

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Parallel, Scalable, Memory-Efficient Backtracking for Combinatorial
Modeling of Large-Scale Biological Systems1

Byung-Hoon Park*, Matthew Schmidt*,+, Kevin Thomas#, Tatiana Karpinets*, Nagiza F. Samatova*,+,¥
*Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831
+Computer Science Department, North Carolina State University, Raleigh, NC 27695

#Cray Inc.
¥Corresponding author: samatovan@ornl.gov

1 This research has been supported by the "Exploratory Data Intensive Computing for Complex Biological Systems" project from U.S.
Department of Energy (Office of Advanced Scientific Computing Research, Office of Science). The work of NFS was also sponsored by the
Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-
Battelle for the LLC U.S. D.O.E. under contract no. DEAC05-00OR22725.

Abstract

Data-driven modeling of biological systems such as protein-
protein interaction networks is data-intensive and
combinatorially challenging. Backtracking can constrain a
combinatorial search space. Yet, its recursive nature,
exacerbated by data-intensity, limits its applicability for
large-scale systems. Parallel, scalable, and memory-efficient
backtracking is a promising approach. Parallel backtracking
suffers from unbalanced loads. Load rebalancing via
synchronization and data movement is prohibitively
expensive. Balancing these discrepancies, while minimizing
end-to-end execution time and memory requirements, is
desirable. This paper introduces such a framework. Its
scalability and efficiency, demonstrated on the maximal
clique enumeration problem, are attributed to the proposed:
(a) representation of search tree decomposition to enable
parallelization; (b) depth-first parallel search to minimize
memory requirement; (c) least stringent synchronization to
minimize data movement; and (d) on-demand work stealing
with stack splitting to minimize processors’ idle time. The
applications of this framework to real biological problems
related to bioethanol production are discussed.

1. Introduction

Biological systems are inherently complex. This
complexity arises from nonlinear interconnections of
their functionally diverse components to produce a
coherent behavior. While analytical tools that derive
the components from high-throughput experimental
data significantly reduce the amount of data to be dealt
with, the challenge still remains of how to “connect the
dots,” that is, to construct predictive in silico models of
these biological systems. The combinatorial space of
feasible models is enormous, and advanced methods
for constraining such a space and for efficient search of
optimal solutions are in great demand.

Data-driven construction of predictive biological
models is, thus, often considered as a combinatorial
optimization problem, where a search for a particular
object or enumeration of all the objects with given
properties is being sought. The data-intensive nature of
this problem, however, makes existing methods fail to
meet the required scale of data size, heterogeneity, and
dimensionality. High-end computing hardware and
software have been well configured for running
simulations. Fundamental differences exist, however,
between running simulations and building data-driven
biological models (Figure 1). Such differences
necessitate novel algorithms with the right mix of
memory, disk, and communication trade-offs.
Requirements and trade-off strategies for real
biological systems are poorly understood.

Exact combinatorial algorithms for biological
systems frequently explore the search space
recursively. Since input is typically huge (thousands or
millions of nodes), it should not be copied
indiscriminately in a recursive process. Storage
demands are often enormous and memory management

Figure 1. Data access in running simulations and
in building biological models.

is critical. Enumeration problems (such as maximal
clique enumeration, MCE) can generate output
exponential with the input, and may reach petabyte
scale on modest-sized problems.

Backtracking [1] is a widely used recursive strategy.
Unlike exhaustive search, backtracking avoids
exploring unpromising paths by applying the specific
property of the sought solution. In case of MCE, the
completeness of the clique is the constraining property.
All possible paths that backtracking can explore are
represented as a tree, which we call search tree. A path
(from the root) in the tree corresponds to a sought
solution (e.g. clique), and the tree is expanded during
traversal. Backtracking stops path expansion and
backtracks to its previous level, if no further expansion
in the current direction leads to feasible solutions (e.g.
cliques). A search tree can be split into a number of
disjoint sub-trees, which can be recursively split and
independently explored.

