[2] AMD quad-core platform,

http://multicore.amd.com/us-en/quadcore/

[3] Cray XT Systems. Available from:

http://info.nccs.gov/resources/jaguar.

[4] IBM Blue Gene/P system, http://www-

03.ibm.com/servers/deepcomputing/bluegene.html

[5] LAMMPS Molecular Dynamics Simulator,

http://lammps.sandia.gov/

[6] MD benchmarks for AMBER, CHARMM and

NAMD, http://amber.scripps.edu/amber8.bench2.html

[7] Molecular Dynamics of Viruses; Available from:

http://www.ks.uiuc.edu/Research/STMV/

[8] NAMD Scalable Molecular Dynamics Code,

http://www.ks.uiuc.edu/Research/namd/

[9] S.R. Alam, R.F. Barrett, et. al. (2007), “An

Evaluation of the ORNL Cray XT3,” J. High

Performance Computing Applications (to appear).

[10] S.R. Alam, R.F. Barrett, et. al. (2007), “Cray

XT4: An Early Evaluation for Petascale Scientific

Simulation,” ACM/IEEE Supercomputing Conference

(SC07).

[11] S. R. Alam, P. K. Agarwal, et. al. (2006),

“Performance Characterization of Bio-molecular

Simulations using Molecular Dynamics,” Principle and

Practices of Parallel Programming (PPoPP’06).

[12] B. R. Brooks, R. E. Bruccoleri, et al., (1983)

“CHARMM: A Program for Macromolecular Energy,

Minimization, and Dynamics Calculations”, J. Comp.

Chem., 4, 187-217.

[13] D. Case, et. al., “The Amber Bio-molecular

Simulation Programs,” J. of Comp. Chemistry: 1668-

1688, 2005.

[14] M. Crowley, et. al., “Adventures in Improving the

Scaling and Accuracy of Parallel Molecular Dynamics

Program,” J. of Supercomputing, 11, 1997.

[15] M. Ohmacht, R. A. Bergamaschi, et al., “Blue

Gene/L compute chip: Memory and Ethernet

subsystem,” IBM Journal of Research and

Development, Vol. 49, No. 2/3, 2005.

[16] James C. Phillips, Rosemary Braun, Wei Wang,

James Gumbart, Emad Tajkhorshid, Elizabeth Villa,

Christophe Chipot, Robert D. Skeel, Laxmikant Kale,

and Klaus Schulten. “Scalable molecular dynamics

with NAMD.” Journal of Computational Chemistry,

26:1781-1802, 2005.

[17] S. J. Plimpton (1995), “Fast Parallel Algorithms

for Short-Range Molecular Dynamics”, J. Comp. Phys.,

117, 1-19;

http://www.cs.sandia.gov/~sjplimp/lammps.html

[18] R. M. Ramanthan, “Intel Multi-core Processors:

Making the move to Quad-core and Beyond”, white

paper available at

http://www.intel.com/technology/architecture/downloa

ds/quad-core-06.pdf

