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Abstract 

 
In this study, we propose a new machine learning 

model namely, Adaptive Locality-Effective Kernel 
Machine (Adaptive-LEKM) for protein 
phosphorylation site prediction. Adaptive-LEKM 
proves to be more accurate and exhibits a much stable 
predictive performance over the existing machine 
learning models. Adaptive-LEKM is trained using 
Position Specific Scoring Matrix (PSSM) to detect 
possible protein phosphorylation sites for a target 
sequence. The performance of the proposed model was 
compared to seven existing different machine learning 
models on newly proposed PS-Benchmark_1 dataset in 
terms of accuracy, sensitivity, specificity and 
correlation coefficient. Adaptive-LEKM showed better 
predictive performance with 82.3% accuracy, 80.1% 
sensitivity, 84.5% specificity and 0.65 correlation-
coefficient than contemporary machine learning 
models.   
 
1. Introduction 
 

Post-translational modifications are observed on 
almost all proteins analysed to date. These 
modifications have a substantial influence on the 
structure and functions of proteins. Phosphorylation at 
the serine, threonine and tyrosine residues by enzymes 
of the kinase and phosphatise super-families is one of 
the most frequent forms of post-translational 
modifications in intracellular proteins. Phosphorylation 
has a significant impact on diverse cellular signalling 
processes. The phosphorylation-dependence signals 
function diversely in animals such as a regulation of 
differentiation of cells, a trigger of progression of the 
cell cycle, and a control of metabolism, transcription, 
apoptosis, cytoskeletal rearrangements and so forth [6] 
[12] [15] [17] [20] [25] [31]. 

During phosphorylation, a phosphate molecule is 
placed on another molecule resulting in the functional 
activation or inactivation of the receiving molecule. 
The phosphorylation of any site on a given protein can 
also alter the function or localisation of that protein. 
Phosphorylation of a protein is considered as a key 
event in many signal transduction pathways of 
biological systems [5]. It is thus important for us to be 
able to accurately determine the phosphorylation state 
of proteins so as to better identify the state of a cell. 

In order to determine phosphoproteins and 
individual phosphorylation sites, various experimental 
tools have been used. However, many indicated that in 
vivo or in vitro identification of phosphorylation sites 
is labour-intensive, time-consuming and often limited 
to the availability and optimisation of enzymatic 
reactions [5] [31] [33]. Several large-scale 
phosphoproteomic data using the mass spectrometry 
approach have been collected and published [2] [3] [9]. 
These however are sill unfavourable in distinguishing 
the kinase-specific sites on the substrates. For an 
example, mass spectrometry methods have been shown 
to be disfavour in the identification of phosphate-
modified residues, leading to underestimation of the 
extent of phosphorylation presents in vivo [23]. 

Due to the practical limitations of the afore-
mentioned methods, many scientists now turn to 
computer-based methods. These methods not only 
efficiently handle massive amounts of protein data but 
also determine phosphoprotiens and identify individual 
phosphorylation sites from one dimensional atomic 
coordinates with high precision. Several computer-
simulated machine learning techniques such as 
Artificial Neural Networks (ANNs) and Support 
Vector Machines (SVMs) have been extensively used 
in various biological sequence analyses and 
phosphorylation site prediction. These methods are 
built based on the assumption that neighbouring 



residues to the phosphorylated site represents the main 
determinant for kinase specificity [29] [33]. 

Although a large number of machine learning based 
methods were proved to be effective in the prediction 
of phosphorylation site, several important issues that 
can potentially degrade the performance of machine 
learning or statistical-based methods have been largely 
ignored. It has been widely recognised that the high 
dimensionality of protein sequence data not only 
causes a dynamic increase in computational 
complexity but also induces into the 
overfitting/generalisation problem of non-parametric 
methods. With machine learning models, better 
generalisation and faster training (computationally 
efficient) can be achieved when they have fewer 
weights to be adjusted by fewer inputs. 

This study aims to develop an accurate and stable 
machine learning model for phosphorylation site 
prediction. Our proposed model called, Adaptive 
Locality-Effective Kernel Machine (Adaptive-LEKM) 
uses a semi-parametric form of the existing support 
vector machine. In addition, with the boosting 
algorithm, it adaptively combines the learners to find 
an optimised fit for its given phosphoprotiens. In our 
experiments, the Adaptive-LEKM excels in efficiently 
processing high dimensional protein data with a much 
more accurate and stable predictive performance over 
existing models. The novel features of this study are 
the use of a new machine learning based semi-
parametric model, and the use of unique training 
dataset (PS-Benchmark_1) contains experimentally 
verified phosphorylation sites manually extracted from 
major protein sequence databases and the literature. 
 