Parallelization of backtracking requires special
attention to load-balancing. Although some strategies
(e.g. breadth-first traversal) may seem embarrassingly
parallelizable, they inherently suffer from extremely
unbalanced loads. A search tree may grow highly
irregular and practically impossible to predict a priori.
This prohibits adapting static allocation strategies with
which many processors may finish exploring their
search trees quickly, while very few, “unlucky” ones,
would still be struggling to expand their search trees.
Load rebalancing via synchronization and data
movement sounds promising, but for data-intensive
applications it is often prohibitively expensive.
Therefore, a highly tailored strategy that minimizes the
end-to-end execution time by balancing these
discrepancies is particularly desirable.

Parallel backtracking can expand paths in search
tree by either Breadth First Search (BFS) or Depth
First Search (DFS). With BFS, coordinating the overall
computation across the processors is straightforward, if
each processor is enforced to expand all paths to the
same level of the search tree. However, this requires
storing all the search nodes at a given level in core
memory. Memory requirements depend on the width of
the search tree. In contrast, with DFS only information
about search nodes along the path from the current
search node to the root of the search tree should be
stored (Figure 2). Memory requirements depend on the
height of the search tree. For problems, like MCE,
there is a large degree of branching in the search tree
(i.e. huge width), yet the height is bounded by the size
of the maximum clique. Since input can be huge, fast
and memory efficient parallel backtracking is needed.

An elegant data structure that represents a
decomposable task is crucial in parallel backtracking.
For MCE, such a structure corresponds to an

expandable node in a search tree. Such a structure
needs to be stored in memory for continuation of the
search, and exchanged between processors for load
balancing. Hence, to minimize memory and to ensure a
self-guided node expansion when migrated to a
different processor, a compact and self-subsistent
representation of decomposition at any level of the
search tree should be devised.

Based on these observations, this paper introduces a
framework for parallelizing a backtracking strategy. It
applies this strategy to the maximal clique enumeration
(MCE) problem. The framework proposes the
independent (from other search steps) and self-
sufficient (for further search tree expansion)
representation of search tree decomposition called
candidate path to distribute the work of the
backtracking search among the processors. It adopts
Depth First Search (DFS) strategy to minimize
memory requirements. It also utilizes the least stringent
synchronization scheme; each processor continues to
explore its regions in the search tree without
intervention. For load balancing, the framework
exploits random work stealing and stack splitting;
when a processor becomes idle, it fetches an
unexpanded (unexplored) node from a randomly
selected processor. The parallelization framework is
scalable for random and real-world biological graphs.

2. Background

The rest of the paper is largely focused on a
representative combinatorial enumeration problem,
called maximal clique enumeration (MCE) in graphs,
which is quite ubiquitous in biological applications.
NP-hard nature of MCE limits the applicability of
existing MCE algorithms to large-scale biological
problems. High-performance parallel MCE algorithms
that scale to real biological problems are the focus of
this study. While specific to MCE, the results of this
paper can be adopted to other combinatorial
enumeration problems on graphs.

a

c

e d

b

Figure 2. An input graph (Left) and corresponding
search tree (Right) produced by BK-Base. Dotted
lines in the search tree represent unexpanded paths
due to the backtracking criterion of BK-Base.

a c e d b

/

c b

d

e

d

e d

e

A quick overview of the backtracking MCE by
Bron and Kerbosh [2] (thus dubbed as BK) is presented
here to highlight the properties that need to be
incorporated into our parallelization framework. BK is
the most efficient and widely accepted MCE algorithm
among many others; it is used as the core in our
parallelization framework. BK effectively avoids
redundant branching by keeping an order among
“eligible” vertices when expanding a path in a search
tree.

