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Abstract

Despite the computing power of emerging technolo-
gies, predicting long RNA secondary structures with
thermodynamics-based methods is still infeasible, espe-
cially if the structures include complex motifs such as pseu-
doknots.
This paper presents preliminary results on rebuilding

RNA secondary structures by an extensive and systematic
sampling of nucleotide chunks. The rebuilding approach
merges the significant motifs found in the secondary struc-
tures of the single chunks. The extensive sampling and pre-
diction of nucleotide chunks are supported by grid tech-
nology as part of the RNAVLab functionality. Significant
motifs are identified in the chunk secondary structures and
merged in a single structure based on their recurrences and
other statistical insights. A critical analysis of the strengths,
weaknesses, and future developments of our method is pre-
sented.

1. Background and Significance

RNA secondary structure prediction can provide insights
in the reconstruction of 3D RNA structures and their func-
tionality. Study of RNA secondary structures is a field that
is raising the attention of the scientific community; new in-
sights in the field point out the need for supporting experi-
mental research with computational results. The latter can
help to narrow down the space of the experiments and there-
fore the cost to obtain results.

Figure 1. Time and memory usage by Pknots-
RE for PseudoBase sequences with different
lengths

Despite the computing power of supercomputers and
emerging advanced technologies, e.g., multi-core archi-
tectures, the prediction of secondary structures for long
RNA using thermodynamics-basedmethods e.g., Zuker and
Turner [14], is still infeasible, especially if the structures in-
clude complex secondary structures such as pseudoknots.
The space and time required for accurate predictions of
pseudoknots based on free energy minimization algorithms
grow very rapidly with the sequence length. Figure 1 shows
the time and memory (in logarithmic scale) allocated for
the prediction of RNA pseudoknots with various lengths us-
ing one of the most accurate prediction programs, Pknots-
RE [11]. The algorithm underlying Pknots-RE has a run
time and memory demand in the order of n6 and n4 re-



spectively, where n is the length of the input sequence [11].
The program conducts an exhaustive search for the optimal
structure with the lowest free energy and has the capability
to predict rather complex structures, even some non-planar
structures for short RNA segments of up to 200 nucleotides.
Some variations of this algorithm have been developed to
get around the memory and computing time demands by re-
stricting the types of pseudoknots to be predicted and the
RNA sequence lengths to keep computation time and stor-
age size under control. For instance, the program Pknots-
RG [10] limits the types of pseudoknots to simple struc-
tures for longer segments, up to 800 nucleotides. However,
a large variety of pseudoknots occur in reality. Their omis-
sion from computational methods might significantly affect
the prediction accuracy. Even simplified programs are not
able to predict secondary structures on the order of thou-
sands of nucleotides.
We have observed that most pseudoknots experimentally

observed are formed by RNA segments whose lengths are
less than 200 nucleotides. An analysis of the length of
the pseudoknots in PseudoBase [13], which collects 245
of such RNA segments, showed that about 95% of these
segments have lengths that range between 20 and 200 nu-
cleotides. Moreover, the range of lengths between 30 (lower
quartile) and 67.5 (upper quartile) nucleotides covers 50%
of all segments. This observation leads us to the idea of
developing a strategy for cutting off the viral genome into
segments or chunks of length no more than 200 bases, and
distributing the task of structure prediction of each chunk to
be done simultaneously on different computers.
Ideally, if two chunks cut from the same RNA sequence

overlap each other, the predicted structures on their overlap-
ping part should be consistent with one another. Such con-
sistency is important for the final structure assembly. In our
preliminary trials, we have observed that arbitrarily cutting
the RNA sequence into overlapping segments is not advan-
tageous for consistency. It is well conceivable that when an
arbitrary cut goes through the middle of an inversion, the
bases forming the pairings do not get into the same seg-
ment causing the omission of the structure on that predic-
tion. For instance, consider a 100 base piece of the Severe
Acute Respiratory Syndrome (SARS) coronavirus genome,
which is one of the coronavirus genomes analyzed by Chew
et al. in [4], from position 25884 to 25983 and another
piece from position 25923 to 26022. When the program
Pknots-RE is applied to these segments, two predictions are
produced which are shown in Figure 2. Note that, over the
stretch of 62 bases when the two pieces overlap one another,
the two predictions are different. This kind of inconsistency
poses a serious problemwhen the predicted structures of the
segments need to be assembled.
This paper addresses this challenge and presents a

