

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Sample-Align-D: A High Performance Multiple Sequence

Alignment System using Phylogenetic Sampling and Domain

Decomposition

Fahad Saeed and Ashfaq Khokhar

Email: {fsaeed2, ashfaq}@uic.edu

Department of Electrical and Computer Engineering

University Of Illinois at Chicago

Chicago, IL 60607

Abstract

Multiple Sequence Alignment (MSA) is one of the most

computationally intensive tasks in Computational

Biology. Existing best known solutions for multiple

sequence alignment take several hours (in some cases

days) of computation time to align, for example, 2000

homologous sequences of average length 300. Inspired by

the Sample Sort approach in parallel processing, in this

paper we propose a highly scalable multiprocessor

solution for the MSA problem in phylogenetically diverse

sequences. Our method employs an intelligent scheme to

partition the set of sequences into smaller subsets using k-

mer count based similarity index, referred to as k-mer

rank. Each subset is then independently aligned in

parallel using any sequential approach. Further fine

tuning of the local alignments is achieved using

constraints derived from a global ancestor of the entire

set. The proposed Sample-Align-D Algorithm has been

implemented on a cluster of workstations using MPI

message passing library. The accuracy of the proposed

solution has been tested on standard benchmarks such as

PREFAB. The accuracy of the alignment produced by our

methods is comparable to that of well known sequential

MSA techniques. We were able to align 2000 randomly

selected sequences from the Methanosarcina acetivorans

genome in less than 10 minutes using Sample-Align-D on

a 16 node cluster, compared to over 23 hours on

sequential MUSCLE system running on a single cluster

node.

1. Introduction

Multiple Sequence Alignment (MSA) is a fundamental

problem of great significance in computational biology as

it provides vital information related to the evolutionary

relationships, identify conserved motifs, and improves

secondary and tertiary structure prediction for RNA and

proteins. In theory, multiple sequence alignment can be

achieved using pair-wise alignment, each pair getting

alignment score and then maximizing the sum of all the

pair-wise alignment scores. Optimizing this score,

however, is NP complete [1] and dynamic programming

based solutions have complexity of O(L
N
) , where N is the

number of sequences and L is the length of each sequence,

thus making such solutions impractical for large number

of sequences.

These accurate optimization methods are also very

expensive in terms of memory and time. This is why most

multiple sequence alignments techniques rely on heuristic

algorithms, most popular being CLUSTALW [27], T-

Coffee [28], MUSCLE [3, 12] and ProbCons [29]. These

heuristics are usually complex combination of ad-hoc

procedures mixed with some elements of dynamic

programming, thus the resulting methods do not scale

well. These methods yield extremely poor performance

for very large number of sequences. For example,

CLUSTALW [27] is estimated to take 1 year to align

5000 sequences of average length of 350 [3]. MUSCLE is

claimed to be the fastest and some what most accurate

multiple alignment tool till to date. It claims to align 5000

synthetic sequences of average length 350 in

7 minutes on

a contemporary desktop computer [3]. We also performed

experiments with real data sets of Methanosarcina

acetivorans genome sequence, having 5 million base pairs

and is by far the largest known archeal genome [31]. The

MUSCLE system takes about 1400 minutes (~23 hrs) to

align randomly selected 2000 sequences, with average

length of 316. Our projection is that MUSCLE system

will take more than 30 days to align the whole genome.

The computation demands of these heuristics make the

design of parallel approaches to the MSA problem highly

desirable. There have been numerous attempts to

parallelize existing sequential methods. CLUSTALW [27]
is by far the most often parallelized algorithm [4]. James

et. al. in [5] parallelized CLUSTALW for PC clusters and

distributed/shared memory parallel machines. HT Clustal

[6] is parallel solution for heterogeneous Multiple

Sequence Alignment and MultiClustal [6] is a parallel

version of an optimized CLUSTALW. In these solutions,

the first two stages, i.e. pair-wise alignment and guide

tree, are parallelized, and the third stage, final alignment,

is mostly sequential, thus limiting the amount of he

achievable speedup [6]. Different modules of the

MUSCLE system have also been parallelized [7]. Other

parallelization efforts include parallel multiple sequence

alignment with phylogeny search by simulated annealing

by Zola et al [8], Multithreading Multiple Sequence

Alignment by Chaichoompu et al [9] and Schmollinger et

al’s parallel version of DIALIGN [10]. Although there

seems to be a considerable amount of effort to improve

the running times for large number of sequences using

parallel computing, it must be noted that almost all the

existing solutions have been aimed at parallelizing

different modules of a known sequential system.
A few attempts have also been made to cut each

sequences into pieces and compute the piece wise

alignment over all the sequences to achieve multiple

sequence alignment. In [22], each sequence is ‘broken’ in

half, and halves are assigned to different processors. The

Smith-Waterman [21] algorithm is applied to these

divided sequences. The sequences are aligned using

dynamic programming algorithms, and then combined

using Combine and Extend techniques. The Combine and

Extend methods follow certain models defined to achieve

alignment of the combination of sequences. These

methods pay little or no attention to the quality of the

results obtained. The end results have considerable loss

of sensitivity. The constraints in these methods are solely

defined by the models used, thus limiting the scope of the

methods for wide variety of sequences.