A maximal clique in a graph can be found by
visiting and marking a set of vertices that are all pair-
wise connected. Since a vertex in a graph can be
visited via different search paths, it can appear as
different nodes in the search tree. A path is expanded
to include a vertex that is connected to all vertices in
the path (i.e., a common neighbor) to maintain the
property of a clique. A path to a leaf node is potentially
a maximal clique. It is important to identify leaf nodes
as early as possible so that unnecessary expansion can
be avoided. Backtracking expands a search tree (or
branched) with some extra constraints (or bounded) in
addition to the common neighbor criterion.

Let us assume that a search node has k children
representing the eligible (common neighbors) vertices
v1, v2, v3, …, vk from which to expand the path P
leading to the search node. Then P can be expanded
into k paths, P1,…, Pk so that each path includes the
corresponding vi. BK prevents appearances of vi in any
of Pj (i<j) and its future expanded paths. BK
backtracks after expanding Pi, if vi is a common
neighbor to all subsequent vj-s (i<j). In other words,
expansions to the rest Pi-s are not necessary. Not only
redundant branching is avoided, but also a sorted
output is produced. Figure 2 pictorially illustrates this
backtracking behavior of BK. An improved version of
BK, called BK-Improved, improves the performance of
the base BK (BK-Base) by dynamically identifying the
most suitable ordering in expanding each path. It first
expands the child that is connected to the largest
number of other children and then expands each of the
children that are not adjacent to this child. This insures
that the condition to stop expanding children nodes is
reached by expanding the fewest children possible.

3. Related Work

Our previously developed pClique [12], the first
(and only so-far existing) parallel MCE algorithm,
extends the algorithm of Kose et al [13] (dubbed as
KOSE). In principle, KOSE is identical in spirit to BK-
Base; it branches with the alphanumerically ordering.
However, whereas BK is recursive with DFS

branching, KOSE is serial BFS branching. This
property allows cliques of size k to be generated from
cliques of size k-1, similar to an association rule
mining algorithm a priori [14]. All maximal cliques
are produced in non-decreasing order, an invaluable
asset to certain applications. BFS branching inevitably
makes KOSE memory-intensive. Although pClique
improves KOSE by bit-vector manipulation of
common neighbors, huge memory requirements
remain. This limits its applicability to small size graphs
(~5,000 vertices, <10,000 edges).

4. Method

Most backtracking enumeration algorithms are
recursive, thus are not readily suitable for
parallelization. Their parallelization requires
converting a recursive step into a sequential version
such that each recursion step becomes independent on
previous steps. Such a “sequentialization” should result
in memory manipulation that will substitute system
stack operations. What is needed is a self-sufficient
decomposition of the search tree that makes each
expansion (or backtracking) of the search tree
independent of information about previous searches.
We first propose a sequentialization of recursive
backtracking that leads to an independent
decomposition of the backtracking search tree, and
illustrate its BFS- and DFS-based implementations in
the context of the MCE problem. We then devise a
parallel framework based on this decomposition.

4.1. Independent Search Tree Decomposition

When recursive backtracking expands a search path
at a certain node, all information needed for expansion
(or backtracking) is stored in the system stack. It is
stored and retrieved following the Last In First Out
(LIFO) order. Since a sequential algorithm does not
operate on such a system stack, all information should
be supplied during the expansion regardless of the
order of expansion steps. This necessitates a
representation of such information for expansion.

For MCE, our devised representation embeds:
• The clique represented by the path from the root

to the current node in the search tree.
• All eligible vertices for the path (i.e. common

neighbors for all the nodes in the above clique).
• Vertices covered earlier in expanding the parent

path (to avoid redundant coverage).
We dub a data structure that includes all these

information as a candidate path. It is of order k if the
clique represented by the path is of size k.

Parallel-Backtracking-Clique-Enumeration
 1. Each processor starts with a set of order one candidate

paths that are stored in the queue.
 2. Retrieve a candidate path Ci from the queue.
 3. If queue is empty
 4. Receive a candidate path from an arbitrarily chosen

processor and put it into the queue.
 5. If no path is received after some trials
 6. Go to Step 16
 8. Go to Step 2.
10. Expand Ci to generate candidate paths Cj-s at the next

level.
11. For each Cj
12. Print out Cj if it is maximal.
13. Otherwise, put Cj at the tail of the queue.
15. Go to Step 2.
16. Halt.