2. Materials and methods 
 
2.1. PS-Benchmark_1 dataset 

 
The fair comparison and assessment of each model 

is complicated as all use different phosphorylation site 
datasets in the literature. In this study, we use a newly 
developed comprehensive dataset, namely PS-
Benchmark_1 for the purpose of benchmarking 
sequence-based phosphorylation site prediction 
methods. It is widely known that accurate classification 
is highly dependent upon high quality data sets of both 
positive and negative examples. However, such a 
golden standard datasets are not yet available for 
protein phosphorylation site prediction. PS-
Benchmark_1 contains experimentally verified 
phosphorylation sites manually extracted from major 
protein sequence databases and the literature. The 
dataset comprises of 1,668 polypeptide chains and the 
chains are categorised in four major kinase groups, 

namely cAMP-dependent protein kinase/protein kinase 
G/protein kinase C extended family (AGC), 
calcium/calmodulin-dependent kinase (CAMK), 
cyclin-dependent kinase-like kinase (CMGC) and 
tyrosine kinase (TK) groups. The dataset comprises of 
513 AGC chains, 151 CAMK chains, 330 CMGC 
chains, and 216 TK chains. The dataset is non-
redundant in a structural sense: each combination of 
topologies occurs only once per dataset. Sequences of 
protein chains are taken from the Protein Data Bank 
(PDB) [4], Swiss-Prot [1], Phospho3D [33], 
Phospho.ELM [7] and literature.  

 
2.2. Proposed model 
 

Protein sequence data can be mathematically 
viewed as points in a high dimensional space. For 
example, a sequence of 10 amino acids represents a 
search space of 2010 possibilities and requires a 
network of 200 inputs. In many applications, the curse 
of dimensionality is one of the major problems that 
arise when using non-parametric techniques [13]. 
Learning in the high dimensional space causes several 
important problems. First, the good data fitting 
capacity of the flexible “model-free” approach often 
tends to fit the training data very well and thus, have a 
low bias. However, the potential risk is the overfitting 
that causes high variance in generalisation. In general, 
the variance is shown to be a more important factor 
than the learning bias in poor prediction performance 
[8]. Second, with the high dimensional data, as the 
number of hidden nodes of the network is severely 
increased, it eventually leads to an exponential rise in 
computational complexity. A high complexity model 
generally shows a low bias but a high variance [21]. 
On the other hand, a model with low complexity shows 
a high bias but a low variance. Hence, a good model 
balances well between model bias and model variance. 
This problem is generally regarded as the term “bias 
and variance tradeoff”. 

One solution to the problems above can be semi-
parametric modelling. Semi-parametric models take 
assumptions that are stronger than those of non-
parametric models, but are less restrictive than those of 
parametric model. In particular, they avoid most 
serious practical disadvantages of non-parametric 
methods but at the price of an increased risk of 
specification errors. The proposed model, Adaptive-
LEKM takes a form of the semi-parametric model and 
it finds the optimal trade-off between parametric and 
non-parametric models. So, it can have advantages of 
both models while effectively avoiding the curse of 
dimensionality. The Adaptive-LEKM contains the 
evolutionary information represented with the local 
model. Its global model works as a collaborative filter 



that transfers the knowledge amongst the local models 
in formats of the hyper-parameters. The local model 
contains an efficient vector quantisation method. 

Vector Quantisation (VQ) is a lossy data 
compression technique based on the principle of book 
coding. Its basic idea is to replace with key values 
from an original multidimensional vector space into 
values from a discrete subspace of lower dimension. 
The lower-space vector requires less storage space and 
the data is thus compressed. Consider a training 
sequence consisting of M source vectors, T={x1, x2, …, 
xm}. M is assumed to be sufficiently large and so that 
all the statistical properties of the source are captured 
by the training sequence. We assume that the source 
vectors are k-dimensional, Xm=(xm,1, xm,2, …, xm,k), 
m=1,2,…,M. These vectors are compressed by 
choosing the nearest matching vectors and form a 
codebook consisting the set of all the codevectors. N is 
the number of codevectors, C={c1,c2,…,cn} and each 
codevector is k-dimensional, cn=(cn,1,cn,2,…,cn,k), 
n=1,2,…,N. 