In this paper we propose a solution for aligning

phylogenetically diverse set of sequences, therefore

referred to as Sample-Align-D. The proposed approach is

based on domain decomposition where data domain is

distributed among processors and local alignments are

performed in each processor. At the end, the summary

results of the local alignments are shared among all

processor, and final adjustments in the alignments are

made based on this global information.

Our method draws its motivation from the SampleSort

[13] approach that has been introduced to sort large

sequence of numbers on multiprocessor or distributed

platforms. The sorting and MSA problems share a

common characteristic, i.e., any correct solution requires

comparison of each pair of data items. In SampleSort, a

small sample (<< N) representing the entire data set is

chosen over distributed partitions using some sampling

technique such as Regular Sampling. The sample is then

used to define p buckets, where p is the number of

processors in the system. The bucket boundaries are made

known to all the processors. Each processor then places

its local data items into corresponding buckets. The

buckets are then individually sorted to achieve an overall

sorted sequence. We use a similar sampling approach to

redistribute sequences over all the processors based on k-

mer rank such that sequences with similar k-mer rank

values are available on a single processor. The sequences

with similar k-mer ranks are aligned sequentially at

different processors. The final alignment is achieved by

computing a global ancestor of the underlying

homologous set of sequences and profile aligning each

sequence with this ancestor.

The rest of the paper is organized as follows: Section 2

gives the description of our method known as Sample-

Align-D, the assumptions, and the complexity analysis of

the system. Section 3 gives the details of the

communication cost and load balancing aspects of the

system. Section 4 describes the performance evaluation in

terms of execution time, scalability, and quality of the

alignments obtained. Section 5 discusses the conclusions

and the future work.

2. Sample-Align-D

The objective of our work is to develop a highly scalable

distributed multiple sequence alignment method based on

well-known sequential techniques such that multiple

subsets could be aligned in parallel while still achieving

global alignment with respects to the entire set. The

proposed Sample-Align-D approach uses an idea derived

from the SampleSort technique [13] well known in the

area of parallel computation to guide the distribution of

sequences among processors using regular sampling. We

use k-mer rank defined below to achieve the localization

of similar sequences on a single processor.

k-mer Rank:

A k-mer is a contiguous subsequence of length k and

related sequences tend to have more k-mer in common

than may be expected by chance [3]. The k-mer distance

between any two sequences xi and xj is defined as follows:

1,/[min()](),(min[, +−=∑ kxxnxnxr jijiji τττ
τ

Here τ is a k-mer of length k, nxi(τ) and nxj(τ) are the

number of times τ occurs in xi and xj respectively, and |xi|

and |xj| are the sequence lengths. We define average k-mer

distance of sequence xi to all the other sequences as

follows:

∑
=

=
N

j

jii r
N

D
1

,

1

Finally, the k-mer rank of a sequence xi with respect to all

the sequence in the data set is defined as follows [15]:

Ri= log (0.1+Di)

The k-mer distance can be used to rapidly construct

phylogenetic trees. For N unaligned sequences of length

L, the k-mer rank gives an approximate estimate of the

fractional identity that has also been used in

CLUSTALW. Our motivation for using this type of

similarity indexing is to improve processing speed without

the need to align the sequences globally. Edgar RC [15]

has shown that k-mer similarities correlate well with

fractional identity. In the following we first give a very

short and intuitive description of the proposed Sample-

Align-D approach along with the algorithm.

 The main idea in the Sample-Align-D approach is to

collect a relatively small sample of sequences (<< N) that

is representative of the entire data set of N sequences. The

k-mer rank is computed for all the sequences in the

sample and then this rank is used to redistribute and

locally align the datasets in each processor in parallel

using a sequential MSA algorithm. Further fine tuning of

the alignment is performed using a global ancestor

template and thus achieving global alignment. The global

ancestor is computed using local ancestors that are

available at the end of the local alignment phase with in

each processor. Based on this approach, the complexity of

the alignment is reduced to aligning p sets of sequences,

each of size N/p with some, additional cost incurred on

communication and fine tuning. A more detailed

algorithm is outlined below.