Figure 4. Parallel branch and bound MCE.
Parallel CBF (pCBF) and CDF (pCDF) are
different in retrieving a candidate path from the
queue (Step 2).

4.2. BFS- and DFS-based Sequentialization of
Recursive Backtracking MCE

Since a candidate path is sufficient for further
expanding the path, the sequential enumeration is not
affected by the order these candidate paths are stored
and retrieved. Breadth-first or depth-first based
sequential versions can be implemented by employing
different strategies in storing and retrieving candidate
paths in a given memory queue – First In First Out
(FIFO) for BFS and Last In First Out (LIFO) for DFS.

We call the BFS-based BK-Improved as Breadth
First Clique (BFC) and the DFS-based BK-Improved
as Depth First Clique (DFC). An algorithmic
description is shown in Figure 3.

4.3. Parallelization of BFC and DFC with
Dynamic Load Balancing

Parallelization of a backtracking MCE is based on
the idea of “dynamic search tree decomposition.” Each
search tree region is assigned to a processor for further
expansion. The region is the candidate list structure
corresponding to the node at the root of the sub-tree
being assigned. Various assignments are possible
depending on the priority of parallelization schemes. If
fully balanced loads amongst the processors are
desired, a random allocation strategy where every
newly expanded node is assigned to a randomly chosen
processor could be explored. The communication cost
for such a strategy may be overwhelming for large
graphs, considering the possibly enormous number of
candidate paths generated during enumeration.

On the other hand, if only an initial decomposition
of the search tree is done, a processor is responsible for
searching the entire search space of all the sub-trees it
was initially assigned. Because the search tree for BK
is highly irregular, this leads to an extremely
unbalanced load among the processors. It is practically

impossible to predict a priori the size of each sub-tree
and the time required to expand it.

Based on these observations, we choose to adopt a
dynamic load balancing scheme based on the random
stealing [3, 4] with a simplified stack splitting [5].
Since the final size of a sub-tree is difficult to predict,
an initial random assignment of sub-trees to the
processors is deployed. Each processor then continues
on independently until it finishes enumerating all
maximal cliques derived from its assigned sub-trees by
fully expanding its initially assigned candidate paths.
When no more candidate paths exist in the processor's
stack, a processor sends a request to a randomly chosen
processor for a candidate path. If no candidate path is
received after trying all the other processors, the
processor halts. In spite of its simplicity, random
stealing was shown to provide a more scalable solution
to a dynamic load balancing when compared with other
strategies across different hardware architectures [5].

Upon receiving a request, the processor sends a
candidate path of the lowest order from the queue.
Since a candidate path is not yet fully explored, one of
lower order tends to spawn a larger number of higher
order candidate paths. For BFC and DFC, this scheme
is realized by exchanging a candidate path that is
retrieved from the queue head. We implement a
parallel framework for both BFC and DFC by adapting
this simple stack splitting paradigm. Parallel BFC
(pBFC) and DFC (pDFC) are illustrated in Figure 4.

Sequential-Backtracking-Clique-Enumeration
 1. Insert all order one candidate paths in the queue.
 2. While queue is not empty
 3. Retrieve a candidate path Ci from the queue.
 4. Expand Cj to paths Cj -s at the next level.
 5. For each Cj
 6. Print out Cj if it is maximal.
 7. Otherwise, put Cj at the tail of the queue.

Figure 3. A framework of sequential backtracking
MCE. Breadth First Clique (BFC) and Depth First
Clique (DFC) are differ in retrieving a candidate
path from the queue (Step 3). BFC(DFC) retrieves
a candidate path from the queue head(tail).

