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Abstract 

 
Multiple Sequence Alignment (MSA) is one of the most 

computationally intensive tasks in Computational 

Biology. Existing best known solutions for multiple 

sequence alignment take several hours (in some cases 

days) of computation time to align, for example, 2000 

homologous sequences of average length 300. Inspired by 

the Sample Sort approach in parallel processing, in this 

paper we propose a highly scalable multiprocessor 

solution for the MSA problem in phylogenetically diverse 

sequences. Our method employs an intelligent scheme to 

partition the set of sequences into smaller subsets using k-

mer count based similarity index, referred to as k-mer 

rank. Each subset is then independently aligned in 

parallel using any sequential approach. Further fine 

tuning of the local alignments is achieved using 

constraints derived from a global ancestor of the entire 

set.  The proposed Sample-Align-D Algorithm has been 

implemented on a cluster of workstations using MPI 

message passing library. The accuracy of the proposed 

solution has been tested on standard benchmarks such as 

PREFAB. The accuracy of the alignment produced by our 

methods is comparable to that of well known sequential 

MSA techniques. We were able to align 2000 randomly 

selected sequences from the Methanosarcina acetivorans 

genome in less than 10 minutes using Sample-Align-D on 

a 16 node cluster, compared to over 23 hours on 

sequential MUSCLE system running on a single cluster 

node. 

1.  Introduction 

Multiple Sequence Alignment (MSA) is a fundamental 

problem of great significance in computational biology as 

it provides vital information related to the evolutionary 

relationships, identify conserved motifs, and improves 

secondary and tertiary structure prediction for RNA and 

proteins. In theory, multiple sequence alignment can be 

achieved using pair-wise alignment, each pair getting 

alignment score and then maximizing the sum of all the 

pair-wise alignment scores. Optimizing this score, 

however, is NP complete [1] and dynamic programming 

based solutions have complexity of O(L
N
) , where N is the 

number of sequences and L is the length of each sequence, 

thus making such solutions impractical for large number 

of sequences. 

These accurate optimization methods are also very 

expensive in terms of memory and time. This is why most 

multiple sequence alignments techniques rely on heuristic 

algorithms, most popular being CLUSTALW [27], T-

Coffee [28], MUSCLE [3, 12] and ProbCons [29]. These 

heuristics are usually complex combination of ad-hoc 

procedures mixed with some elements of dynamic 

programming, thus the resulting methods do not scale 

well. These methods yield extremely poor performance 

for very large number of sequences. For example, 

CLUSTALW [27] is estimated to take 1 year to align 

5000 sequences of average length of 350 [3]. MUSCLE is 

claimed to be the fastest and some what most accurate 

multiple alignment tool till to date. It claims to align 5000 

synthetic sequences of average length 350 in
 
7 minutes on 

a contemporary desktop computer [3]. We also performed 

experiments with real data sets of Methanosarcina 

acetivorans genome sequence, having 5 million base pairs 

and is by far the largest known archeal genome [31].  The 

MUSCLE system takes about 1400 minutes (~23 hrs) to 

align randomly selected 2000 sequences, with average 

length of 316. Our projection is that MUSCLE system 

will take more than 30 days to align the whole genome.  

The computation demands of these heuristics make the 

design of parallel approaches to the MSA problem highly 

desirable. There have been numerous attempts to 

parallelize existing sequential methods. CLUSTALW [27] 
is by far the most often parallelized algorithm [4]. James 

et. al. in [5] parallelized CLUSTALW for PC clusters and 

distributed/shared memory parallel machines. HT Clustal 

[6] is parallel solution for heterogeneous Multiple 

Sequence Alignment and MultiClustal [6] is a parallel 

version of an optimized CLUSTALW. In these solutions, 

the first two stages, i.e. pair-wise alignment and guide 

tree, are parallelized, and the third stage, final alignment, 

is mostly sequential, thus limiting the amount of he 

achievable speedup [6].  Different modules of the 

MUSCLE system have also been parallelized [7]. Other 



parallelization efforts include parallel multiple sequence 

alignment with phylogeny search by simulated annealing 

by Zola et al [8], Multithreading Multiple Sequence 

Alignment by Chaichoompu et al [9] and Schmollinger et 

al’s parallel version of DIALIGN [10]. Although there 

seems to be a considerable amount of effort to improve 

the running times for large number of sequences using 

parallel computing, it must be noted that almost all the 

existing solutions have been aimed at parallelizing 

different modules of a known sequential system.  
A few attempts have also been made to cut each 

