
Phylospaces: Reconstructing Evolutionary Trees in Tuple Space

Marc L. Smith1 and Tiffani L. Williams2

1Colby College 2Texas A&M University
Department of Computer Science Department of Computer Science
Waterville, ME 04901-8858 USA College Station, TX 77843-3112 USA

mlsmith@colby.edu tlw@cs.tamu.edu

Abstract

Phylospaces is a novel framework for reconstructing
evolutionary trees in tuple space, a distributed shared mem-
ory that permits processes to communicate and coordinate
with each other. Our choice of tuple space as a concur-
rency model is somewhat unusual, given the prominence
and success of pure message passing models, such as MPI.
We use Phylospaces to devise Cooperative Rec-I-DCM3, a
population-based strategy for navigating tree space. Coop-
erative Rec-I-DCM3 is based on Rec-I-DCM3, the fastest
sequential algorithm under maximum parsimony. We com-
pare the performance of the algorithms on two datasets con-
sisting of 2,000 and 7,769 taxa, respectively. Our results
demonstrate that Cooperative Rec-I-DCM3 outperforms its
sequential counterpart by at least an order of magnitude.

1 Introduction

Phylospaces is a novel framework that significantly im-
proves the performance of existing phylogenetic methods
by employing the power of cooperation. A phylogeny is an
evolutionary tree that attempts to relate the common ances-
try of a set of organisms, or taxa. In such a tree, the taxa
occupy the leaf nodes, and the branches and interior nodes
represent the relationships between the taxa. It is impossible
to know the true evolutionary history for a given set of taxa.
Moreover, for n taxa, there are (2n− 5)!! hypotheses (i.e.,
unrooted binary trees) that could explain the evolutionary
history of these organisms.
The most popular approaches for inferring phylogenies

use NP-hard optimization criteria such as maximum like-
lihood (ML) and maximum parsimony (MP). Phylogenetic
heuristics try to find the best trees, based on an optimiza-
tion criterion, and and a strategy for exploring the search
space. Most implementations of phylogenetic heuristics

are sequential; most parallel phylogenetic methods focus
on ML techniques. Within Phylospaces, we designed Co-
operative Rec-I-DCM3 [17], a parallelized version of Rec-
I-DCM3 [13], the best-performing MP heuristic for phy-
logeny reconstruction. Maximum parsimony is an opti-
mization criterion based on Occam’s Razor, so named for
William of Occam. Applied to scientific theories, Occam’s
Razor is also called the principle of parsimony. This princi-
ple advises us to choose the simplest explanation for a phe-
nomenon. Applied to phylogenies, for a given set of taxa,
the evolutionary tree(s) with the least number of changes
(mutations) among the taxa are considered to be the most
accurate.
We compared the performance of Rec-I-DCM3 and Co-

operative Rec-I-DCM3 on two datasets consisting of 2,000
and 7,769 taxa. In our experiments, Cooperative Rec-I-
DCM3 demonstrated a consistent and dramatic improve-
ment in performance over its sequential counterpart, Rec-
I-DCM3. We chose Rec-I-DCM3 as a basis for comparison
because we were curious if it would be possible to improve
upon the best established MP heuristic. Our experiments
with Cooperative Rec-I-DCM3 showed improvement by at
least an order of magnitude to best-known MP scores.
The reason for Cooperative Rec-I-DCM3’s success is the

cooperation supported by the Phylospaces framework. Co-
operative Rec-I-DCM3 is a population-based strategy that
emerged from the authors’ respective visions regarding co-
operation, and after considering different approaches to par-
allelism. One goal was to leverage the power of cluster
computing with existing phylogenetic heuristics by main-
taining a diverse population of trees (i.e., a tree pool) that
could be refined over successive iterations by multiple in-
stances of some existing sequential heuristic. The nature of
the task and the tree pool caused us to consider several pos-
sible parallel and distributed computing approaches. In the
remainder of this section, we describe what led us to choose
Tuple Space, a distributed shared memory model.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Tuple space is part of a very different model of con-
currency, named Linda [6] . The Linda model is not pre-
cisely shared memory, nor is it exactly a message passing
model. Linda is a hybrid model of concurrency, dubbed
by its creator, David Gelernter, as generative communica-
tion. The role tuple space plays in the Linda model is
that of a distributed, shared memory. It turns out that tu-
ple space is a very natural and convenient environment for
implementing Phylospaces. The thought of implementing
a tree pool among processes through message passing was
distracting, while the possibility of running our experiments
on a shared memory multiprocessor was cost prohibitive.
The distributed shared memory model supported by Linda
and tuple space was the ideal compromise, and permitted
us to build and run our experiments on low-cost commodity
clusters.
We take a cooperative approach to developing parallel al-