Figure 5. BFS and DFS MCE memory usage
measured every time 200 new cliques are found.

Memory Usage of BFS and DFS Approaches

0

10000

20000

30000

40000

50000

60000

70000

80000

0
10
00
20
00
30
00
40
00
50
00
60
00
70
00
80
00
90
00

10
00
0

11
00
0

12
00
0

Number of Cliques Generated

BFS

DFS

M
e
m

o
ry

 (
B

y
te

s)

Depth First Search (DFS)

0

2000

4000

6000

8000

10000

12000

14000

16000

2 4 8 16

Number of Processors

Max
Average
Min

M
e
m

o
ry

 (
B

y
te

s)

Figure 6b. Average, minimum, and maximum
memory per processor to finish DFS clique
enumeration (over 10 different runs).

5. Results

This section reports on the scalability of pDFC over
multiple processors using empirical results. Scalability
in terms of both memory requirements and runtime are
discussed. We compare memory requirements of BK-
Improved on a small graph of ~1000 vertices
implemented as a BFS (BFC) and as a DFS (DFC).
We also look at memory distribution in multiple
processors for parallel implementations of these
algorithms (pBFC and pDFC, resp.). Runtime of
pDFC is examined for medium sized dense and large
sized sparse graphs. Runtime of pBFC cannot be
measured due to large memory demands. Both pBFC
and pDFC are shared memory, multithreaded. All
measurements were on an SGI Altix 3700.

5.1. Memory Requirements

Memory requirements of both BFC and DFC
depend on the size of candidate paths that should reside
in memory for the search to continue on. For BFC, all
candidate paths of order k should be accessible to
produce candidate paths of order k+1, and an order k
path can be safely removed once it is expanded. The
BFC memory requirement is bounded by the largest
candidate path set of order k and k+1. For DFC, only
candidate paths generated along the current path need
to be stored in memory. The deepest path of the search
tree bounds the DFC memory requirement.

To empirically verify the observation, we measure
the memory usage of both BFC and DFC clique
enumeration algorithms on a graph that has 858
vertices and 10,823 edges. The graph has a total of
12,631 cliques that contain at least 3 vertices. The
largest clique size is 21. Figure 5 shows the memory
usages of both algorithms that are measured after every
200 new cliques are found during their runs. As

anticipated, the DFC memory usage is high in the
beginning and decreases with some fluctuations as
more cliques are found. In contrast, the BFC memory
usage gradually increases and then decreases forming a
bell shaped curve. In summary, the overall memory
requirement of BFC is much larger than that of DFC.

A memory-efficient parallel algorithm should
distribute memory requirement as evenly as possible
across the participating processors. As shown in Figure
6, for both pBFC and pDFC, average memory
requirement per processor is decreased as more
processors are used. However, unlike in pDFC,
variance in memory requirement per processor is very
wide in pBFC. Typically memory needed to expand
such a large order candidate path is substantially
smaller than that to expand lower order ones. Since
candidate paths of larger order are likely exchanged
with pBFC, Figure 6.a-b empirically verifies this

Breadth First Search (BFS)

0

20000

40000

60000

80000

100000

120000

2 4 8 16

Number of Processors

Max
Average
Min

M
e
m

o
ry

 (
B

y
te

s)

Figure 6a. Average, minimum, and maximum
memory per processor to finish BFS clique
enumeration (over 10 different runs).

Figure 7a. pDFC runtimes for a DIMACS
random graph of 5,000 nodes and 2,496,740 edges.

DIMACS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of Processors

R
u

n
ti

m
e
 (

S
e
co

n
d

s)

Figure 7b. pDFC average, maximum, and
minimum memory requirements across processors.

DIMACS

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

2 4 8 16 32 64 128

Number of Processors

Max
Average
Min

M
e
m

o
ry

 (
B

y
te

s)

observation. Thus memory requirement balancing will
be better achieved with pDFC.