sequences into pieces and compute the piece wise 

alignment over all the sequences to achieve multiple 

sequence alignment. In [22], each sequence is ‘broken’ in 

half, and halves are assigned to different processors. The 

Smith-Waterman [21] algorithm is applied to these 

divided sequences.  The sequences are aligned using 

dynamic programming algorithms, and then combined 

using Combine and Extend techniques. The Combine and 

Extend methods follow certain models defined to achieve 

alignment of the combination of sequences. These 

methods pay little or no attention to the quality of the 

results obtained.  The end results have considerable loss 

of sensitivity. The constraints in these methods are solely 

defined by the models used, thus limiting the scope of the 

methods for wide variety of sequences.  

In this paper we propose a solution for aligning 

phylogenetically diverse set of sequences, therefore 

referred to as Sample-Align-D.  The proposed approach is 

based on domain decomposition where data domain is 

distributed among processors and local alignments are 

performed in each processor.  At the end, the summary 

results of the local alignments are shared among all 

processor, and final adjustments in the alignments are 

made based on this global information.  

Our method draws its motivation from the SampleSort 

[13] approach that has been introduced to sort large 

sequence of numbers on multiprocessor or distributed 

platforms. The sorting and MSA problems share a 

common characteristic, i.e., any correct solution requires 

comparison of each pair of data items. In SampleSort, a 

small sample (<< N) representing the entire data set is 

chosen over distributed partitions using some sampling 

technique such as Regular Sampling. The sample is then 

used to define p buckets, where p is the number of 

processors in the system. The bucket boundaries are made 

known to all the processors. Each processor then places 

its local data items into corresponding buckets. The 

buckets are then individually sorted to achieve an overall 

sorted sequence. We use a similar sampling approach to 

redistribute sequences over all the processors based on k-

mer rank such that sequences with similar k-mer rank 

values are available on a single processor. The sequences 

with similar k-mer ranks are aligned sequentially at 

different processors. The final alignment is achieved by 

computing a global ancestor of the underlying 

homologous set of sequences and profile aligning each 

sequence with this ancestor. 

The rest of the paper is organized as follows:  Section 2 

gives the description of our method known as Sample-

Align-D, the assumptions, and the complexity analysis of 

the system. Section 3 gives the details of the 

communication cost and load balancing aspects of the 

system. Section 4 describes the performance evaluation in 

terms of execution time, scalability, and quality of the 

alignments obtained. Section 5 discusses the conclusions 

and the future work. 

2. Sample-Align-D  

The objective of our work is to develop a highly scalable 

distributed multiple sequence alignment method based on 

well-known sequential techniques such that multiple 

subsets could be aligned in parallel while still achieving 

global alignment with respects to the entire set. The 

proposed Sample-Align-D approach uses an idea derived 

from the SampleSort technique [13] well known in the 

area of parallel computation to guide the distribution of 

sequences among processors using regular sampling. We 

use k-mer rank defined below to achieve the localization 

of similar sequences on a single processor.   

 
k-mer Rank: 

A k-mer is a contiguous subsequence of length k and 

related sequences tend to have more k-mer in common 

than may be expected by chance [3].   The k-mer distance 

between any two sequences xi and xj is defined as follows: 

1,/[min()](),(min[, +−=∑ kxxnxnxr jijiji τττ
τ

 

Here τ is a k-mer of length k, nxi(τ) and nxj(τ) are the 

number of times τ occurs in xi and xj respectively, and |xi| 

and |xj| are the sequence lengths. We define average k-mer 

distance of sequence xi to all the other sequences as 

follows:  
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Finally, the k-mer rank of a sequence xi with respect to all 

the sequence in the data set is defined as follows [15]: 

 

Ri= log (0.1+Di)  
 

The k-mer distance can be used to rapidly construct 

phylogenetic trees. For N unaligned sequences of length 

L, the k-mer rank gives an approximate estimate of the 

fractional identity that has also been used in 



CLUSTALW. Our motivation for using this type of 

similarity indexing is to improve processing speed without 

the need to align the sequences globally.  Edgar RC [15] 

has shown that k-mer similarities correlate well with 

fractional identity. In the following we first give a very 

short and intuitive description of the proposed Sample-

Align-D  approach along with the algorithm. 