gorithms for phylogenetics. Although most of the attention
has been given to ML [3, 5, 9, 10, 15], there are a few paral-
lel algorithms for MP [2, 4]. Without the help of paralleliza-
tion, ML approaches are extremely slow, limiting their use
to small problems. The ML estimate of a phylogeny is the
tree for which the observed data are most probable. Many
biologists prefer ML since it is statistically well-founded,
possibly producing the most accurate phylogenetic trees.
However, many biologists prefer MP approaches and be-
lieve in the accuracy of the resulting trees.

2 Linda and Tuple Space

The Linda model [6] is a model of concurrency based
on a distributed shared memory, known as tuple space,
and the process coordination language Linda. Models of
concurrency—including parallel and distributed—typically
fall into one of two main categories: shared memory and
message passing. Linda’s unusual properties, however,
don’t permit such ready classification. According to Gel-
ernter, the Linda model is an example of a new category of
concurrency that he dubbed generative communication.

2.1 Generative Communication

Generative communication exhibits what Gelernter
called communication orthogonality—communications that
are decoupled in three dimensions: destination, space, and
time. Destination decoupling refers to communications
with anonymous senders and receivers. Senders don’t know
who will receive their messages, and receivers don’t know
who produced the information they receive. Space decou-
pling refers to communication heterogeneity, or architecture
independence among communicating processes. Because
tuple space is an associative memory, tuples have no notion
of an address in memory—they are matched based on the

("array", "primes", 0, 2)
("array", "primes", 1, 3)

("array", "primes", 2, 5)

("array", "primes", 3, prime(3))

("array", "primes", 4, prime(4))

P1

P2 P3

P4

rd("maxprimes", ?val)

in("array", "primes", ?int, ?int) eval("array", "primes", 4, prime(4))

("array", "primes", "nextindex", 5)

out("array", "primes", "nextindex", 5)

("maxprimes", 100)

Figure 1. Linda processes interacting in Tu-
ple Space.

sequence and types of the data they contain. Thus, there are
no pointers, which tend not to be portable across computer
architectures.
Time decoupling refers to the ability of processes to

communicate with one another, even if they do not execute
at the same time. A process generates data (hence, genera-
tive communication) and places it in tuple space with one of
the Linda primitives. The process that eventually consumes
this data need not yet exist at the time the data is produced.
A process that wishes to consume data does so by matching
a tuple in tuple space with one of the Linda primitives. The
process that produced the tuple it matches may long since
have ceased to exist!
Collectively, communication orthogonality means that

processes unknown to each other, running at different times
on different computer architectures, may communicate with
one another. Designing a concurrent system using the Linda
model leads to loosely coupled systems, which tend to be
maintainable and extensible over time. For example, Linda-
based programs are largely shielded from changes in hard-
ware, operating systems, network topology, and even pro-
gramming languages.

2.2 Linda Primitives

Linda is an elegant process coordination language con-
sisting of four primitive operations on tuple space: rd(),
in(), out(), and eval(). As a coordination language, Linda
is intended to augment existing sequential computational
languages, such as C, Fortran, and Java. For example, C-
Linda is the C language augmented with the Linda prim-
itives. Using C-Linda, a programmer can compose pro-

grams consisting of multiple concurrent processes. These
processes communicate and coordinate with one another
through the medium of tuple space, using nothingmore than
the four Linda primitives. We refer to Figure 1 in the fol-
lowing description of Linda primitives and tuple space.
Figure 1 depicts tuple space as a cloud. Four processes