5.2. Scalability

Since pDFC is more memory efficient than pBFC,
pDFC is a better candidate to produce an efficient
scalable parallel algorithm. To test this we study the
scaling of pDFC’s runtime and memory requirements
as the number of processors increases. The results
shown in Figure 7.a-b are produced from pDFC runs
on a dense graph with 5,000 vertices and 2,496,740
edges. The graph is randomly generated according to a
given edge probability (to control graph density) and
maximum clique size. The graph has 1,074,127,772
maximal cliques with the largest clique size of 70.

The runtimes of pDFC on the generated graph for
up-to 128 processors are shown in Figure 7.a. The
runtimes measured did not include the time spent to
read in the input graph and to save the maximal cliques
to secondary devices. As shown in the Figure 7.a, a
near linear speedup is observed for up to 8 processors.
Different initialization schemes and parallel I/O
methods could be used to ensure that this linear

scalability is maintained for large numbers of
processors over the total time of the algorithm, but
those methods are beyond the scope of this paper.

Figure 7.b delineates pDFC’s memory requirement
spread over multiple processors. It shows the
maximum, the average, and the minimum memory
requirement of a processor in each case that involves 1,
2, 4, 8, 16, 32, 64, and 128 processors, respectively.
The memory distribution remains nearly even as up-to
32 processors are used. The memory size for each
processor decreases linearly for up-to 32 processors.

Since many of the graphs derived from real-world
biological problems exhibit a scale-free nature, we
adopted GTgraph (http://www-static.cc.gatech.edu/
~kamesh/GTgraph/) to generate a scale free real-world
type graph of 100,000 vertices, 2,000,000 edges, and
504,976 maximal cliques. The generation of the graph
is based on R-MAT [6]. In addition, we considered a
real-world phenotypic gene network derived for 80
genomes as described in Section 5.3. The edge degree
distribution of vertices for this phenotypic graph
exhibits a scale-free property (i.e., embeds a power law
distribution). The graph had 193,568 vertices,
2,260,872 edges, and 395,306 maximal cliques.

As can be seen from Figure 9, the speedup for the
pDFC algorithm when run on these scale-free graphs
was nearly linear for 2, 4, and 8 processors. Also, the
memory requirements per processor were found to be
highly scalable and relatively balanced (Figure 8).

5.3 Application of pDFC to Bioethanol-Related
Biological Problems

5.3.1 Identifying Key Genes for Efficient Bioethanol
Production. Efficient production of ethanol from
biomass using a bacterial consortium requires certain
phenotypic traits be present in the microorganisms.
The beneficial traits include the ability to metabolize
different sugars found in biomass, resistance to ethanol
in the environment, and facultative anaerobic
respiration. It is thus important to link desirable
microbial traits with specific genes that are likely to be
important for these traits. To predict such bioethanol-
related genes, we divide the organisms according to the
presence or absence of a trait and to search for genes
that are dominant on one side of the divide but not the
other. The underlying intuition is that if a gene were
critical to a trait, then it would be conserved by
evolution. Hence, genes that are crucial to the trait will
cluster, or form a clique, on one side of the divide. The
problem can then be formulated as the one of finding
maximal cliques of genes conserved throughout
evolution among the organisms possessing a trait.

Due to a limited availability of sequenced genomes
with characterized phenotypic traits, we initially

Figure 8a. Minimum, maximum, and average
memory requirements per processor with respect
to a total number processors involved. Run for
phenotypic network of 80 genomes

Min, Max, and Average Memory Requirement

0

5000000

10000000

15000000

20000000

25000000

1 2 4 8 16 32 64 128 244

Number of Processors

min
max
avg

M
e
m

o
ry

 (
B

y
te

s)

Min, Max, and Average Memory Requirements

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 2 4 8 16 32 64

Number of Processors

Min
Max
Average

M
e
m

o
ry

 (
B

y
te

s)