method for rebuilding RNA secondary structures by sys-

tematically sampling nucleotide chunks from a RNA se-
quence and rebuilding the secondary structure of the longer
sequence from the motifs found in the secondary structures
of the chunks (i.e., stem-loops and pseudoknots). The ex-
tensive and systematic sampling of nucleotide chunks is vi-
tal for the success of our method and the inconsistency out-
lined above; the computing power needed for the prediction
of the numerous chunks is provided by grid technology as
part of the RNAVLab functionality [12]. Motifs are identi-
fied in the chunk secondary structures and merged in a sin-
gle structure based on their recurrences and other statistical
insights. Rigorous statistical analysis are used to identify
weaknesses and strengths of the proposed sampling and the
rebuilt algorithm.
This paper is organized as follows: Section 2 provides

a overview of related work. Section 3 presents our method
for sampling nucleotide chunks, predicting and identifying
relevant motifs, and rebuilding whole secondary structures
from the chunk motifs. Section 4 statistically quantifies the
effectiveness of our method. Section 5 summarizes the main
contributions and lists future work.

2 Related Work

Most of the previous work on finding consensus motifs
takes as input a set of primary sequences and generates as
output the set of structural motifs identified, and the dif-
ferences lie on the search strategy for identifying common
motifs. For instance, work presented in [8, 1] uses suffix
arrays for efficiently exploring the space of valid secondary
structures in their Seed method. In Seed, the search space is
constrained by the seed sequence, which is just one of the
sequences in the set used to instantiate valid motifs. Seed
ranks motifs using a metric that combines the entropy of the
segment with the free energy of the secondary structure, as
computed by MFOLD [15]. This ranking function yielded
good results, the top motifs had also the highest Matthews
Correlation Coefficient [7]. A drawback of Seed is the fact
that it is limited to find patterns in stem regions only, that
is, no loops or pseudoknots can be identified by the Seed
method.
Ashlock and Schonfeld propose a depth annotation

scheme to identify common motifs that uses an evolution-
ary algorithm to cluster folds by projecting them in a two
dimensional Euclidean space [2]. The intuition behind this
approach is that similar folds will be placed closer by the
projection algorithm. To identify motifs we need to analyze
the output of the projection. Since the method provides a
visual representation of the similarity between bricks, it is
simple to identify motifs by just looking for clusters. How-
ever, as the number of bricks increases, spotting the clus-
ters become less straightforward and we need the help of a
clustering algorithm. Another shortcoming of this method



Figure 2. Pknots-RE predictions of SARS segment 25884 base to 25983 base (left) and SARS segment
25923 base to 26022 base (right)

is that the distances between the pairs of depth annotations
depend on a specific size of segment. Thus prior knowledge
of the sequences is needed in order to define an appropri-
ate window size. This method can identify pseudoknots by
assigning a unique identifier to stems.
There are other approaches to motif finding, see for ex-

ample [3], but most of them give the desired results pro-
vided the secondary structure is not complex, that is, no
loops or pseudoknots are included, or if we have enough
prior knowledge regarding the identity of the motifs. On
the contrary, our automated method targets motifs that are
as general as possible and exhaustively explores the search
space of all the sequences of nucleotides. It is a strictly
structural method in the sense that currently we only look
at the secondary structure predicted by Pknots-RG –for the
experiments presented here. Our preliminary results show
that our method can find motifs as simple as small stems
and as complex as pseudoknots and loops.