    The main idea in the Sample-Align-D  approach is to 

collect a relatively small sample of sequences (<< N) that 

is representative of the entire data set of N sequences. The 

k-mer rank is computed for all the sequences in the 

sample and then this rank is used to redistribute and 

locally align the datasets in each processor in parallel 

using a sequential MSA algorithm. Further fine tuning of 

the alignment is performed using a global ancestor 

template and thus achieving global alignment. The global 

ancestor is computed using local ancestors that are 

available at the end of the local alignment phase with in 

each processor. Based on this approach, the complexity of 

the alignment is reduced to aligning p sets of sequences, 

each of size N/p with some, additional cost incurred on 

communication and fine tuning. A more detailed 

algorithm is outlined below. 

 
Sample-Align-D (Sequences N) 

p processor are being used for computation 

 

Input���� N sequences of amino acids x1, x2 … 

xN: 

Output����Gaps are inserted in each of the 

x’s so that 

• All sequences have the same length 

• Score of the global map is maximum 

 

� Assume N/p sequences on each of the 

p processors  

� Locally compute k-mer rank of all 

the sequences in each processor 

� Sort the sequences locally in each 

processor based on k-mer rank 

� Choose a sample set of k sequences 

in each processor, where k << N/p 

� Send the k samples from each 

processor to all the processors. 

� Compute the k-mer rank of each 

sequence against the k*p samples.  

� Sort the sequences locally in each 

processor based on the new k-mer 

rank 

� Using regular sampling, choose p-1 

sequences from each processor and 

send only their ranks to a root 

processor. 

� Sort all the p*(p-1) ranks at the 

root processors and divide the range 

of ranks into p buckets.  

� Send the bucket boundaries to all 

the processors. 

� Redistributed sequences among 

processors such that sequences with 

k-mer rank in the range of bucket i 

are accumulated at processor i, 

where 0 > i < p+1. 

� Align sequences in each processor 

using any sequential multiple 

alignment system 

� Broadcast the Local Ancestor to the 

root processor  

� Determine ‘Global’ Ancestor GA at 

the root processor by aligning 

‘local’ ancestors received from all 

the processors 

� Broadcast GA to all the processors 

� Realign each of the sequences in p 
processors based on ancestor GA 

using  profile-profile alignment 

.i.e. Each of the profiles of 

aligned sequences are tweaked using 

the ancestor profile, with 

constraints. 

� Glue all the aligned sequences at 

the root processor. 

� END  

2.1 Assumptions and Limitations 
 

We state certain assumptions and limitations that are 

typical of parallel systems/ alignment tools and are not 

overly restrictive or extensive. 

• Currently, the method is only being tested for 

homologous sequences. The method is also envisioned 

to work best when the sequences are not highly 

divergent. 

• It is assumed that the sequences similarity is uniformly 

distributed and redistribution step in the above 

algorithm provides statistical guarantee of uniform load 

over all the processors. 

• The method would work best when the number of 

sequences is large, so that the inter-processor 

communication is much less than the time required to 

align the set of sequences on a single processor. 

2.2 The Sample-Align-D Algorithm: Details 
 

It is assumed that the input consists of N sequences of 

amino acids x1, x2... xN. The output of the algorithm is 

again a set of N sequences such that the gaps are inserted 

in a way that the sequences have equal length and score of 

the global map is maximized. The score is calculated as 

the sum of pairs’ scores. The N sequences are divided 

equally among p processors, i.e. each processor is 

assigned N/p sequences. A similarity index based on k-

mer rank of each sequence is computed locally on each 

processor.   



2.2.1. Globalised K-mer Rank 

 

In our unpublished work, we assumed phylogenetically 

higher correlation among sequences. Therefore, k-mer 

rank computed in each processor locally, independent of 

the sequences at the other processors is similar to the rank 

that might have been determined globally considering all 

the sequences. We showed that this is true when the 

sequences are not highly divergent.  

If the sequences are not highly divergent, k-mer rank 

computed using this distributed approach may be very 

different compared to the centralized case where rank of 

each sequence is computed by considering all the N  
 

Table 1. Statistical comparison of the k-mer rank computed on a 

Gloablized system vs Central system 

 

sequences. In order to address this diversity, we collect k 

sample sequences from each processor such that these k 

samples represent the corresponding set of N/p sequences, 

yielding a total of k*p samples. Collectively, it is safe to 

assume that these k*p samples represent the entire set of N 

sequences. We use these k*p sequences to built a 

phylogenetic tree, and for each sequence compute its k-

mer rank using this tree. Thus the rank computation for 

each sequence is against a global sample.Subsequently, 

redistribution based on this sampling technique also 
ensures that sequences accumulated in each processor are 

‘similar’ to each other. In Fig. 1 we compare the rank 

computed using samples only (referred to as globalized 

rank) with the rank computed using all the sequences 

(referred to as centralized rank).   