Sample-Align-D (Sequences N)

p processor are being used for computation

Input���� N sequences of amino acids x1, x2 …

xN:

Output����Gaps are inserted in each of the

x’s so that

• All sequences have the same length

• Score of the global map is maximum

� Assume N/p sequences on each of the

p processors

� Locally compute k-mer rank of all

the sequences in each processor

� Sort the sequences locally in each

processor based on k-mer rank

� Choose a sample set of k sequences

in each processor, where k << N/p

� Send the k samples from each

processor to all the processors.

� Compute the k-mer rank of each

sequence against the k*p samples.

� Sort the sequences locally in each

processor based on the new k-mer

rank

� Using regular sampling, choose p-1

sequences from each processor and

send only their ranks to a root

processor.

� Sort all the p*(p-1) ranks at the

root processors and divide the range

of ranks into p buckets.

� Send the bucket boundaries to all

the processors.

� Redistributed sequences among

processors such that sequences with

k-mer rank in the range of bucket i

are accumulated at processor i,

where 0 > i < p+1.

� Align sequences in each processor

using any sequential multiple

alignment system

� Broadcast the Local Ancestor to the

root processor

� Determine ‘Global’ Ancestor GA at

the root processor by aligning

‘local’ ancestors received from all

the processors

� Broadcast GA to all the processors

� Realign each of the sequences in p
processors based on ancestor GA

using profile-profile alignment

.i.e. Each of the profiles of

aligned sequences are tweaked using

the ancestor profile, with

constraints.

� Glue all the aligned sequences at

the root processor.

� END

2.1 Assumptions and Limitations

We state certain assumptions and limitations that are

typical of parallel systems/ alignment tools and are not

overly restrictive or extensive.

• Currently, the method is only being tested for

homologous sequences. The method is also envisioned

to work best when the sequences are not highly

divergent.

• It is assumed that the sequences similarity is uniformly

distributed and redistribution step in the above

algorithm provides statistical guarantee of uniform load

over all the processors.

• The method would work best when the number of

sequences is large, so that the inter-processor

communication is much less than the time required to

align the set of sequences on a single processor.

2.2 The Sample-Align-D Algorithm: Details

It is assumed that the input consists of N sequences of

amino acids x1, x2... xN. The output of the algorithm is

again a set of N sequences such that the gaps are inserted

in a way that the sequences have equal length and score of

the global map is maximized. The score is calculated as

the sum of pairs’ scores. The N sequences are divided

equally among p processors, i.e. each processor is

assigned N/p sequences. A similarity index based on k-

mer rank of each sequence is computed locally on each

processor.

2.2.1. Globalised K-mer Rank

In our unpublished work, we assumed phylogenetically

higher correlation among sequences. Therefore, k-mer

rank computed in each processor locally, independent of

the sequences at the other processors is similar to the rank

that might have been determined globally considering all

the sequences. We showed that this is true when the

sequences are not highly divergent.

If the sequences are not highly divergent, k-mer rank

computed using this distributed approach may be very

different compared to the centralized case where rank of

each sequence is computed by considering all the N

Table 1. Statistical comparison of the k-mer rank computed on a

Gloablized system vs Central system

sequences. In order to address this diversity, we collect k

sample sequences from each processor such that these k

samples represent the corresponding set of N/p sequences,

yielding a total of k*p samples. Collectively, it is safe to

assume that these k*p samples represent the entire set of N

sequences. We use these k*p sequences to built a

phylogenetic tree, and for each sequence compute its k-

mer rank using this tree. Thus the rank computation for

each sequence is against a global sample.Subsequently,

redistribution based on this sampling technique also
ensures that sequences accumulated in each processor are

‘similar’ to each other. In Fig. 1 we compare the rank

computed using samples only (referred to as globalized

rank) with the rank computed using all the sequences

(referred to as centralized rank).

The statistics of the two approaches for 5000 sequences

are presented in Table 1. As can be seen that the standard

deviation for the two sets of ranks is 0.58 and that the

average of the globalised approach is higher than that of

the centralized approach. This is due to the fact that in the

globalized approach each sequence is compared against a

small set of sequences, where as in the centralized

approach each sequences is compared against all the N

sequences, yielding larger variations in the kmer rank and

making the average smaller.

Fig. 1. Distribution of k-mer ranks for 500 sequences when

computed on a central system and globalised kmer systems.

2.2.2 Redistribution Based on k-mer Rank

Each processor sorts its w=N/p sequences based on k-mer

ranks using a sequential sorting algorithm. From each of

the p locally sorted lists, k = (p-1) evenly spaced samples

are chosen. The k-mer ranks of these p-1samples (pivots)

divide the local set of sequences into p ordered subsets.