3. Methodology

The method we propose in this paper uses the RNAVLab
environment [12] to: (1) sample nucleotide subsequences,
or chunks, from larger sequences and predict the secondary
structures for each corresponding chunk (Section 3.1); (2)
identify common motifs in the partial predictions (Section
3.2), and (3) rebuild the final secondary structure by merg-
ing the motifs identified in the previous step (Section 3.3).
RNAVLab (RNA Virtual Laboratory) is a unified compu-
tational environment for the study of RNA secondary struc-
tures that combines sampling of nucleotides sequences, pre-
dictions based on different codes and supported by grid
computing technology, as well as analysis of large sets of
secondary structures.

3.1 Sampling and Predicting Secondary
Structures

Our current sampling approach is straightforward. We
use sliding windows of nucleotide chunks that progressively
grow in length and sliding steps. For each sequence, we
systematically generate several sets of chunks that are for-
warded to the prediction module in the RNAVLab; each set
results in a single rebuilt secondary structure.

Each set of chunks has a fixed size (window size) and
a fixed sliding step (window step). The several chunks in
a set are generated by progressively sliding the fixed-size
window of a fixed number of steps and each time sampling
the nucleotides within the window. The process is repeated
to generate the several sets by increasing the window sizes
and/or the window steps every time we generate a new set
of chunks. Window sizes are always increased by 5 bases.
The max length of a window is n/2, where n is the length of
the RNA sequence we want to rebuild. Window steps range
from 1 base to w − 1 bases, where w is the window size.

Given a set of chunks, we predict their secondary struc-
tures in parallel by using the structure predictor component
of RNAVLab. This component harnesses heterogeneous
computing resources across the University of Texas at El
Paso (UTEP) campus to rebuild RNA secondary structures
from RNA segments, using different prediction codes. Cur-
rently RNAVLab supports the following prediction codes:
Pknots-RE, Pknots-RG [10], and NuPack [9]. In this paper
we use the Pknots-RG code but the predictions can be easily
extended to the other two codes.



Figure 3. Pseudocode for the Motif Identifier

3.2 Identification of Common Motifs in
Predictions

The identification of common motifs is performed by
the Motif Identifier in RNAVLab. The Motif Identifier first
identifies all the valid secondary structures, from the most
general (i.e., a hairpin comprising a single base pair) to
the most complex (i.e., pseudoknots), that can be generated
from the input of secondary structures. Then by using an
associative array of linked lists, our tool finds and stores
the locations of each substructure generated in the previous
step. Figure 3 shows the pseudocode of the tool. To narrow
down the number of motifs and identify the most relevant
ones, ranking techniques are applied. Ranking criteria in-
clude: the frequency of the motif over the maximal number
of possible occurrences, the number of bonding nucleotides,
the length of the secondary structure, and the motif location
in the RNA segment. Other possible ranking criteria can in-
clude information of the primary structure such as the per-
centage of bases correctly matched, and/or free energy of
the structure. In this paper we score motifs based on their
frequency (f ), number of base pairs (s), and the length of
the overlapping region (o):

score =
f ∗ s

o
(1)

The simple intuitive motivation behind this scoring function
is that more accurate secondary structures are more likely
predicted by longer overlapping structures with higher fre-
quency.

3.3 Rebuilding Secondary Structures
from Common Motifs

To rebuild the final secondary structure out of the chunk
motifs, we use the scoring function presented previously.

We project motifs, in descending order according to their
score, into a final structure until there are no more mutually
exclusive motifs in the set. In other words, we only project
different motifs found in chunks when they do not overlap
with each other. As part of the rebuilding algorithm, we
also define the minimum frequency that a motif present in
overlapping chunks has to meet in order to be projected in
the resulting rebuilt sequence (threshold). Threshold values
can range from 1 to 9. Finally, we compute the energy of
the rebuilt structures as a whole by using the same energy
algorithm used in Pknots-RG and NUPack.