(P1, P2, P3, and P4) surround the cloud, which in turn en-
velopes a number of tuples. As the naming suggests, tu-
ples are the natural elements of tuple space. A tuple is an
ordered sequence of typed values, or value-yielding com-
putations. Tuples in Figure 1 are represented by parenthe-
sized lists of values, delimited by commas. It is sometimes
convenient to refer to the values of a tuple by the field in
which it resides. For example, (”maxprimes”,100) is a tu-
ple consisting of two fields, the first of which contains a
string of characters (a variable name), the second contains
an integer (the variable’s corresponding value). A value-
yielding computation is represented by a function call, indi-
cating a value still being computed. For example, the tuple
(”array”,”primes”,3,prime(3)) is a tuple consisting of four
fields; the first two fields contain strings (indicating an array
type, and name of array), the third field contains an integer
value (array index), and the fourth will contain the result of
computing prime(3) (the value to be stored in index loca-
tion 3). The tuples in Figure 1 represent an example of a
distributed data structure, an array.
Tuples that contain one or more value-yielding compu-

tations are considered active; tuples whose values have all
been computed are considered passive. Only passive tu-
ples are visible in tuple space—eligible for matching by
other Linda processes. Active tuples become passive once
the last value-yielding computation in one of its fields has
been computed. The primitives eval() and out() are asyn-
chronous (non-blocking) and permit processes to place ac-
tive and passive tuples, respectively, in tuple space. Thus,
eval() is used to create new Linda processes, since Linda
processes are value-yielding computations. The primitives
rd() and in() are synchronous (blocking) and attempt to
match, then copy or remove passive tuples, respectively,
from tuple space. If no match is found in tuple space, the
Linda process issuing rd() or in() blocks until a match ex-
ists.
Sources of nondeterminism should be mentioned. Non-

determinism is a natural consequence of parallel and dis-
tributed computation. The careful reader may notice that
P2’s in() operation might match one of a number of possi-
ble tuples in tuple space. In fact, the tuple that is matched is
nondeterministic. In this example, the operation could have
matched any of the three tuples with ”array” as the first field,
”primes” as the second field, and an integer in the third and
fourth fields (e.g., (”array”, ”primes”, 1, 3)). One additional
source of nondeterminism not depicted in Figure 1 involves
two or more Linda processes attempting to match the same

tuple at the same time. In this case, it would be nondeter-
ministic which one succeeds.

3 Evolutionary Trees and Tuple Space

Phylospaces is a new infrastructure for reconstructing
phylogenetic trees quickly and accurately. It’s novelty lies
in using tuple space as a vehicle for phylogenetic methods
to share their results with each other. The remainder of this
section describes Phylospaces along with a description of
Cooperative Rec-I-DCM3 [17], our first cooperative algo-
rithm implemented within the Phylospaces framework.

3.1 Phylospaces

An algorithm within Phylospaces consists of the follow-
ing steps.

1. Create a population of µ initial tree solutions.
2. For each of the µ trees, run a phylogenetic heuristic of
choice.

3. Create a new tree population by performing selection
and recombination on the trees from step 2.

4. Repeat steps 2 and 3 for the desired number of itera-
tions.

Figure 2 provides an illustration of an iteration in Phy-
lospaces. Here, the size of the population (or µ) is four.
Each solution is represented by a tuple with three fields: a
tag name, tree identifier, and tree score. Hence, the starting
tree pool consists of the trees t1,t2,t3, and t4 and their corre-
sponding scores of 39, 35, 40, and 42. The iteration begins
by applying a phylogenetic local search heuristic to each
solution in the starting tree pool. Since Phylospaces is writ-
ten for a parallel and distributed environment, the µ local
searches can be performed concurrently. Hence, each local
search is executed by an lsearch worker, who retrieves a
tree from the starting tree pool using the in() operation. Af-
terwards, the resulting tree from the local search is placed
into tuple space with an out() operation. The local search
heuristic may not improve the score of the tree it receives.
In Figure 2 the scores for t1,t2, and t2, are not improved
during the local search phase. In the case of t4, the score is
actually worse.
The merger phase begins by collecting all of the re-

sults obtained from the local search phase. Here, a merger
worker employs a selection and recombination scheme to
the population of trees in the local search tree pool. In Fig-
ure 2, t1 and t2 have been selected to appear in the final tree
pool without any further modifications, whereas trees t 3 and
t4 will be replaced by new trees formed by recombining sub-
trees into a single tree. In our example, t3 will be replaced
by the recombination of trees t2 and t4 (i.e., t2◦t4), and t2◦t4

merger:
selection and
recombination

lsearch[i]:
in("tree", ...)
local search
out("tree", ...)