The k-mer ranks of these p-1 samples from all the

processors are gathered at the root processor yielding a set

Y of size p(p-1). This regular sampled set Y is sorted to

compute the ordered list Y1, Y2, Y3… Yp (p-1) determining

the range of k-mer ranks over all the processors. Then

Yp/2, Yp+p/2... Y (p-2)p+p/2 are chosen as pivots (p in total)

dividing the k-mer rank range into p buckets. These pivots

are then broadcast to all the processors. Each processor

sends the sequences having k-mer rank in the range of

bucket i to processor i. For the bound on the size of the

dataset in each processor after redistribution, we refer to

the analysis in Section 3.

2.2.3 The Alignment

Next a sequential MSA program is run on each processor.

Since our ultimate goal is to have a sequence alignment

for N sequences and not on some subset of N sequences.

Therefore, a way has to be defined that would concatenate

these ‘chunks’ of aligned sequences so that a ‘global’

alignment of multiple sequences can be obtained. In [12]
it has been observed that multiple sequence alignment for

homologous sequences can be obtained by aligning each

sequence to the root profile. This approach is similar to

the one used in the PSI-BLAST [19], where a profile is

used to align any query sequence with the sequences that

 (Maximum, Minimum) Central (1.44827 ,0.0)

Average Centralized 0.722962

(Maximum, Minimum) Globalized (1.46207,0.0)

Average Globalized 1.11302

Variance w.r.t. Centralized 0.33190

 Standard Dev. w.r.t Centralized 0.576377

have generated the profile. A similar idea for ancestor

constrained multiple sequence alignment has been

proposed, although without domain decomposition, for

progressive alignment [33].

We use a similar concept along with domain

decomposition of the sequences. We extract the local

ancestor from each processor after locally aligning each

subset in parallel. All of these local ancestors are

collected at the root processor and are aligned using a

sequential multiple sequence alignment algorithm. The

ancestor of all the local ancestors, referred to as the

‘global’ ancestor, is then broadcast back to all the

processors. The ‘global’ ancestor is then used to perform

a profile-profile alignment using the method in [12], i.e.

each of the locally aligned sequences (referred to as

profile) in the processor is aligned with the global

ancestor profile. The profile-profile alignment with the

template of the ancestor is performed, to get a better SP

score and hence a multiple sequence alignment. The kind

of fine tuning that may be expected from the ancestor can

be depicted in Fig. 2.

As shown in Fig. 2, there are two sets of sequences that

are aligned independent of each other. To perform a one

global alignment of these multiple sequences, these

subsets of independently aligned sequences are tweaked,

using the global ancestor as a template. After this step, the

tweaked sequences are just ‘joined’ together and SP score

is obtained by just concatenating the sequences.

Fig. 2. Example of Ancestor profile being used to tweak locally

aligned profiles in different cluster nodes

3. Analysis of Computation and

Communication Costs:

For analysis purposes we assume that the sequential MSA

algorithm being used is the MUSCLE system [12].

Therefore, the complexity computations of sequential

components are based on the analysis given in [12]. Here

the assumption is that initially each processor has w = N/p

sequences, where N is the number of sequences and p is

the number of processors.
Computation Costs:

 STEP O (Time) O (Space)

1. k-mer rank computation on

 (w=N/p) sequences w2 L w+L

2. Sorting of N/p sequences

based on k-mer rank w logw logw

3. Sample k = p-1 sequences w p

4. k-mer rank computation of

 (k*p) sequences p4L p2+L

 in root processor

5. Sorting of k*p sample

 k-mer ranks (k*p)log(k*p) log(k*p

6. K-mer rank computation

 of each of (w=N/p) w[(k*p+1)2 L] w(k*p+L)

 Sequences against k*p samples

7. MUSCLE executed on

(w=N/p)sequences in parallel. w4+wL2 w2+L2

8. Ancestor extraction from

 each of the p processors p2 p2

+ export to the root processor.

9. MUSCLE executed on local

ancestors (p elements) (p)4+(p)L2 (p)2 + L2

10. Profile alignment with

all combined aligned sequences

on each of the wL2 w

processor

TOTAL Computation

Cost (for w = N/p) O((N/p) 4+ (N/p) L2) O((N/p) 2+ L2)

The average length of a sequence is L. In the following we

first out line all the computation costs and storage

requirement. This is followed by the analysis of the

communication overhead.

Communication Costs:

No matter how powerful a machine may be, inter-

processor communication overhead is a factor that limits

the performance of a distributed message passing parallel

systems [24]. Fortunately, the communication cost of our

system is much less than the cost of the alignments.