Figure 8b. Minimum, maximum, and average
memory requirements per processor with respect
to a total number processors involved. Run for
synthetic graph by GTgraph.

focused on aerobic (growing with oxygen) versus
anaerobic (growing without oxygen) comparison to
reveal this phenotype specific orthologous genes. The
details of this study and biological findings are
presented elsewhere. Here, we used the phenotypic
gene graphs derived from various genomes used in that
study to understand computational resource
requirements for enumeration of all maximal cliques in
such graphs. The size of a graph will grow
substantially as more genomes are added (each
microbial genome has about 4,000 genes). To estimate
the requirements to finish the job within the allowable
time, we first selected 10 genomes from each
phenotypic group (i.e. 20 in total) and constructed a
graph. Subsequently, we repeatedly selected 10
additional genomes from each group, creating the
graphs of 40, 60, and 80 genomes. From the four
graphs thus created, we measured the growths of (1)
the number of genes, (2) the number of edges, (3) the
number of cliques, and (4) memory requirement. For
these cases, the number of genes, the number of edges,
and the memory requirement grow linearly, whereas
the number of cliques grows quadratically with the
number of genomes.

5.3.2. Characterizing a Stress Related Gene
Network of Ethanol Producing Yeast. Ethanol is
produced from the fermentation of sugar by yeast. In
general, to enhance the productivity of bioethanol by
yeast, thermochemical pretreatment of plant material is
applied, which results in high concentration of toxic
non-sugar constituents. Such changes in the
hydrolysate make yeast exposed to a mixed and
interrelated group of different stresses such as osmotic,
oxidative, and thermic [7]. These stressful conditions,
in combination, significantly impair the fermentative
process and make yeast less tolerant to ethanol.
Currently, factors that may enhance stress resistance of

the yeast cells without affecting their growth are poorly
understood [8].

Objectives of our study were (1) to identify cellular
processes in yeast that are consistently co-regulated in
response to different stresses and (2) to sift specific
genes that might increase the tolerance level of yeast to
ethanol under stressful conditions. For this, we first
construct a gene network induced by the stresses and
infer related cellular processes. More specifically, we
use the gene expression profiles of the S. cerecisae in
173 conditions that represent response of the yeast
cells to environmental changes (heat and osmotic
stress, nutrient and carbon starvation, stationary state).
For more details of the data, refer to [9]. The stress-
induced gene network was built by selecting gene pairs
with similar expression patterns across the conditions.
Nodes in the network are genes and edges are drawn
between genes with similar expression profiles. We
then apply pDFC to find all maximal cliques in the
network. To infer meaningful clusters of co-regulated
genes, we applied a stringent post-processing step that
iteratively merges highly overlapping cliques, and
produces a reduced number of clusters.

We have analyzed the biological processes
represented by the gene clusters using the KEGG
pathway information on S. cerecisae and GO
information downloaded from the Saccharomyces
Genome Database (SGD) (http://www.yeastgenome
.org). Here we report 7 confirmed clusters: chaperone
related genes, ribosome and translation, L-asparaginase
II, oxidative phosphorylation enzymes, retrotransposon
TYA Gag and TYB Pol genes, stress-induced
enzymes, TCA cycle enzymes and transporters. All
other genes are up-regulated. The largest cluster
(ribosome and translation), which is suppressed by all
stresses, represents cellular processes of the ribosome
biogenesis, tRNA processing and protein translation.
The rest clusters represent specific cellular processes