Tuple Space
(starting tree pool)

("tree", t1, 39)

("tree", t2, 35)

("tree", t3, 40)

("tree", t4, 42)

("lsearch", t3, 39)

("lsearch", t4, 47)

("lsearch", t1, 39)

("lsearch", t2, 35)

Tuple Space
(local search tree pool)

("tree", t2!t4, 50)

("tree", t1!t3, 48)

("tree", t1, 39)

("tree", t2, 35)

Tuple Space
(merged tree pool)

1 1 4 4

Figure 2. One iteration of the cooperative algorithm used by Phylospaces. The number of solutions
(or µ) in tuple space is four. We also assume that the number of lsearch workers is four. Hence,
each phylogenetic heuristic is responsible for processing one tree. The merger worker performs
selection and recombination on the population of trees from the local search phase, which results
in the merged tree pool. The recombination of two trees is represented by the composition operator
(◦). Thus, in the final population one tree is the result of the recombination of t1 and t4. The other
tree results from the recombination of t1 and t3.

replaces t4. Once the merging phase is finished, an iteration
in Phylospaces is complete.
Although Figure 2 shows that each lsearch worker

is responsible for only one tree, it can handle situations
where the number of trees (µ) is greater than the number
of lsearch processes (p). In such cases, each lsearch
worker will receive µ

p trees from the tree pool. However,
there is only one merger worker in Phylospaces who is re-
sponsible for selection and recombination. Future modifi-
cations will accommodate the parallelization of the merging
phase.

Implementation: Besides one merger and p lsearch
workers, there is also one startup and p seed workers.
Each seed worker is responsible for creating µ

p initial trees
using any method of choice. For those familiar with the
master-worker paradigm, startup acts as the master pro-
cess. It is responsible for overseeing computation within
Phylospaces. Hence, startup initiates the execution of the
other workers (i.e., seed, lsearch, merger) by using the
eval() operation.

3.2 Cooperative Rec-I-DCM3

Phylospaces presents a general model for expressing
cooperative phylogenetic heuristics. We explore the per-
formance of Rec-I-DCM3 [12]—the best-performing MP
heuristic to-date—within our cooperative framework. We
call our new algorithm Cooperative Rec-I-DCM3 [17].
Experimental results show that Rec-I-DCM3 outperforms
PAUP [16] and TNT [7] by at least an order of magnitude.

Rec-I-DCM3 comes from a family of Disk-Covering Meth-
ods (DCMs) [8, 11, 13] that have been successfully applied
to reconstructing phylogenetic trees quickly and accurately.
Collectively, DCMs are an example of divide-and-

conquer algorithms that consist of four main stages: (i) de-
composing the original dataset into subproblems, (ii) solv-
ing each of the subproblems with a base method of choice,
(iii) merging the subproblems into a single solution on the
original dataset, and (iv) refining the merged tree into a bi-
nary tree. Rec-I-DCM3 combines both recursion and it-
eration to provide a powerful technique for searching tree
space. The recursive application of the decomposition step
produces smaller and smaller subproblems until every sub-
problem is small enough to be solved directly. Once the
dataset is decomposed into overlapping subsets, subtrees
are constructed for each subset and combined using the
Strict Consensus Merger [8] to produce a tree on the com-
bined dataset.
In Cooperative Rec-I-DCM3, each lsearch worker uses

the Rec-I-DCM3 algorithm as its local search algorithm.
The selection and recombination algorithm employed by
the merger worker is as follows. For selection, the µ trees
from step 2 are ranked based on their MP scores, with the
best scoring MP tree having the best rank. Next, the trees
are placed into sets (A,B, and C) based on their rank. The
algorithm also keeps a list of elite solutions (i.e, the best
trees found so far). These elite trees are placed into set A;
top-ranking trees from step 2 are placed into set B. The re-
maining lower-ranking trees are put into set C. These trees
comprise the new population that is subjected to recombi-
nation.

Trees in set C may be recombined with trees in A∪B to
create new (and more diverse) solutions. If t ∈C is chosen
for recombination, it will be replaced by the resulting tree
from the recombination phase. For each tree t ∈ C, there
is a p% chance that it will undergo recombination with a
random tree t ′ ∈ A∪B. (In our experiments, p = 20%.) t
and t ′ are recombined by computing their strict consensus
tree, which contains all of the bipartitions that are common
between the trees. Since the strict consensus tree typically
results in a multifurcating tree, it is refined into a binary
tree and subjected to a global search using Tree-Bisection
and Reconnection (TBR).

3.3 Non-cooperative algorithms

Phylospaces can also accommodate a population of
heuristics that operate independently. For example, in an
experimental setting, it is typically necessary to execute
multiple runs of a heuristic. Since each run of the heuris-
tic operates independently, there is no need for a merger
worker. We used this approach for our experiments with
Rec-I-DCM3 as we were able to execute five independent
runs of the algorithm concurrently in the Phylospaces envi-
ronment.