Essentially, the proposed Sample-Align-D algorithm has

two rounds of communication. . In the first round,

samples are collected at the root processor and pivots

broadcast from the root processor. In the second round,

sequences are redistributed to achieve better alignments

and balanced load distribution. For the analysis of the

communication costs we have adopted the coarse grained

M
M
L

L

L L

L

L

L

A

Q
Q

Q

Q

Q

Q

Q

T T

T

T T
I

IF

F
F

F
F

F

_
_

_

_
__

I

Aligned

Sequences

At

Processor N

Aligned

Sequences

At

Processor N+1

Ancestor Ancestor

The aligned sequences at various processors are going through profile -profile alignment

with the global ancestor

M
M
L
L

L

L
L

A

F

F
F

_

Q

Q

QT

T

F
_

_

__

Q
Q
T
I
__

_

_
_

After the ancestor has been
used as a template for the

aligned sequences they are
concatenated together to give a

multiple sequence alignment.

computation model assumed in [20, 16, 2]. However, we

ignore the message start up costs and assume unit time to

transmit each data byte.

We have assumed Regular Sampling strategy due to

following reasons:

1. The strategy is independent of the distribution of

original data, compared to some other strategies

such as Huang and Chow [25].

2. It helps in partitioning of data into ordered

subsets of approx. equal size. This presents an

efficient strategy for load balancing as unequal

number of sequences on different processors

would mean unequal computation load, leading

to poor performance. In the presence of data

skew, regular sampling guarantees that no

processor computes more than (2N/p) sequences

[26].

3. It has been shown in [26] that regular sampling

yields optimal partitioning results as long N>p
3
,

i.e., the number of data items N is much larger

than the number of processors p, which would be

a normal case in the MSA application.

First Communication Round:

Assuming k = p-1, i.e., each processor chooses p-1

samples, the complexity of the first phase is O(p
2
L)+

O(plogp)+ O(k*plogp), where O(p
2
L) is the time to

collect p(p-1) samples of size L each at the root

processors, O(plogp) is the time required to broadcast p-1

pivots to all the processor and (k*plogp) is the time

required to broadcast k*p sequences to all the processors.

Second Communication Round:

In the second round each processor sends the sequences

having k-mer rank in the range of bucket i to processor i.

Each processor partition its blocks into p sub-blocks, one

for each processor, using pivots as bucket boundaries.

Each processor then sends the sub-blocks to the

appropriate processor. These sub-blocks can vary from 0

to N/p sequences depending on the initial data

distribution. Taking the average case where the elements

in the processor are distributed uniformly, then each sub-

block size is N/p
2
. Thus this step would require O (N/p)

time assuming an all-to-all personalized broadcast

communication primitive [16, 2]. However, in the

following we show that based on regular sampling no

processor will receive more than 2N/p elements in the

worst case. Therefore still the overall communication cost

will be O (N/pL).

Let’s denote the pivots chosen in the first phase by the

array: y1, y2, y3…yp-1. Consider processor i = 1, where 1

≤ i ≤ p, all the data to be aligned by processor 1 must be =

y1 in terms of it k-mer rank. Since there are p
2
-p-p/2

sequences in the sample that have k-mer rank > y1,

correspondingly there are at least (p
2
-p-p/2) w/p

sequences in the entire data set whose rank is > y1. In

other words there are N-(p
2
-p-p/2) w/p= (p+p/2) w/p <

2w sequences in the datasets which have k-mer rank =y1.

The size of data to be locally aligned by any processor is

therefore always less than 2w. Due to page limitations, we

refer to [26] for further details on the analysis of this

bound. The collection of the p local ancestors at the root

processor and the broadcast of the global ancestor will

cost O (Llogp) communication overhead each. Therefore

the total communication cost is: O (p
2
L) + O (plogp) + O

(N/pL) + O (Llogp)

The total asymptotic time complexity T of the algorithm

would be:

= O(N/p)
 4
+ O (N/p) L

2
+

Computation cost

 O(p
2
L)+ O(plogp + O(N/pL) + O(Llog p)+ O(k*plogp)

Communication cost

= O((N/p)
 4
+ (N/p) L

2
+ (p

2
L) + (N/pL))

4. Performance Evaluation

The performance evaluation of the Sample-Align-D

Algorithm is carried out on a Beowulf Cluster consisting

of 16 Pentium III processors, each running at 550 MHz,

with 2 levels of cache (L1: 16K and L2: 512K), and 384

MB DRAM memory. As for the interconnection network,

the system uses Intel Gigabit NIC’s on each cluster node.

The operating system on each node is RedHat Linux 7.3

(Kernel level: 2.4.20-28.7). For performance evaluation

we have used both synthetic and real data sets.