4 Analysis

In this section we address two important analysis com-
ponents. First, we quantify the capability of our rebuilding
algorithm to capture the secondary structure observed ex-
perimentally. We compare performance and accuracy (in
terms of sensitivity and selectivity) of our rebuilding algo-
rithm based on nucleotide chunks against a traditonal al-
gorithm using the same prediction code and the entire se-
quence. Second, we statistically quantify the effectiveness
of our naive approach for sampling nucleotide chunks and
we measure whether the extensive sampling and predictions
can compensate for the fact that no attention is paid to the
type of nucleotides in the chunks, i.e., if there are palin-
drome sequences or not.

4.1 Experiment Set-up

Long RNA secondary structures, i.e., of the order of
thousands of nucleotides, that have been experimentally
validated are rare. When available, our method can deal
with the prediction of these sequences but other methods
that predict secondary structures using the entire sequence
as a whole cannot, making a comparison between the two
approaches infeasible. Therefore, for our analysis in this
paper we used the 39 longest nucleotide sequences from
Group A in [5] that have lengths ranging from 100 to 482
bases and are still predictable as a whole by the Pknots-RG
code. Note that since we are not considering the exact same
set as in [5], we cannot perform a direct comparison against
those results.
The sampling, motif identification, and rebuilding were

executed on the RNAVLab server. Window sizes, window
steps, and thresholds used in the experiments are defined in
Section 3. The predictions were performed on a 64-node
cluster (each node consists of 2 AMD Opteron processors
running at 2 GHz with 4 Gigabyte of RAM and a local 120
Gigabyte hard disk) that is part of the on-campus grid re-
sources of RNAVLab. The accuracy of predictions is mea-
sured in terms of sensitive (i.e., ability to predict all true
pairs) and selectivity (i.e., ability to only predict true pairs).



Predictions are compared with the experimental secondary
structures provided in [5].
Table 1 presents the 39 sequences (Sequence), their

length in bases (Length), their number of rebuilt structures
including those that, when compared with the experimental
secondary structures, have sensitivity and selectivity equal
to zero (Predictions Attempts), the number of rebuilt struc-
tures that have a positive sensitivity and selectivity (Pre-
dictions Used), the total time in seconds needed for all the
chunk predictions on the cluster (Rebuilt Time), and the time
in seconds used for the prediction of sequences as a whole
when using Pknots-RG (Pred. Time). The table outlines the
high cost in terms of computation needed for our approach.
RNAVLab makes our approach feasible by allowing us to
perform the computation on idle resources across the cam-
pus.

4.2 Accuracy of Rebuilt Structures

In Table 2 we present a summary of the accuracies: the
oracle or upper bound on sensitivity and selectivity for our
method (Rebuilt Sen. and Rebuilt Sel.) is compared with
the sensitivity and selectivity of Pknots-RG when consider-
ing the entire sequence for prediction (Pred. Sen. and Pred.
Sel.) as well as the sensitivity and selectivity achieved by
our algorithm when selecting those structures with the low-
est free energy (Min En.,Min En. Sen., andMin En. Sel.).
Since we are using Pknots-RG for the prediction of

the chunks, intuitively we would expect our algorithm to
achieve results that are at most equally accurate as those
achieved by this prediction code when predicting the whole
sequence. However, because we are allowing the prediction
of chunks starting at different positions in the primary struc-
ture, our method can find sequences that are very different
from those predicted by the code on the entire sequence.
Out of the total 39 sequences presented in the table, the or-
acle outperformed Pknots-RG on sensitivity and/or selec-
tivity for 24 sequences (see bold values in the table). The
selection criteria based on the minimum free energy (Min
En. Sen. and Min En. Sel.) is not as accurate though, only
in 7 out of the 39 cases did this criteria yield better or equal
results than Pknots-RG.
The results of our rebuilding algorithm are promising,

especially considering the potential of our approach in over-
coming the limitations of current prediction methods on the
length and complexity of the sequences. Currently, the most
salient weakness of our method involves the selection of the
final rebuilt structure. The minimum free energy is not by it-
self a good factor for selection, this is probably due to what
is already common belief that native structures will often
be near-optimal in terms of the minimum free energy. Sec-
tion 5 discusses in detail our ongoing work to improve this
selection criteria.