The statistics of the two approaches for 5000 sequences 

are presented in Table 1. As can be seen that the standard 

deviation for the two sets of ranks is 0.58 and that the 

average of the globalised approach is higher than that of 

the centralized approach. This is due to the fact that in the 

globalized approach each sequence is compared against  a 

small set of sequences, where as in the centralized 

approach each sequences is compared against all the N 

sequences, yielding larger variations in the kmer rank and 

making the average smaller.  

 

 
Fig. 1. Distribution of k-mer ranks for 500 sequences when 

computed on a central system and globalised kmer systems. 

 

 

2.2.2 Redistribution Based on k-mer Rank 

 

Each processor sorts its w=N/p sequences based on k-mer 

ranks using a sequential sorting algorithm. From each of 

the p locally sorted lists, k = (p-1) evenly spaced samples 

are chosen. The k-mer ranks of these p-1samples (pivots) 

divide the local set of sequences into p ordered subsets.  

The k-mer ranks of these p-1 samples from all the 

processors are gathered at the root processor yielding a set 

Y of size p(p-1). This regular sampled set Y is sorted to 

compute the ordered list Y1, Y2, Y3… Yp (p-1) determining 

the range of k-mer ranks over all the processors. Then 

Yp/2, Yp+p/2... Y (p-2)p+p/2  are chosen as pivots (p in total) 

dividing the k-mer rank range into p buckets. These pivots 

are then broadcast to all the processors. Each processor 

sends the sequences having k-mer rank in the range of 

bucket i to processor i. For the bound on the size of the 

dataset in each processor after redistribution, we refer to 

the analysis in Section 3.  

 

2.2.3 The Alignment 

 

Next a sequential MSA program is run on each processor. 

Since our ultimate goal is to have a sequence alignment 

for N sequences and not on some subset of N sequences. 

Therefore, a way has to be defined that would concatenate 

these ‘chunks’ of aligned sequences so that a ‘global’ 

alignment of multiple sequences can be obtained. In [12] 
it has been observed that multiple sequence alignment for 

homologous sequences can be obtained by aligning each 

sequence to the root profile. This approach is similar to 

the one used in the PSI-BLAST [19], where a profile is 

used to align any query sequence with the sequences that 

 (Maximum, Minimum) Central ( 1.44827     ,0.0) 

Average Centralized 0.722962 

(Maximum, Minimum) Globalized (1.46207,0.0) 

Average Globalized 1.11302 

Variance w.r.t. Centralized  0.33190 

    Standard Dev. w.r.t Centralized 0.576377 



have generated the profile. A similar idea for ancestor 

constrained multiple sequence alignment has been 

proposed, although without domain decomposition, for 

progressive alignment [33]. 

We use a similar concept along with domain 

decomposition of the sequences. We extract the local 

ancestor from each processor after locally aligning each 

subset in parallel. All of these local ancestors are 

collected at the root processor and are aligned using a 

sequential multiple sequence alignment algorithm. The 

ancestor of all the local ancestors, referred to as the 

‘global’ ancestor, is then broadcast back to all the 

processors. The ‘global’ ancestor is then used to perform 

a profile-profile alignment using the method in [12], i.e. 

each of the locally aligned sequences (referred to as 

profile) in the processor is aligned with the global 

ancestor profile. The profile-profile alignment with the 

template of the ancestor is performed, to get a better SP 

score and hence a multiple sequence alignment. The kind 

of fine tuning that may be expected from the ancestor can 

be depicted in Fig. 2. 

As shown in Fig. 2, there are two sets of sequences that 

are aligned independent of each other. To perform a one 

global alignment of these multiple sequences, these 

subsets of independently aligned sequences are tweaked, 

using the global ancestor as a template. After this step, the 

tweaked sequences are just ‘joined’ together and SP score 

is obtained by just concatenating the sequences. 