To investigate the resource requirements and the

execution time on different size inputs we have used the

synthetic data set generated using rose sequence generator

[14]. Three sets of sequences (N=5000, 10000, and

20000) were generated using the standard input

parameters for the rose generator. The average sequence

length was set to be 300 and the relatedness was set to be

800. This relatedness value assured that the sequences

thus generated were in fact not very close to each other

and may resemble the real dataset of protein sequences.

Fig. 3. Distribution of k-mer rank of the sequences used in

the experiments.

Furthermore, in these experiments it was made sure that

the k-mer rank distribution for the sequences is in general

evenly distributed. A sample of k-mer rank distribution

for N = 5000 sequences used in our experiments is shown

in Fig. 3.After the sequences were generated according to

the experimental setup, the files were divided into equal

parts and ‘placed’ on the cluster nodes’ hard drives prior

to the experiments. Then an instance of Sample-Align-D

Algorithm was initiated on each of the nodes and the time

required for the actual alignment was noted.

We were able to align 20000 sequences in just around 25

seconds. There are no reports of aligning this huge

number of sequences in the literature to the best of

authors’ knowledge. The best that the authors found was

for N=5000 sequences [12]. T-coffee [28] is reported to

not able to handle more than 10
2
 sequences. MAFFT

[23] script FFTNSI is reported to align 5000 sequences in

10 minutes and MUSCLE itself without refinement in

7minutes. It is anticipated that with refinement included,

MUSCLE is bound to take the same amount as FFTNSI.

It is also estimated that CLUSTALW [27] would take

approximately 1 year to align these many sequences [12].

As shown in Fig. 4, in the case of Sample–Align, the

execution time decreases sharply with the increase in the

number of processors. We got super linear speed-up for

the Sample-Align-D and the observed speedup curves are

shown in Fig. 5. This is primarily because the

computation complexity decreases by O (p
4
) with the

increase in number of processor. It can be observed,

however, that for the datasets of N=5000 and 10000, the

speedup curve goes up for 4, 8 and 12 processors but

deteriorates when all the 16 processors are used. The

slowdowns indicate that the granularity of work assigned

to each processor decreases. With the increase of the

dataset to 20000, we get much better speedup curves. We

have also experimented with real protein sequences from

the Methanosarcina acetivorans genome. Fig. 6 depicts

the execution time of aligning randomly selected 2000

sequences from the Methanosarcina acetivorans genome

using different number of processors.

Note that it took more than 23 hours to align this set of

sequences using the sequential MUSCLE system on a

single cluster node, whereas it took only 9.82 minutes to

align the same number of sequences using the proposed

Sample-Align-D algorithm. This is a 142 fold speedup

using 16 processors!

4.1. Quality Assessment

We have used the PREFAB benchmark to assess the

quality of the alignments produced by Sample-Align-D

Algorithm We have used the accuracy measure Q [3],

defined as, the number of correctly aligned residue pairs

divided by the number of residue pairs in the reference

alignment. The results from this benchmark are presented

below in Table 2. For the Sample-Algorithm, results

correspond to execution on a 4 processor cluster system.

As can be seen from the values above that our method

Scalibility Performance

0

10

20

30

40

50

1 4 8 12 16

Number of Procs

Speed-up

5000 Sequences

10000 Sequences

20000 Sequences

Observed timing for Algorithm for sequences of

N=5000,10000,20000

0

200

400

600

800

1000

1200

1400

0 5 10 15 20

Processors

T
im

e
(S
e
c
o
n
d
s
)

5000 sequences

10000 sequences

20000 sequences

Fig. 4. Scalability of the execution time with respect to the

number of processors being used.

Fig. 5. Super linear speed-up for Sample Align-D with

increasing number of processors.

Fig. 6. Execution time on randomly selected 2000

sequences from the Methanosarcina Acetivorans genome.

provides quality of alignment comparable to the other

well-known methods. For PREFAB, Sample-Align-D

Algorithm yields quality very close to that of

CLUSTALW.

Table 2. Q Scores obtained for each method using PREFAB

It should be noted that we are getting quality1 comparable

to CLUSTALW and execution time better than MUSCLE

itself. We believe that quality is much higher in our case

when the sequences are large in number. However, due to

the absence of large size benchmark datasets we cannot

report supporting results at the time of this publication. In

the case of PREFAB, it contains 1000 set of approx. 20-

30 sequences each. Each set is aligned independently of

the other sets to access the quality of the alignment

program on multiple set of sequences of varying

divergence. In the case of the proposed Sample-Align-D

Algorithm, partitioning each set of 20 to 30 sequences

even on a 4 processor system is too fine grain to access

the true quality of alignment. More detailed quality

analysis results will be presented in the full version of this

paper. A snap shot of the alignment produced by the
Sample-Align-D Algorithm for the genome sequences is

given in Fig. 7.