4 Experimental Methodology

Datasets: Our experiments compared the performance of
the algorithms on two biological datasets. Below, we pro-
vide the details of both datasets, along with their best-
known score under maximum parsimony, since the optimal
score is not known.

1. A set of 2,000 aligned Eukaryotic sRNA sequences
(1251 sites) obtained from the Gutell Lab at the Insti-
tute for Cellular and Molecular Biology, The Univer-
sity of Texas at Austin. Our runs of both Rec-I-DCM3
and Cooperative Rec-I-DCM3 established a best score
of 74,534.

2. A set of 7,769 aligned ribosomal RNA sequences
(851 sites) from three phylogenetic domains, plus
organelles (mitochondria and chloroplast), obtained
from the Gutell Lab at the Institute for Cellular and
Molecular Biology, The University of Texas at Austin.
The best score for this dataset is 99,794, which was
established by Cooperative Rec-I-DCM3.

Experiments: All experiments consisted of five runs of
the Rec-I-DCM3 and Cooperative Rec-I-DCM3 algorithms.
We ran Rec-I-DCM3 with the recommended default set-
tings. Hence, the maximum subproblem sizes were set to
50% of the original problem size on Dataset #1 and 25%

on Dataset #2. Both Rec-I-DCM3 and Cooperative Rec-
I-DCM3 were given sufficient time to find the best-known
score. Hence, Rec-I-DCM3 ran for 500 iterations, and its
cooperative counterpart ran for 100 iterations with popula-
tion sizes of 2, 4, 6, and 8 individuals. The recombination
rate of Cooperative Rec-I-DCM3 was set to 20%.

Performance measures: Heuristics are typically evalu-
ated by how fast good solutions can be obtained and by how
far such solutions are from optimal. However, the optimal
solution is unknown for each of the biological datasets used
in this study. Since Rec-I-DCM3 and Cooperative Rec-
I-DCM3 are iterative algorithms, we first plot algorithmic
performance in terms of the number of steps, s, a solution is
from the best-known score, b, found for the dataset. If b i is
the best score found by iteration i, then s= bi−b.

Implementation: We used TCP Linda [14], an imple-
mentation of Gelernter’s Linda [6] model of concurrency,
to implement our cooperative algorithm. Our TCP Linda
programswere written in the C-Linda language, which aug-
ments the C language with four primitive operations that
permit process creation and access to tuple space — an as-
sociative, distributed sharedmemory. Rec-I-DCM3 is open-
source software provided by Usman Roshan. TNT [7] was
used as the base method for Rec-I-DCM3, and we used
TNT’s implementation of TBR. We used PAUP*’s imple-
mentation of strict consensus.

Platforms: Our experiments were performed on two
high-performance computing clusters: an Apple Work-
group Cluster for Bioinformatics and a Linux Beowulf clus-
ter. Both clusters are similarly configured, each consist-
ing of four, 64-bit, dual-processor nodes (eight total CPUs)
with gigabit-switched interconnects. However, the underly-
ing hardware of the clusters is quite different. The Apple
Workgroup Cluster consists of Xserve G5 nodes, each of
which contains two, 2 GHz PowerPC G5 processors. Each
processor contains 512 KB of L2 cache and a 1 GHz front-
side bus; the two processors on each node share 4 GB of
DDR 400MHz SDRAM (16 GB total RAM across the clus-
ter). The Linux Beowulf cluster consists of four nodes; each
node contains two, 2 GHz Intel Xeon processors. Each pro-
cessor contains 512 KB of L2 cache, but only a 400 MHz
front-side bus; the two processors on each node share 2 GB
of DDR 266 MHz SDRAM (8 GB total RAM across the
cluster).