Sn is the nearest-neighbour region associated with 
codevector cn, and the partitions of the whole region 
are denoted by P={S1,S2,…,SN}. If the source vector Xm 
is in the region Sn, its approximation can be denoted by 
Q(Xm)=cn, if Xm∈Sn. The Voronoi region is defined 
by: 
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The centroid condition requires the codevector cn 
should be average of all those training vectors that are 
in its Voronoi Region Sn 
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As a key collaborator, we use one effective kernel 
method to construct the global model so-called Support 
Vector Machine (SVM). The SVM used in the 
Adaptive-LEKM is the modified version of SVMlight 
package with an RBF kernel for the classifiers. The 
hyperparameters used in the SVM were optimised 
using a 7-fold cross-validation. In order to find optimal 
values for the hyperparameters, a number of values 
were considered and tested against the newly built PS-
Benchmark_1 dataset and the optimal values were 
chosen are C: 1.0, γ : 0.04, and ε : 0.1. 

In the literature, it is claimed that one of the most 
serious problems with SVMs is the high algorithmic 
complexity and extensive memory requirements of the 
required quadratic programming in large-scale tasks. 
As observed in above equation, SVM extracts worst-

case examples xi and use statistical analysis to build 
large margin classifiers. However, in Adaptive-LEKM, 
we use the centroid vector of each voronoi region 
which can be expressed as:  
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To construct a semi-parametric model, we substitute 

)(XQi  for each training sample ix  used in the SVM 
decision function. Given a d-dimensional input vector, 
xi = (x1, x2, … , xd) with two labels, yi∈{+1, -1} (i =1, 
2, ..., N), the Adaptive-LEKM’s approximation can be 
written as:  
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where  is the number of training patters; ai are the 
parameters of the SVM; ( )⋅⋅,k  is a suitable kernel 
function, and b is the bias term.  

The SVM is considered as a purely non-parametric 
model, whereas the Adaptive-LEKM can be considered 
as semi-parametric model as it adopts the method of 
grouping of the associated input vectors in each class i. 
Hence, the performance of proposed model has some 
advantages in comparison to the pure parametric 
models and pure non-parametric models in terms of 
learning bias and generalisation variance especially on 
high dimensional protein datasets.  

As the Adaptive-LEKM uses the centroid vector of 
each nearest neighbour region, we can obtain the 
optimal representations by finding right size of each 
sub regions. In other words, a good trade-off between 
parametric and non-parametric can be found by 
adjusting the size of each sub-region. If the feature 
space is partitioned to too many sub-regions, the model 
becomes closer to non-parametric model. So, it is 
eventually susceptible to overfitting which causes high 
model variance problem. Contrarily, if the space is 
divided into too small number of regions, the 
codevectors cannot correctly represent the original 
dataset (as they miss too much information). And the 
model eventually produces high leaning bias. Hence, it 
is crucial to find a good trade-off between the 
parametric and non-parametric models.  



In order to maximise the performance of the 
Adaptive-LEKM, we utilised a network boosting 
method called Adaptive Boosting (AdaBoost). In 
general, boosting is known as a technique to improve 
the performance of any base machine learning 
algorithms. The AdaBoost algorithm was proposed by 
Freund and Schapire [10] and it was shown to be a 
solution for many practical difficulties of previous 
boosting algorithms. Boosting combines weak learners 
to find a highly accurate classifier or better fit for the 
training set [28]. In this study, the AdaBoost was 
modified for the LEKM for the network boosting. As 
observed in our experiments, the modified AdaBoost 
was tested with the LEKM and showed that it can fit 
into its architecture for more accurate prediction of 
phosphorylation sites. A standard boosting algorithm 
can be written as: 
 

 
 
In the training se, each xi belong to a domain X, and 

each label yi is in a label set Y. Here, the Y should be {-
1,+1} as phosphorylation sites are indicated as positive 
(+1) or negative (-1) values only. After selecting an 
optimal classifier ht for the distribution Dt, the 
examples xi that the classifier ht identified correctly are 
weighted less and those that it identified incorrectly are 
weighted more. Therefore, when the algorithm is 
testing the classifiers on the distribution Dt + 1, it will 
select a classifier that better identifies those examples 
that the previous classifier missed. At each iteration, 
the AdaBoost embedded in Adaptive-LEKM 
constructs weak learners based on this method called 
weighted examples. 
 
 

2.3. Training, testing, and validation 
 
For the fair comparison of our proposed model, we 

adopted a seven fold cross-validation scheme for the 
model evaluation. Random dataset selection and 
testing was conducted seven times for each different 
window size dataset. When multiple random training 
and testing experiments were performed, a model was 
formed from each training sample. The estimated 
prediction accuracy is the average of the prediction 
accuracy for the models and each window size, derived 
from the independently and randomly generated test 
divisions. We used the window size of 9 for tyrosine 
and threonine, and 11 for serine sites [29]. A window 
size of 9 means 19 amino acids with the tyrosine, 
threonine or serine site is located at the centre of the 
window.  