5. Conclusions and Future Research

We have addressed the long standing problem of aligning

large number of multiple sequences in a reasonable

amount of time. We have addressed the problem using a

completely distributed approach to the problem, using

high scalable techniques similar to sample sort. The

sequences are distributed among the processors according

to k-mer rank and are aligned in a distributed manner

independently of the other sequences. The independently

aligned sequences are then aligned with the global

ancestor as is described in the paper. The sequences are

then joined in a root processor giving a meaningful

1 Some of the sequence scores were discarded in the automatic quality

estimation process.

alignment. Our results show super linear speed-up with

comparable quality of alignment.

Currently we are working on accessing the quality of the

method using other standard benchmarks such as
BAliBASE, SMART and SABmark. It must be noted

however, that these benchmarks are not designed to

access the quality of the alignments produced in a

distributed manner and the size of these benchmarks may

limit the accuracy of the quality accessed. Therefore, it

would be desirable to develop benchmarks that may be

used to access the quality of these alignments formulated

using distributed systems as ours. We are working on

sequential heuristics to improve the quality of the

alignment produced from the methods discussed above.

These heuristics may then be further parallelized to

incorporate in the distributed approach presented in this

paper.

Fig. 7. A Snap shot of the alignment produced by Sample-Align

Algorithm for the sequences in the Methanosarcina acetivorans

genome

Another area that is interesting to explore is the kind of

sequences and families that may be aligned using the

methods discussed, with reasonable accuracy. It can be

seen however that there might always be a need to refine

the ‘global’ multiple sequence alignment for some of the

most divergent families and sequences. An efficient

method to do that with small time complexity would be

necessary for some families of sequences being aligned,

thus making the system working for a wide range of

families but still keeping the advantage of high scalability

and performance.

METHOD Q-Score

Sample-Align-D 0.544

MUSCLE 0.645

MUSCLE-p 0.634

T-Coffee 0.615

NWNSI 0.615

FFTNSI 0.591

CLUSTALW 0.563

References:

[1] L. Wang and T. Jiang, “On the Complexity of

Multiple Sequence Alignment,” Journal of Computational

Biology, 1(4):337–348, 1994

[2] V. Kumar, A.Grama, A. Gupta, G. Karypis,

Introduction to Parallel Computing, Design and Analysis of

Algorithms, The Benjamin/Cummings Publishing Company,

Inc., 2nd edition 2006.

[3] R.C. Edgar, MUSCLE: Multiple Sequence Alignment

with High Accuracy and High Throughput, Nucleic Acids

Research, Vol. 32, No. 5, 2004.

[4] Jeorslav Zola: Parallel Server for Multiple Sequence

Alignment, Thèse de Doctorat, spécialité informatique, Institut

National Polytechnique de Grenoble, December 2005.

[5] J. Cheetham et al, “Parallel CLUSTALW for PC

Clusters,” Computational Science and Its Applications –

ICCSA, Springerlink, 2003.

[6] D. Mikhailov, H. Cofer, and R. Gomperts, Parallel

Clustal W, HT Clustal, and MULTICLUSTAL,

www.sgi.com/solutions/sciences/chembio

[7] X. Deng, E. Li, J. Shan, and W. Chen, “Parallel

Implementation and Performance Characterization of MUSCLE,

International Parallel and Distributed Processing Symposium

(IPDPS), 2006.

[8] J. Zola, D. Trystram, A. Tchernykh, and C. Brizuela,

“Parallel Multiple Sequence Alignment with Local Phylogeny

Search by Simulated Annealing,” Sixth IEEE International

Workshop on High Performance Computational Biology. March

2007.

[9] K. Chaichoompu, S. Kittitornkun, and S. Tongsima,

“MT-Clustal-W: Multithreading Multiple Sequence

Alignment,” Sixth IEEE International Workshop on High

Performance Computational Biology, March 2007.

[10] M. Schmollinger, K. Nieselt, M. Kaufmann, and B.

Morgenstern, “DIALIGN P: Fast pair-wise and Multiple

Sequence Alignment using Parallel Processors,” BMC

Bioinformatics, 2004.

[11] I.M. Wallace et al, “Evaluation of Iterative Algorithms

for Multiple Sequence Alignment,” Bioinformatics Oxford

Journal, Vol. 21 No. 8, 2005.

[12] R.C. Edgar, “MUSCLE: A Multiple Sequence

Alignment Method with Reduced Time and Space Complexity,”

BMC Bioinformatics, 5:113, 2004.