5 Experimental Results

We use both iterative and wall-clock performance to
compare the Rec-I-DCM3 and Cooperative Rec-I-DCM3

µ Dataset #1 Dataset #2
1 16.44 151.46
2 4.49 34.31
4 5.15 40.66
6 6.19 40.11
8 9.39 56.93

Table 1. The average running times (in hours)
required to complete 500 iterations of Rec-I-
DCM3 (µ = 1) and 100 iterations of Coopera-
tive Rec-I-DCM3 (µ = 2, 4, 6, and 8).

algorithms. Iterative performance comparisons give us an
architecture-independent way of studying the behavior of
the algorithms. Of course, this only works if the amount
of work done per iteration is the same for the algorithms
of interest. Since our cooperative algorithm relies on Rec-
I-DCM3 as its base algorithm, the amount of work per it-
eration is similar. Moreover, iterative performance reflects
ideal performance since it ignores any overhead associated
with our algorithm implementations. For Cooperative Rec-
I-DCM3, this essentially means that we get cooperation for
free.
Wall-clock performance, on the other hand, captures any

overhead that is present in the underlying implementations
of the algorithms. Therefore, we also show the performance
of the algorithms in terms of the number of hours required
to complete 100 and 500 iteration analyses of Coopera-
tive Rec-I-DCM3 and Rec-I-DCM3, respectively. Table 1
presents a summary of the running times over five runs on
the datasets studied here.

Dataset #1 (2,000 sequences): Figure 3 shows the perfor-
mance of Rec-I-DCM3 and Cooperative Rec-I-DCM3 on
Dataset #1. The iterative performance plot clearly shows
Cooperative Rec-I-DCM3 outperforms Rec-I-DCM3 at ev-
ery data point. Under Cooperative Rec-I-DCM3, perfor-
mance improves with larger population sizes with µ= 8 re-
sulting in the best overall performance. In fact, the µ = 8
curve shows that Cooperative Rec-I-DCM3 requires about
60 iterations to converge on the best-known score.
Next, we compare the running times of the algorithms

according to their wall-clock times. Here, we plot perfor-
mance in 2 hour intervals. Within 6 hours, Cooperative Rec-
I-DCM3 with a population of eight solutions converges to
the best-known score. After 16 hours, Rec-I-DCM3 is ap-
proximately 5 steps away from the best-known score. How-
ever, Rec-I-DCM3 is able to surpass the performance of Co-
operative Rec-I-DCM3 using a population of size two.

Dataset #2 (7,769 sequences): Figure 4 plots the perfor-
mance of the algorithms on the largest dataset in our study.

After 100 iterations, Cooperative Rec-I-DCM3 and Rec-I-
DCM3 are within 6 and 45 steps of the best-known score.
After 500 iterations, Rec-I-DCM3 is within 20 steps of the
best-known score. However, it is still far behind the perfor-
mance of Cooperative Rec-I-DCM3. For wall-clock perfor-
mance, we plot the performance of the algorithms in 12 hour
intervals. intervals of 14 hours. After 56 hours, Cooperative
Rec-I-DCM3 is 7 steps from the best-known score. Rec-I-
DCM3 is unable to match Cooperative Rec-I-DCM3’s per-
formance. After 120 hours, Rec-I-DCM3’s average perfor-
mance is within 20 steps of best-known score.

6 Discussion

Our experimental results clearly show the improvement
that results from placing Rec-I-DCM3 within a cooperative
framework. The plots in Section 5 demonstrate that Cooper-
ative Rec-I-DCM3 consistently outperforms Rec-I-DCM3
on each of the datasets studied here. A one-month analysis
of Dataset #2 (7,769 sequences) was performed by Roshan
on a 3GHz Xeon processor with 4GB of memory, which
is comparable in CPU speed to the nodes on our compu-
tational platform [12]. Even after a month’s computation,
Rec-I-DCM3 is still 21 steps away from the best score found
by Cooperative Rec-I-DCM3 in 2.3 days! Hence, providing
a search with more time doesn’t necessarily result in being
able to escape local optima. One of the hallmarks of the
Cooperative Rec-I-DCM3 algorithm is that it uses a popu-
lation of diverse trees to guide its way through tree space
resulting in better overall performance.
Moreover, our iterative plots—especially Figures 3

and 4—show that parallelizing Rec-I-DCM3 in a traditional
manner will not result necessarily in better performance.
It is true that parallelization will lead to shorter iteration
times, which results in faster running times. Hence, the
number of iterations executed by parallelized version of
Rec-I-DCM3 within a given time period would increase.
However, after 500 iterations, the average performance of
parallel Rec-I-DCM3 would be the same as that of se-
quential Rec-I-DCM3. Our results suggest that cooperative
parallelization—as implemented in Phylospaces—provides
a more powerful approach than a traditional parallelization
of Rec-I-DCM3. A parallel version of Rec-I-DCM3 called
PRec-I-DCM3 [4] has been developed, and we plan to test
our hypothesis concerning iterative performance by investi-
gating the behavior of Cooperative Rec-I-DCM3 and PRec-
I-DCM3 in future work.
Lastly, we have chosen to not show our results in terms

of speedup. The traditional definition of speedup relates the
execution time of the best sequential algorithm T1 to the ex-
ecution time of the parallel version of the algorithm being
evaluated on p processors, Tp. That is, Sp = T1