generally activated by the studied stressful
environments [10]. We then compared the set of
ethanol-tolerance genes identified in a previous study
[11], with genes in the clusters revealed by our study.
We find that the first cluster referred to as “Ribosome
and translation” includes two genes FEN1 (fatty acid
elongase required for sphingolipid formation) and
SUR4 (sterol isomerase, fatty acid elongase) that are
essential for growth of S. cerevisiae under high ethanol
concentration. Average down-regulation of these genes
among 173 stressful conditions was 77% for SUR4 and
51% for FEN1. This decrease in the expression is the
greatest if compared with 1 - 29% decrease among the
rest down-regulated genes required for ethanol
tolerance. This indicates that a shortage of these
enzymes may have a crucial effect on sensitivity of
yeast to ethanol. Clustering SUR4 and FEN1 with the
ribosome biogenesis and translation related genes
shows that down-regulation of both enzymes and the
resulting ethanol sensitivity may be a part of the
general stress response program in yeast. Both
processes are co-regulating; therefore a decreased
production of the enzymes, important for ethanol
tolerance, may inevitably follow any stressful
conditions in the yeast environment.

6. References

[1] G. Brassard and P. Brately, Fundamentals of
Algorithmics, Prentice Hall, 1996.

[2] C. Bron and J. Kerbosch, Algorithm 457: finding all
cliques of an undirected graph, Commun. ACM, vol.
16, pp. 575-577, 1973.

[3] A. A. Umut, E. B. Guy, and D. B. Robert, The data
locality of work stealing, The 12th annual ACM
symposium on Parallel algorithms and architectures,
Bar Harbor, Maine, 2000.

[4] J. Joxan, E. S. Andrew, H. C. Y. Roland, and Q. Z.
Kenny, Scalable distributed depth-first search with
greedy work stealing, The 16th IEEE International
Conference on Tools with Artificial Intelligence
(ICTAI'04), 2004.

[5] K. Vipin, Y. G. Ananth, and V. Nageshwara Rao,
Scalable load balancing techniques for parallel
computers, J. Parallel Distrib. Comput., vol. 22, pp.
60-79, 1994.

[6] D. Chakrabarti, Y. Zhan, and Christos Faloutsos, R-
MAT: A recursive model for graph mining, SIAM
Intern'l Conference on Data Mining, 2004.

[7] R. Pérez-Torrado, J. M. Bruno-Bárcena, and E.
Matallana, Monitoring stress-related genes during the
process of biomass propagation of Saccharomyces
cerevisiae strains used for wine making, Appl Environ
Microbiol, vol. 71, pp. 6831-6837, 2005.

[8] M. Versele, J. M. Thevelein, and P. V. Dijck, The high
general stress resistance of the Saccharomyces
cerevisiae fil1adenylate cyclase mutant (Cyr1
Lys1682) is only partially dependent on trehalose,
Hsp104 and overexpression of Msn2/4-regulated
genes, Yeast, vol. 21, pp. 75-86, 2004.

[9] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-
Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O.
Brown, Genomic expression programs in the response
of yeast cells to environmental changes, Mol. Biol.
Cell, vol. 11, pp. 4241-4257, 2000.

[10] P. G. Audrey and W.-W. Margaret, The genomics of
yeast responses to environmental stress and starvation,
Functional & Integrative Genomics, vol. 2, pp. 181-
192, 2002.

[11] F. van Voorst F, J.L Houghton-Larsen, M.C. Kielland-
Brandt, A. Brandt, Genome-wide identification of
genes required for growth of Saccharomyces cerevisiae
under ethanol stress, Yeast, vol. 23, pp. 351-359, 2006.

[12] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J.
Chesler, M. A. Langston, and N. F. Samatova,
Genome-scale computational approaches to memory-
intensive applications in systems biology, The 2005
ACM/IEEE conference on Supercomputing: IEEE
Computer Society, 2005.

[13] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn,
Visualizing plant metabolomic correlation networks
using clique-metabolite matrices, Bioinformatics, vol.
17, pp. 1198-1208, 2001.

[14] R. Agrawal and R. Srikant, Fast algorithms for mining
association rules, The 20th Intern'l Conference on Very
Large Data Bases (VLDB), pp. 487--499, 1994.

Run Times with Different Processors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32 64 128 244

Number of Processors

R
u

n
ti

m
e
 (

S
e
co

n
d

s)

Figure 9. Run times with respect to a total
number of processors.