4.3 Effectiveness of Sampling Approach

In cutting an RNA sequence into chunks of overlapping
sequences, we experimented using various window sizes
and window step sizes. In rebuilding the overall struc-
tures from the chunks, different threshold values have been
used. We have noticed that as values of these parameters
vary, the overall accuracy, measured by sensitivity and se-
lectivity of the rebuilt structures, also change. In order to
check whether any significant systematic relationship exists
between the accuracy of the rebuilt structures and the pa-
rameters, we carried out a multiple regression analysis on
each of the 39 sequences in Table 2 with sensitivity and se-
lectivity as response variables and (window size, window
step, threshold) as predictor variables. In all except one
sequence, both sensitivity and selectivity are significantly
(p-value < 0.005) related to the three predictor variables.
Both response variables correlate positively with window
size, but negatively with window step and threshold. The
positive correlation with window size agrees with our ex-
pectation that having a larger sequence chunk, which con-
stitutes a larger portion of the whole RNA molecule, in a
single prediction should generally be beneficial to the ac-
curacy of the rebuilt structure. On the other hand, a larger
window step would mean that successive sequence chunks
overlap less with each other so that it is easier to miss those
secondary structures spanning both chunks but not captured
within either one, resulting in the negative correlation with
the window step parameter. The negative correlation of
threshold with structure accuracy implies that every motif
detected in a sequence chunk should be taken into account
in the rebuilt structure. A very strong positive correlation
between sensitivity and selectivity (correlation coefficient
> 0.9) has been detected in each of the 39 sequences while
the predictor variables are being varied. This suggests that
our structure rebuilding approach can be made highly ef-
fective simultaneously in both measures of accuracy. It is
also interesting to note that the minimum free energy of a
rebuilt structure generally shows a negative correlation with
sensitivity, but a positive correlation with selectivity, sug-
gesting that the minimum free energy does not necessarily
reflect the accuracy of the rebuilt structure. While the min-
imum free energy is the quantity used pervasively in many
secondary structure prediction algorithms for determining
what the optimal structure is, there seems to be a necessity
for seeking an alternative measure.

4.4 Discussion

The proposed approach can be used for the identification
of motifs across prediction codes, given the same segment
of nucleotides. This can be useful for validation of predic-
tion techniques across codes with different methodologies



Table 1. Performance comparison of predictions performed with our rebuilding algorithm based on
sampled chunks and the same predictions using Pknots-RG and the entire sequence