Tp . Computing
the speedup of a parallel algorithm is a well-accepted way

iterations (log)

st
ep

s
fro

m
 b

es
t s

co
re

 (l
og

)

1 5 10 50 100 500

1

5

10

50

100
recidcm3
µ = 2

µ = 4
µ = 6

µ = 8

time (hours)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

5

10

50

100
recidcm3
µ = 2

µ = 4
µ = 6

µ = 8

(a) Iterative performance (b) Wall-clock performance

Figure 3. Performance on Dataset #1 (2,000 sequences). µ represents the population size of the
Cooperative Rec-I-DCM3 algorithms. Since wall-clock performance is plotted every hour, the last
time point plotted for Rec-I-DCM3 results in 487 iterations. When µ = 2, 4, 6, and 8, the last time point
plotted corresponds to 88, 97, 97, and 52 iterations, respectively. Note that the µ= 8 curve converges
to the best-known score within 6 hours.

iterations (log)

st
ep

s
fro

m
 b

es
t s

co
re

 (l
og

)

1 5 10 50 100 500

1

5

10

50

100
recidcm3
µ = 2

µ = 4
µ = 6

µ = 8

time (hours)

1 12 24 36 48 60 72 84 96 108 120 132 144

1

5

10

50

100
recidcm3
µ = 2

µ = 4
µ = 6

µ = 8

(a) Iterative performance (b) Wall-clock performance

Figure 4. Performance on Dataset #2 (7,769 sequences). µ represents the population size of the
Cooperative Rec-I-DCM3 algorithms. Since wall-clock performance is plotted every 12 hours, the
last time point plotted for Rec-I-DCM3 results in 477 iterations. When µ = 2, 4, 6, and 8, the last time
point plotted corresponds to 68, 88, 84, and 84 iterations, respectively.

of measuring its efficiency. Although speedup is very com-
mon in deterministic parallel algorithms, it is unclear how
to define speedup for stochastic parallel algorithms [1]. The
biggest difficulty with measuring speedup on stochastic al-
gorithms is that the two algorithms being compared will not
necessarily return the same solution. The speedup measure
assumes that the algorithms under comparison are solving
the same problem with the same precision. So, in the case

of Cooperative Rec-I-DCM3 and Rec-I-DCM3, which find
very different tree scores, how does one develop a fair as-
sessment of speedup? For now, we have decided to show
our experimental results in terms of iterative and wall-clock
performance.

7 Conclusions and Future Work

Phylospaces is a new infrastructure for reconstructing
phylogenetic trees quickly and accurately. It’s novelty lies
in using tuple space as a vehicle for phylogenetic meth-
ods to share their results with each other. Here, we used
Rec-I-DCM3 as the basis for Cooperative Rec-I-DCM3, a
population-based algorithm implemented within the Phy-
lospaces framework. Extensive experimentation with Rec-
I-DCM3 [13] has shown that it outperforms other MP
heuristics such as those implemented in PAUP* [16] and
TNT [7]. Since Rec-I-DCM3 is the best-performing algo-
rithm, it is the hardest to improve upon in terms of perfor-
mance.
Our results with Cooperative Rec-I-DCM3 demonstrate

that a cooperative approach to phylogeny reconstruction
consistently outperforms Rec-I-DCM3 by at least an or-
der of magnitude on the datasets studied here. Coopera-
tive Rec-I-DCM3 performance on the largest dataset (7,769
sequences) was quite impressive. Whereas a previous one-
month long run of Rec-I-DCM3 resulted in a best-score of
99,815 [12], Cooperative Rec-I-DCM3 established a new
best-score of 99,794 in 2.3 days!
Of course, there is much future work still to be done.

Since population size is an important factor in improving
the performance of Cooperative Rec-I-DCM3, larger pop-
ulation sizes should be investigated. We also plan to in-
vestigate the use of our cooperative approach to other MP
algorithms. Moreover, we would like to explore the use of
cooperation in the context of ML algorithms. Given that a
parallel implementation of Rec-I-DCM3 exists [4], we plan
to compare its performance with that of our Cooperative
Rec-I-DCM3 algorithm.