The performance of Adaptive-LEKM is measured 
by the accuracy (Ac: the proportion of true-positive 
and true-negative residues with respect to the total 
positives and negatives residues), the sensitivity (Sn: 
the proportion of correctly predicted phosphorylation 
site residues with respect to the total positively 
identified residues), the specificity (Sp: the proportion 
of incorrectly predicted site residues with respect to the 
total number of phosphorylation site residues) and 
correlation coefficient (Cc: It balances positive 
predictions equally with negative predictions and 
varies between -1 and 1.). Cc reflects a situation in that 
a method which predicts every residue to be positive, 
shows prediction accuracy of 100% in detecting 
positive sites, however 0% accuracy for negative 
residues. Hence, high value of Cc means that the 
model is regarded as a more robust prediction system. 
In addition to the four measures above, the 
performance of each model is additionally measured by 
Type I and Type II Error rates as incorrectly predicted 
residues can be as valuable as the correctly predicted 
residues for further modification of the model. Type I 
Error means experimentally verified unmodified sites 
that are predicted (incorrectly) to be modified; And 
Type II Error indicates experimentally verified 
modified sites that are predicted (incorrectly) to be 
unmodified. The Sn, Sp, Ac and CC can be expressed 
in terms of true positive (TP), false negative (FN), true 
negative (TN) and false positive (FP) predictions. 
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3. Experimental results 
 

Our experiments consist of two consecutive steps. 
First the predictive performance of our proposed 
machine learning model, Adaptive Locality-Effective 
Kernel Machine (Adaptive-LEKM), specially designed 
for the high dimensional problem of protein sequence 
data is compared with other seven contemporary 
machine learning models in terms of prediction 
accuracy, sensitivity, specificity, correlation-
coefficient, type I and type II errors on newly built PS-
Benchmark_1 dataset. Second, to provide more in-
depth and analytic results of our proposed model, 
Adaptive-LEKM is tested on each four major kinase 
families and we compare its results with the consensus 
results of the literature.  
 
3.1. Comparison with other machine learning 
models 
 

The predictive performance of our proposed model 
(Adaptive-LEKM) was compared with seven other 
existing state-of-the-art machine learning models such 
as General Regression Neural Network (GRNN), 
Radial Basis Neural Network (RBFN), Multi-Layered 
Perceptron (MLP), kernel Nearest Neighbor (kNN), 
Decision Tree (J48), kernel Logistic Regression 
(KLR), and two different transductive Support Vector 
Machines, namely Support Vector Machine (SVM) 
and Locality-Effective Kernel Machine (LEKM). 
Table 1 shows evaluation results of each model in 
terms of Accuracy (Ac), Sensitivity (Sn), Specificity 
(Sp), Correlation-Coefficient (Cc), Variance (Var) and 
Time on PS-Benchmark_1 dataset. 

As shown in Table 1, one of our models, LEKM 
was shown to be successful as it reaches the best model  
stabilisation (Var: 0.020) and less computational 
requirements (Time: 22.421). However, one of the 
methods used in LEKM, semi-parametric 
approximation brought into a slightly less accurate 
learning. Hence, we utilised AdaBoost algorithm for 
the fine tuning of the LEKM and it (Adaptive-LEKM) 
finally achieved the best accuracy with a fair level of 
model stableness and reduced complexity. In addition, 
Adaptive-LEKM achieved much better model 
robustness than other methods with the Cc of 0.646. 
Our methods used in Adaptive-LEKM, semi-
parametric approximation and adaptive tuning of the 
model using AdaBoost were confirmed to be more 
suitable in processing high dimensional protein data 
than pure non-parametric approaches.  
 

 
Table 1. Prediction results of machine learning 

models on PS-Benchmark_1 dataset. 

 

 
 

Figure 1 shows that the comparison of prediction 
scores simulated by the Adaptive-LEKM and the 
original SVM on a protein chain, Swiss-Prot Entry: 
O75553. The protein chain has 588 residues with two 
tyrosine and one serine sites at the residue 198, 220 
and 524 respectively. As shown in Figure 1, SVM’s 
signal at the site is generally only around at 0.3 point 
with many fluctuating neighbouring signals so that the 
site may hardly be distinguished. On the other hand, 
Adaptive-LEKM provides very clear indication of the 
phosphorylation site at the residue 524 and its signal is 
generally stronger than that of other methods by 
reaching almost 0.4 point (0.37921). Adaptive-LEKM 
offers an additional level of advantages over other 
machine learners with more clear and strong indication 
of site locations.  
 