[13] W.D. Frazer and A.C. McKellar, “Samplesort: A

Sampling Approach to Minimal Storage Tree Sorting,” J. ACM,

17(3):496–507, 1970.

[14] J. Stoye, D. Evers, and F. Meyer, “Rose: Generating

Sequence Families,” Bioinformatics, 14, 157±163, 1998

[15] R.C. Edgar, “Local Homology Recognition and

Distance Measures in Linear time using Compressed Amino

Acid Alphabets,” Nucleic Acids Res., 32(1):380-385. 2004.

[16] S. Hambrusch, F. Hameed, and A. Khokhar,

“Communication Operations on Coarse-grained Mesh

Architectures,” Parallel Computing, Vol. 21, pp. 731-751, 1995

[17] R.C. Edgar, “Local Homology Recognition and

Distance Measures in Linear time using Compressed Amino

Acid Alphabets,” Nucleic Acids Res., 32(1):380-385. 2004.

[18] S.F. Altschul, “Amino Acid Substitution Matrices

from an Information Theoretic Perspective,” Journal of

Molecular Biology, 219(3):555-565, 1991.

[19] S.F. Altschul, T,L. Madden, A.A. Schäffer, J. Zhang,

Z. Zhang, W. Miller, and D.J. Lipman, “Gapped BLAST and

PSI-BLAST: A New Generation of Protein Database Search

Programs,” Nucleic Acids Research, Vol. 25, No. 17, 3389–

3402, 1997.

[20] S. Hambrusch, and A. Khokhar, “C3: An Architecture

Independent Model for Coarse-grained Parallel Machines,”

Proceedings of IEEE Symposium on Parallel and Distributed

Processing, pp. 544-551, October, 1994

[21] T.F. Smith and M.S. Waterman, “Identification of

Common Molecular Subsequences,” Journal of Molecular

Biology, 147(1): 195-197.1981

[22] F. Zhang, X.Z. Qiao, and Z.Y. Liu, “A Parallel Smith-

Waterman Algorithm Based on Divide and Conquer,”

Proceedings of the Fifth International Conference on

Algorithms and Architectures for Parallel Processing

(ICA3PP), 2002.

[23] K. Katoh, K. Misawa, K. Kuma, and T. Miyata,

“MAFFT: A Novel Method for Rapid Multiple Sequence

Alignment based on Fast Fourier Transform,” Nucleic Acids

Res., 30(14):3059-3066, 2002.

[24] Shahid Bokhari and David M. Nicol, “Balancing

Contention and Synchronization on the Intel Paragon”, IEEE

Concurrency, 1997

[25] J.S. Huang, and Y.C. Chow, “Parallel Sorting and

Data Partitioning by Sampling,” 7th international Computer

Software and Applications Conference, 1983, 627-631

[26] H. Shi and J. Schaeffer, “Parallel Sorting by Regular

Sampling,” Journal of Parallel and Distributed Computing, vol.

14, no. 4, pp. 361-372, 1992.

[27] J.D. Thompson, D.G. Higgins, and T.J Gibson,

CLUSTAL-W: Improving the Sensitivity of Progressive

Multiple Sequence Alignment through Sequence Weighting,

Positions-specific Gap Penalties and Weight Matrix Choice,”

Nucleic Acids Research, 22:4673-4680, 1997.

[28] C. Notredame, D. Higgins, and J. Heringa, “T-Coffee:

A Novel Method for Multiple Sequence Alignments,” Journal

of Molecular Biology, Vol. 302, pp205-217, 2000.

[29] C.B. Do, M.S.P. Mahabhashyam, M. Brudno, and S.

Batzoglou, “PROBCONS: Probabilistic Consistency-based

Multiple Sequence Alignment,” Genome Research 15: 330-340,

2005.

[30] M. Brudno, A. Poliakov, A. Salamov, G.M. Cooper,

A. Sidow, E.M. Rubin, V. Solovyev, S. Batzoglou, and I.

Dubchak, “Automated Whole-Genome Multiple Alignment of

Rat, Mouse, and Human,” Genome Res., 14: 685 – 692, 2004.

[31] J.E. Galagan et.al, “The Genome of M. Acetivorans

Reveals Extensive Metabolic and Physiological Diversity,”

Genome Res., 12: 532 - 542, Apr 2002.

[32] J. Felsenstein, “Evolutionary Trees from DNA

Sequences: A Maximum Likelihood Approach,” J. Mol. Evol.

17: 368–376, 1981.

[33] N. Bray and L. Pachter, “MAVID: Constrained

Ancestral Alignment of Multiple Sequences”, Genome

Research, 14:693-699, 2004.