Sequence Length Predictions Attempted Predictions Used Rebuilt Time (sec) Pred. Time (sec)
RF00167 A 100 1701 362 680.40 0.18
RF00374 A 101 1701 351 683.10 0.20
RF00499 A 102 2142 495 831.78 0.21
RF00162 A 103 2142 586 835.47 0.22
RF00198 A 104 2142 451 854.28 0.23
RF00435 A 109 2142 499 905.22 0.26
RF00485 A 114 2628 449 1118.52 0.31
RF00020 A 115 2628 508 1141.65 0.32
RF00001 A 117 2628 678 1168.20 0.23
RF00383 A 117 2628 604 1157.22 0.32
RF00286 A 118 2628 510 1161.36 0.31
RF00463 A 127 3159 824 1490.04 0.42
RF00182 A 129 3159 733 1519.47 0.41
RF00373 A 133 3735 951 1809.54 0.44
RF00290 A 140 3735 974 1924.92 0.53
RF00004 A 145 4356 1277 2348.55 0.61
RF00484 A 149 4356 1246 2376.90 0.66
RF00025 A 152 5022 854 2818.53 0.72
RF00050 A 157 5022 1252 2987.10 0.84
RF00171 A 168 5733 1490 3807.09 1.13
RF00387 A 168 5733 1549 3706.74 1.01
RF00259 A 169 5733 1426 3743.64 1.1
RF00232 A 170 5733 1423 3775.05 1.08
RF00391 A 171 5733 1466 3735.18 0.96
RF00013 A 183 7290 1885 5428.89 1.44
RF00458 A 202 9027 2618 8174.16 2.03
RF00193 A 273 16524 5267 31195.71 6.66
RF00231 A 275 16524 4519 31961.34 6.79
RF00503 A 293 19071 5988 47340.99 9.41
RF00030 A 297 19071 5845 47387.79 9.47
RF00216 A 302 20412 4855 51796.98 9.85
RF00010 A 312 21798 7393 61489.98 10.59
RF00009 A 320 21798 6056 62566.20 11.67
RF00100 A 330 23229 6393 74524.86 13.56
RF00036 A 337 24705 8555 86616.63 14.6
RF00209 A 379 31059 10631 154066.14 22.35
RF00024 A 451 43911 12050 471230.46 53.44
RF00210 A 462 47988 17172 526495.41 50.79
RF00177 A 482 52245 19114 668287.08 59.13



Table 2. Accuracy comparison (in terms of sensitivity and selectivity) of the upper bound rebuilt
predictions based on sampled chunks, the same predictions with the entire sequence, and the rebuilt
prediction with lowest free energy

Sequence Length Rebuilt Rebuilt Pred. Pred. Min Min En. Min En.
Sen. Sel. Sen. Sel. En. Sen. Sel.

RF00167 A 100 0.73 0.64 1.00 0.79 -23.50 0.64 0.47
RF00374 A 101 0.81 0.65 0.81 0.67 -41.60 0.81 0.65
RF00499 A 102 0.76 0.71 0.91 0.86 -34.60 0.73 0.59
RF00162 A 103 0.70 0.52 0.85 0.66 -24.10 0.59 0.46
RF00198 A 104 0.96 0.70 0.92 0.55 -35.40 0.92 0.63
RF00435 A 109 0.97 0.97 1.00 1.00 -52.90 0.62 0.46
RF00485 A 114 0.54 0.34 0.71 0.37 -24.20 0.33 0.18
RF00020 A 115 0.73 0.58 0.97 0.74 -36.90 0.73 0.58
RF00001 A 117 0.55 0.41 0.82 0.61 -39.40 0.55 0.40
RF00383 A 117 0.75 0.36 0.75 0.32 -36.70 0.06 0.02
RF00286 A 118 0.86 0.51 0.95 0.57 -37.50 0.86 0.51
RF00463 A 127 0.80 0.80 0.61 0.42 -53.10 0.41 0.29
RF00182 A 129 0.53 0.36 0.83 0.56 -35.76 0.50 0.30
RF00373 A 133 0.64 0.45 0.64 0.18 -22.68 0.18 0.05
RF00290 A 140 0.93 0.93 0.77 0.49 -33.40 0.73 0.54
RF00004 A 145 0.97 0.81 0.77 0.48 -45.90 0.77 0.48
RF00484 A 149 0.58 0.44 0.39 0.21 -40.70 0.27 0.15
RF00025 A 152 0.73 0.53 0.70 0.49 -21.56 0.55 0.35
RF00050 A 157 0.56 0.30 0.68 0.28 -71.00 0.24 0.09
RF00171 A 168 0.94 0.61 0.91 0.57 -47.50 0.91 0.60
RF00387 A 168 0.73 0.71 0.96 0.96 -50.34 0.63 0.53
RF00259 A 169 0.52 0.38 0.59 0.47 -33.00 0.34 0.24
RF00232 A 170 0.61 0.49 0.63 0.49 -58.90 0.59 0.45
RF00391 A 171 0.66 0.41 0.50 0.27 -45.30 0.28 0.13
RF00013 A 183 0.72 0.54 0.98 0.87 -62.30 0.72 0.54
RF00458 A 202 0.78 0.64 0.58 0.39 -49.90 0.63 0.45
RF00193 A 273 0.86 0.73 0.79 0.60 -73.60 0.55 0.38
RF00231 A 275 0.97 0.71 0.71 0.41 -89.00 0.92 0.63
RF00503 A 293 0.95 0.87 0.70 0.44 -55.40 0.84 0.63
RF00030 A 297 0.70 0.53 0.68 0.48 -83.77 0.46 0.29
RF00216 A 302 0.63 0.46 0.40 0.21 -117.24 0.49 0.29
RF00010 A 312 0.68 0.57 0.77 0.63 -117.70 0.67 0.54
RF00009 A 320 0.77 0.35 0.57 0.22 -87.40 0.34 0.13
RF00100 A 330 0.75 0.58 0.40 0.23 -102.90 0.71 0.50
RF00036 A 337 0.63 0.50 0.94 0.86 -116.04 0.63 0.49
RF00209 A 379 0.77 0.54 0.75 0.46 -139.10 0.63 0.38
RF00024 A 451 0.86 0.53 0.80 0.48 -215.20 0.73 0.41
RF00210 A 462 0.91 0.69 0.80 0.56 -175.50 0.74 0.51
RF00177 A 482 0.82 0.63 0.93 0.74 -239.50 0.72 0.50
Average 0.75 0.58 0.76 0.53 0.59 0.41