  

 
 
Figure 1. Prediction scores simulated by Adaptive-

LEKM and SVM. 
 
3.2. Predictive performance of Adaptive-LEKM on 
major kinase families 
 

Now, we look at the experimental results obtained 
by Adaptive-LEKM on four main kinase families in 
terms of Ac, Sn, Sp, Cc, Type I ER and Type II ER. 
Table 2 compares the results of Adaptive-LEKM with 
the consensus results of the literature. In general, 
Adaptive-LEKM showed about 9% better prediction 



accuracy than the consensus results. As for the model 
stableness, Adaptive-LEKM also achieved a fairly low 
level of average variance in four evaluation measures. 
The sensitivity of Adatpive-LEKM on CDK, PKA and 
PKC kinase families are distinguishably higher than 
the consensus results. It means that the more stable 
prediction capability of our model comes with 
effectively reducing the false negative values (Type I 
ER). Type I ER indicates experimentally verified 
unmodified sites that are predicted (incorrectly) to be 
modified. 
 

Table 2. Prediction results of Adaptive-LEKM for 
the four kinase families. 

 

 
 

The experimental results of Adaptive-LEKM are written 
in bold and others are the consensus results of 
literature obtained by [18]. 
 
4. Discussion 
 
Over the past decades, many computational prediction 
algorithms have been developed for various proteomic 
studies. They have evolved from simple linear statistics 
to complex machine learners. However, the most 
significant breakthroughs were the incorporation of 
new biological information into an efficient prediction 
model and the development of new models which can 
efficiently exploit suitable information from its 
primary sequence. For example, the exploitation of 
evolutionary information that is available from protein 
families has brought significant improvements in the 
prediction of protein secondary structure (about 6-8%) 
[11] [19] [26] [27] [34].  

Compared to protein structure predictions, a feeble 
effort to find suitable information/representations for 
phosphorylation site prediction has been reported. Like 
used in protein secondary structure prediction, mostly 
uses the evolutionary information in the format of 
Position Specific Scoring Matrix (PSSM or sequence 
profile) [14] [16] [24] [32]. The behind theory of using 

sequence profile is based on the fact that the sequence 
alignment of homologous proteins accords with their 
structural alignment and aligned residues usually have 
similar structures. Thus, the sequence profile can 
provide more information about structure than single 
sequence to its learner. 

Although the sequence profile provides more 
structural information, the structural information 
resides in sequence profile may not be a significant 
importance in the case of phosphorylation site 
prediction. It has been observed that approximately 
only ten neighbouring residues are the major 
determinants of phosphorylation sites. Many models 
have been built on this observation and performed 
reasonably well with a number of specific kinases. 
However, the specificity determinants and rules remain 
elusive for a large number of protein kinases that 
display a number of substrates sharing little or no 
sequence similarity in the known phosphopeptides 
[33]. Furthermore, most databases searched by current 
alignment tools like PSI-BLAST not only contains a 
number of non-phosphoprotiens, but also generates a 
large number of irrelevant hits in the protein databases 
[5].  

The encoding methods discussed above are 
employed by most well-known protein structure 
predictors and were shown to be useful as they 
sufficiently contain information required for general 
protein structure prediction tasks. However, as for the 
phosphorylation site prediction, as it not only involves 
various chemical interactions but is known as a non-
structural prediction task, the encoding method like 
PSSM may not be suitable for this problem. In the 
literature, encoding scheme proposed for 
phosphorylation site prediction is far less than ones for 
other proteomic applications. As discussed above, 
existing methods shows have several critical 
drawbacks for phosphorylation site prediction. Hence, 
we emphasise that researchers should devote their 
effort to seeking a suitable representation of amino 
acids for phosphorylation site prediction to reach the 
upper boundary of prediction accuracy. 
 
5. Conclusion 
 

This paper identified the effectiveness and utility of 
the newly proposed machine learning model, namely 
Adatpvie-LEKM for phosphorylation site prediction. 
This study addressed two important issues in protein 
phosphorylation site research. First, for a given set of 
high dimensional protein data, the combination of a 
parametric local model with a non-parametric global 
model provided a way of fine-tuning the model by the 
adjustment of a single smoothing parameter σ  as well 
as providing efficient semi-parametric approximation. 



This was demonstrated by the above experiments. The 
semi-parametric approach used in Adaptive-LEKM 
was shown to be effective by finding an optimal trade-
off between parametric and non-parametric models 
with significantly reduced computations. With the 
newly built PS-Benchmark_1 dataset, Adaptive-LEKM 
achieved the best prediction accuracy when compared 
with the existing state-of-the-art machine learning 
models. 
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