Fig. 2.  Example of Ancestor profile being used to tweak locally 

aligned profiles in different cluster nodes 

 

 

3. Analysis of Computation and 

Communication Costs: 
 

For analysis purposes we assume that the sequential MSA 

algorithm being used is the MUSCLE system [12]. 

Therefore, the complexity computations of sequential 

components are based on the analysis given in [12].  Here 

the assumption is that initially each processor has w = N/p 

sequences, where N is the number of sequences and p is 

the number of processors.  
Computation Costs: 

                  STEP       O (Time)                       O (Space)  

1. k-mer rank computation on 

 (w=N/p) sequences           w2 L                        w+L 

2. Sorting of N/p sequences  

based on k-mer rank          w logw            logw 

3. Sample k = p-1 sequences         w                 p 

4. k-mer rank computation of   

     (k*p) sequences           p4L             p2+L 

 in root processor 

5. Sorting of k*p sample 

 k-mer ranks         (k*p)log(k*p)           log(k*p 

6. K-mer rank computation  

  of each of (w=N/p)         w[(k*p+1)2 L]           w(k*p+L)  

   Sequences against k*p samples 

7. MUSCLE executed on  

(w=N/p)sequences in parallel.             w4+wL2                     w2+L2 

8. Ancestor extraction from  

      each of the  p processors         p2                  p2 

+ export to the root processor. 

9. MUSCLE executed on local  

ancestors (p elements)       (p)4+(p)L2                (p)2 + L2 

10. Profile alignment with  

all combined aligned sequences  

on each of the                                     wL2                        w  

processor 

 
    

TOTAL Computation  

Cost (for w = N/p)         O((N/p) 4+ (N/p) L2)         O((N/p) 2+ L2 ) 

The average length of a sequence is L. In the following we 

first out line all the computation costs and storage 

requirement. This is followed by the analysis of the 

communication overhead.  

Communication Costs: 

No matter how powerful a machine may be, inter-

processor communication overhead is a factor that limits 

the performance of a distributed message passing parallel 

systems [24]. Fortunately, the communication cost of our 

system is much less than the cost of the alignments. 

Essentially, the proposed Sample-Align-D  algorithm has 

two rounds of communication. . In the first round, 

samples are collected at the root processor and pivots 

broadcast from the root processor. In the second round, 

sequences are redistributed to achieve better alignments 

and balanced load distribution. For the analysis of the 

communication costs we have adopted the coarse grained 
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computation model assumed in [20, 16, 2]. However, we 

ignore the message start up costs and assume unit time to 

transmit each data byte.  

We have assumed Regular Sampling strategy due to 

following reasons: 

 

1. The strategy is independent of the distribution of 

original data, compared to some other strategies 

such as Huang and Chow [25]. 

2. It helps in partitioning of data into ordered 

subsets of approx. equal size.  This presents an 

efficient strategy for load balancing as unequal 

number of sequences on different processors 

would mean unequal computation load, leading 

to poor performance. In the presence of data 

skew, regular sampling guarantees that no 

processor computes more than (2N/p) sequences 

[26]. 

3. It has been shown in [26] that regular sampling 

yields optimal partitioning results as long N>p
3
, 

i.e., the number of data items N is much larger 

than the number of processors p, which would be 

a normal case in the MSA application. 

 

First Communication Round: 

Assuming k = p-1, i.e., each processor chooses p-1 

samples, the complexity of the first phase is O(p
2
L)+ 

O(plogp)+ O(k*plogp), where O(p
2
L) is the time to 

collect p(p-1) samples  of size L each at the root 

processors, O(plogp) is the time required to broadcast p-1 

pivots to all the processor and (k*plogp) is the time 

required to broadcast k*p sequences to all the processors. 

 

Second Communication Round: 

In the second round each processor sends the sequences 

having k-mer rank in the range of bucket i to processor i. 

Each processor partition its blocks into p sub-blocks, one 

for each processor, using pivots as bucket boundaries. 

Each processor then sends the sub-blocks to the 

appropriate processor. These sub-blocks can vary from 0 

to N/p sequences depending on the initial data 

distribution. Taking the average case where the elements 

in the processor are distributed uniformly, then each sub-

block size is N/p
2
. Thus this step would require O (N/p) 

time assuming an all-to-all personalized broadcast 

communication primitive [16, 2]. However, in the 

following we show that based on regular sampling no 

processor will receive more than 2N/p elements in the 

worst case. Therefore still the overall communication cost 

will be O (N/pL).  