and energy computation algorithms. Also the approach can
be used for identifying commonmotifs, i.e., pseudoknots, in
a set of sequences - this can be used in case a segment pre-
diction is given but it is not known the family or the genes
to which it belongs. If significant structures are present in
the segment as well as other members of the same family,
this may indicate a possible relation to the family.
Although this is still work in progress, the results are

very encouraging, especially considering that our method
proved to be capable of improving the prediction of the
whole sequence. A method such as the one proposed here
has several advantages over conventional approaches on
motif finding: (1) It does not require any prior knowledge
about the sequences being analyzed, which makes it a very
practical tool. (2) Because it lends itself to run in parallel,
computational time will not be a critical issue. (3) It is very
flexible and general in the sense that it can me combined
with the prediction code of preference.

5 Future Work and Conclusions

This paper presents a method to rebuild RNA secondary
structures from common motifs found in systematically
sampled chunks of nucleotides. For 24 sequences of the
39 RNA segments with different lengths that we used for
the validation, our method achieved results that are more
accurate (either in terms of sensitivity or selectivity or both)
than those achieved by the code we are using to predict the
secondary structure of the sequence chunkswhen predicting
the whole segments. The regression analysis outlined that
(1) there is a significant relationship between the accuracy
of the rebuilt structure (in terms of sensitivity and selec-
tivity) and the sampling factors (i.e., window size, window
step, and threshold values); (2) our method equally targets
both the measurements of accuracy, i.e., sensitivity and se-
lectivity; and (3) the minimum free energy cannot be trusted
by itself as a quality measure of the secondary structure.
Current work includes the analysis of larger sets of

longer RNA sequences and the use of other prediction codes
for the chunks. As shown in [6], predictions can signifi-
cantly benefit from the combined prediction capability of
different codes as oppose to using single codes separately.
We are also working on developing an intelligent strategy
for generating chunks. As the results showed, the method is
very sensitive to where the chunk begins and ends. One of
our strategies to overcome this is to sample non-consecutive
chunks. By doing so we can predict sequences that span
over a longer number of nucleotides. We are also investi-
gating the use of statistical methods for selecting the seg-
mentation points. The idea is to train machine learning ap-
proaches on a set of sequences where the optimal cutting
points have been identified a priori and use as attributes for
this task the l-mers and inversions in the sequence.
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