8 Acknowledgments

This work was initiated while Smith was on sabbatical
leave from Colby College and Williams was a fellow at the
Radcliffe Institute of Advanced Study. The authors would
also like to thank Usman Roshan for providing the code for
Rec-I-DCM3 and the datasets to use for this study.

References

[1] E. Alba and M. Tomassini. Parallelism and evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computing,
6(5):443–462, 2002.

[2] D. A. Bader, W. E. Hart, and C. A. Phillips. Parallel algo-
rithm design for branch and bound. In H. Greenberg, editor,
Tutorials on Methodologies and Applications in Operation
Research, chapter 5, pages 1–44. Academic Press, 2004.

[3] M. J. Brauer, M. T. Holder, L. A. Pries, D. J. Zwickl, P. O.
Lewis, and D. M. Hillis. Genetic algorithms and paral-

lel processing in maximum-likelihood phylogeny inference.
Mol. Biol. Evol., 19(10):1717–1726, 2002.

[4] Y. Dotsenko, C. Coarfa, L. Nakhleh, J. Mellor-Crummey,
and U. Roshan. PRec-I-DCM3: a parallel framework for fast
and accurate large scale phylogeny reconstruction. Interna-
tional Journal on Bioinformatics Research and Applications
(IJBRA), 2006. in press.

[5] Z. Du, A. Stamatakis, F. Lin, U. Roshan, and L. Nakhleh.
Parallel divide-and-conquer phylogeny reconstruction by
maximum likelihood. In Proc. 2005 International Con-
ference on High-Performance Computing and Communica-
tions (HPCC’05), pages 346–350, 2005.

[6] D. Gelernter. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1), Jan. 1985.

[7] P. Goloboff. Analyzing large data sets in reasonable times:
solutions for composite optima. Cladistics, 15:415–428,
1999.

[8] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a
fast-converging method for phylogenetic tree reconstruction.
Journal of Computational Biology, 6:369–386, 1999.

[9] T. M. Keane, T. J. Naughton, S. A. A. Travers, J. O. McIn-
erney, and G. P. McCormack. DPRml: distributed phy-
logeny reconstruction by maximum likelihood. Bioinformat-
ics, 21(7):969–974, 2005.

[10] B. Q. Minh, L. S. Vinh, A. von Haeseler, and H. A. Schmidt.
pIQPNNI: parallel reconstruction of large maximum like-
lihood phylogenies. Bioinformatics, 21(19):3794–3796,
2005.

[11] L. Nakhleh, U. Roshan, K. St. John, J. Sun, and T. Warnow.
Designing fast converging phylogenetic methods. In Proc.
9th Int’l Conf. on Intelligent Systems for Molecular Biology
(ISMB’01), volume 17 of Bioinformatics, pages S190–S198.
Oxford Univeristy Press, 2001.

[12] U. Roshan. Detailed experimental results on
the performance of Rec-I-DCM3 as presented in
CSB’04. Internet Website, last accessed, Nov 2005.
http://www.cs.njit.edu/usman/dcm3/recidcm3 csb04 data.html.

[13] U. Roshan, B. M. E. Moret, T. L. Williams, and T. Warnow.
Rec-I-DCM3: a fast algorithmic techniques for reconstruct-
ing large phylogenetic trees. In Proc. IEEE Computer Soci-
ety Bioinformatics Conference (CSB 2004), pages 98–109.
IEEE Press, 2004.

[14] Scientific Computing Associates, Inc. TCP Linda. Internet
Website, last accessed, July 2005. SCAI’s TCP Linda URL:
http://www.lindaspaces.com/products/linda.html.

[15] A. Stamatakis, T. Ludwig, and H. Meier. RAxML: A fast
program for maximum likelihood-based inference of large
phylogenetic trees. Bioinformatics, 1(1):1–8, 2004.

[16] D. L. Swofford. PAUP*: Phylogenetic analysis using parsi-
mony (and other methods), 2002. Sinauer Associates, Un-
derland, Massachusetts, Version 4.0.

[17] T. L. Williams and M. L. Smith. Cooperative-Rec-I-DCM3:
A population-based approach for reconstructing phyloge-
nies. In Proc. Third IEEE Symp. on Computational In-
telligence in Bioinformatics and Computational Biology
(CIBCB’05), pages 127–134, 2005.