Let’s denote the pivots chosen in the first phase by the 

array: y1, y2, y3…yp-1. Consider processor i = 1, where 1 

≤ i ≤ p, all the data to be aligned by processor 1 must be = 

y1 in terms of it k-mer rank. Since there are p
2
-p-p/2 

sequences in the sample that have k-mer rank > y1, 

correspondingly there are at least (p
2
-p-p/2) w/p 

sequences in the entire data set whose rank is > y1. In 

other words there are N-(p
2
-p-p/2) w/p= (p+p/2) w/p < 

2w sequences in the datasets which have k-mer rank =y1. 

The size of data to be locally aligned by any processor is 

therefore always less than 2w. Due to page limitations, we 

refer to [26] for further details on the analysis of this 

bound. The collection of the p local ancestors at the root 

processor and the broadcast of the global ancestor will 

cost O (Llogp) communication overhead each. Therefore 

the total communication cost is: O (p
2
L) + O (plogp) + O 

(N/pL) + O (Llogp) 

The total asymptotic time complexity T of the algorithm 

would be: 

=  O(N/p)
 4
+ O (N/p) L

2  
+ 

           
Computation cost

                              

 O(p
2
L)+ O(plogp + O(N/pL) + O(Llog p)+ O(k*plogp)   

                     
Communication cost 

= O((N/p)
 4 
+ (N/p) L

2 
+ (p

2
L) +  (N/pL)) 

4. Performance Evaluation 

The performance evaluation of the Sample-Align-D 

Algorithm is carried out on a Beowulf Cluster consisting 

of 16 Pentium III processors, each running at 550 MHz, 

with 2 levels of cache (L1: 16K and L2: 512K), and 384 

MB DRAM memory. As for the interconnection network, 

the system uses Intel Gigabit NIC’s on each cluster node. 

The operating system on each node is RedHat Linux 7.3 

(Kernel level: 2.4.20-28.7). For performance evaluation 

we have used both synthetic and real data sets. 

To investigate the resource requirements and the 

execution time on different size inputs we have used the 

synthetic data set generated using rose sequence generator 

[14]. Three sets of sequences (N=5000, 10000, and 

20000) were generated using the standard input 

parameters for the rose generator. The average sequence 

length was set to be 300 and the relatedness was set to be 

800. This relatedness value assured that the sequences 

thus generated were in fact not very close to each other 

and may resemble the real dataset of protein sequences.  

 
Fig. 3. Distribution of k-mer rank of the sequences used in 

the experiments. 



Furthermore, in these experiments it was made sure that 

the k-mer rank distribution for the sequences is in general 

evenly distributed. A sample of k-mer rank distribution 

for N = 5000 sequences used in our experiments is shown 

in Fig. 3.After the sequences were generated according to 

the experimental setup, the files were divided into equal 

parts and ‘placed’ on the cluster nodes’ hard drives prior 

to the experiments. Then an instance of Sample-Align-D  

Algorithm was initiated on each of the nodes and the time 

required for the actual alignment was noted. 

 

 
 

 

We were able to align 20000 sequences in just around 25 

seconds. There are no reports of aligning this huge 

number of sequences in the literature to the best of 

authors’ knowledge. The best that the authors found was 

for N=5000 sequences [12]. T-coffee [28] is reported to 

not able to handle more than 10
2
   sequences. MAFFT 

[23] script FFTNSI is reported to align 5000 sequences in 

10 minutes and MUSCLE itself without refinement in 

7minutes. It is anticipated that with refinement included, 

MUSCLE is bound to take the same amount as FFTNSI. 

It is also estimated that CLUSTALW [27] would take 

approximately 1 year to align these many sequences [12]. 

As shown in Fig. 4, in the case of Sample–Align, the 

execution time decreases sharply with the increase in the 

number of processors. We got super linear speed-up for 

the Sample-Align-D  and the observed speedup curves are 

shown in Fig. 5. This is primarily because the 

computation complexity decreases by O (p
4
) with the 

increase in number of processor. It can be observed, 

however, that for the datasets of N=5000 and 10000, the 

speedup curve goes up for 4, 8 and 12 processors but 

deteriorates when all the 16 processors are used. The 

slowdowns indicate that the granularity of work assigned 

to each processor decreases. With the increase of the 

dataset to 20000, we get much better speedup curves. We 

have also experimented with real protein sequences from 

the Methanosarcina acetivorans genome. Fig. 6 depicts 

the execution time of aligning randomly selected 2000 

sequences from the Methanosarcina acetivorans genome 

using different number of processors. 

 

 

 

 

 

 
Note that it took more than 23 hours to align this set of 

sequences using the sequential MUSCLE system on a 

single cluster node, whereas it took only 9.82 minutes to 

align the same number of sequences using the proposed 

Sample-Align-D  algorithm. This is a 142 fold speedup 

using 16 processors! 

4.1. Quality Assessment 
 

We have used the PREFAB benchmark to assess the 

quality of the alignments produced by Sample-Align-D  

Algorithm  We have used the accuracy measure Q [3], 

defined as, the number of correctly aligned residue pairs 

divided by the number of residue pairs in the reference 

alignment. The results from this benchmark are presented 

below in Table 2. For the Sample-Algorithm, results 

correspond to execution on a 4 processor cluster system. 

As can be seen from the values above that our method 
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Fig. 4. Scalability of the execution time with respect to the 

number of processors being used. 

Fig. 5. Super linear speed-up for Sample Align-D with 

increasing number of processors. 

Fig. 6. Execution time on randomly selected 2000 

sequences from the Methanosarcina Acetivorans genome. 



provides quality of alignment comparable to the other 

well-known methods. For PREFAB, Sample-Align-D 

Algorithm yields quality very close to that of 

CLUSTALW. 

 
Table 2. Q Scores obtained for each method using PREFAB 

 

It should be noted that we are getting quality1 comparable 

to CLUSTALW and execution time better than MUSCLE 

itself. We believe that quality is much higher in our case 

when the sequences are large in number. However, due to 

the absence of large size benchmark datasets we cannot 

report supporting results at the time of this publication. In 

the case of PREFAB, it contains 1000 set of approx. 20-

30 sequences each. Each set is aligned independently of 

the other sets to access the quality of the alignment 

program on multiple set of sequences of varying 

divergence. In the case of the proposed Sample-Align-D  

Algorithm, partitioning each set of 20 to 30 sequences 

even on a 4 processor system is too fine grain to access 

the true quality of alignment. More detailed quality 

analysis results will be presented in the full version of this 

paper. A snap shot of the alignment produced by the 
Sample-Align-D  Algorithm for the genome sequences is 

given in Fig. 7.  

 

5. Conclusions and Future Research 

 
We have addressed the long standing problem of aligning 

large number of multiple sequences in a reasonable 

amount of time. We have addressed the problem using a 

completely distributed approach to the problem, using 

high scalable techniques similar to sample sort. The 

sequences are distributed among the processors according 

to k-mer rank and are aligned in a distributed manner 

independently of the other sequences. The independently 

aligned sequences are then aligned with the global 

ancestor as is described in the paper. The sequences are 

then joined in a root processor giving a meaningful 

                                                 
1 Some of the sequence scores were discarded in the automatic quality 

estimation process.  

alignment. Our results show super linear speed-up with 

comparable quality of alignment. 

Currently we are working on accessing the quality of the 

method using other standard benchmarks such as 
BAliBASE, SMART and SABmark. It must be noted 

however, that these benchmarks are not designed to 

access the quality of the alignments produced in a 

distributed manner and the size of these benchmarks may 

limit the accuracy of the quality accessed. Therefore, it 

would be desirable to develop benchmarks that may be 

used to access the quality of these alignments formulated 

using distributed systems as ours. We are working on 

sequential heuristics to improve the quality of the 

alignment produced from the methods discussed above. 

These heuristics may then be further parallelized to 

incorporate in the distributed approach presented in this 

paper. 

Fig. 7. A Snap shot of the alignment produced by Sample-Align 

Algorithm for the sequences in the Methanosarcina acetivorans 

genome 

 

Another area that is interesting to explore is the kind of 

sequences and families that may be aligned using the 

methods discussed, with reasonable accuracy. It can be 

seen however that there might always be a need to refine 

the ‘global’ multiple sequence alignment for some of the 

most divergent families and sequences. An efficient 

method to do that with small time complexity would be 

necessary for some families of sequences being aligned, 

thus making the system working for a wide range of 

families but still keeping the advantage of high scalability 

and performance. 

METHOD Q-Score 

Sample-Align-D  0.544 

MUSCLE 0.645 

MUSCLE-p 0.634 

T-Coffee 0.615 

NWNSI 0.615 

FFTNSI 0.591 

CLUSTALW 0.563 
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