

Comparison of Current BLAST Software on Nucleotide Sequences

I. Elizabeth Cha
University of Louisville Department of Computer

Engineering and Computer Science
Louisville, KY 40292
icha@louisville.edu

Eric C. Rouchka
University of Louisville Department of Computer

Engineering and Computer Science
Louisville, KY 40292

eric.rouchka@louisville.edu

Abstract

 The computational power needed for searching
exponentially growing databases, such as GenBank, has
increased dramatically. Three different implementations
of the most widely used sequence alignment tool, known
as BLAST (Basic Local Alignment Search Tool), are
studied for their efficiency on nucleotide-nucleotide
comparisons. The performance of these implementations
are evaluated using target databases and query sequences
of varying lengths and number of entries constructed from
human genomic and EST sequences. In general, WU
BLAST was found to be most efficient when the database
and query composition are unknown. NCBI BLAST
appears to work best when the database contains a small
number of sequences, while mpiBLAST shows the power
of database distribution when the number of bases per
target database is large. The optimal number of compute
nodes in mpiBLAST varies depending upon the database,
yet in the cases studied, remains surprisingly low.

1. Introduction

Since the inception of the Human Genome Project in
1990, vast amounts of DNA and protein sequence data
have been observed and generated by biologists and
researchers in individual labs and large-scale sequencing
centers throughout the world. This is due to advances in
sequencing technology and the introduction of the first
automated sequencing machines in 1986 [1]. A graph of
the growth of one repository of sequence data, GenBank
[2] shows an exponential growth in sequence data since
its origination in 1982. The current release of GenBank
(release 144.0) [3] contains 43.2 billion bases of DNA and
protein sequence data. From a computer science
perspective, scientists and scholars are interested in
finding more efficient algorithms to retrieve and manage
data in sequence database systems and to mine these
databases for interesting properties.

One form of sequence data available is called an
expressed sequence tag (EST), which represents a
segment of a cDNA clones from a corresponding mRNA.
ESTs potentially represent genes actively transcribed
within a particular cell at a specific point in time. The
average length of an EST is 200 – 600 base pairs [4, 5].
In addition to the human genome, researchers are
interested in sequence analysis of comparative genomes,
such as mouse [6], rat [7], rice [8, 9], and the mustard
plant, Arabidopsis [10]. According to the latest
information released by NCBI [11] as of Jan 15, 2005, the
total number of human ESTs in the dbEST database [12]
is over 6 million and there are a total of over 25 million
entries for all organisms combined. By using comparison
and alignments between EST and genomic sequences,
these partial tags help to re-build the gene structure within
each organism. Therefore, clustering large number of
sequences becomes important to help identify any
organism’s transcriptome, or transcribed portion of the
genome.

A number of DNA and protein sequence alignment
tools have been established, including FASTA [13, 14],
BLAST [15, 16, 17, 18, 19], BLAT [20] and MUMmer
[21]. Determining which alignment method performs the
best in terms of computational efficiency and desired
sensitivity under different conditions is not a
straightforward task. One of the most (if not the most)
widely used Bioinformatics tools used to study sequence
similarity is BLAST. As a point of fact, about 140,000
daily visitors in early 2004 used NCBI’s version via the
available web page [22]. Hence, the efficiency of three
versions of BLAST, including NCBI BLAST
(ncbiBLAST) [15, 16, 18], WU-BLAST (wuBLAST) [19]
and mpiBLAST [23] are compared using various length
query sequences and target databases.

1.1. BLAST

In 1990, researchers at the National Center for
Biotechnology Information (NCBI) released a new
software package for rapid DNA and protein sequence

comparison [15]. This tool, known as Basic Local
Alignment Search Tool (or more commonly by its
acronym BLAST) can be used to detect high scoring local
similarity segments between a sequence and a database of
one or more sequences. BLAST directly computes the
approximate alignments by improving upon the ideas of
dynamic programming algorithm [24, 25], through
assigning and recording scores in terms of insertions,
deletions, and substitutions.

Only relatively conserved subsequences are considered
in calculating the local similarity between two sequences.
The initial filter of the BLAST algorithm searches for
seed sequences of a particular length (11 bases for NCBI
nucleotide-nucleotide BLAST) with a 100% conservation
between the target and query sequences. Initial hits of
seed sequences are then extend to check for larger regions
of similarity. Though these searches, BLAST makes it
possible to look for sequence homology within sequences
by performing database searches, motif searches, and
gene identification for both DNA and protein sequences.
The original implementations of BLAST focus on an
ungapped algorithm, where two sequences could only
have matches and mismatches scattered throughout.

In 1995, one of the original authors of BLAST began
development of the algorithm at Washington University
(WU), independent of the NCBI effort. In the same year,
the first release of wuBLAST (version 1.4) was made
public. The performance of that original effort was very
similar to ncbiBLAST [19]. However, independent
development over the last ten years has led to the
possibility of differences in efficiency. Those possible
differences are explored.

In the nearly 15 years since the original development, a
number of changes have been incorporated [17]. By 1997,
both flavors of BLAST had incorporated the concept of
alignments containing gaps [16]. Both NCBI and WU
versions of BLAST have a number of programs in the
suite. Among these are programs for nucleotide-
nucleotide comparison (blastn); protein-protein
comparison (blastp); nucleotide-protein comparison
(tblastn); and translated nucleotide-nucleotide
comparison (tblastx). In addition, the NCBI suite offers
programs for looking at patterns gathered from multiple
alignments of sequence conservation as seeds into
sequence alignment. These two programs including
position specific iterated blast (PSI-BLAST) [16] and
pattern hit initiated blast (PHI-BLAST) [26].

While there are a number of different programs in the
suite that could be studied, large-scale genomic level
sequence comparisons are going to be vitally important as
more and more genomes become available. Therefore, the
nucleotide-nucleotide program, blastn, will be
compared for both of these versions of BLAST.

1.2. mpiBLAST

One of the problems in searching large quantities of
DNA and protein sequences, even with heuristic
algorithms such as BLAST, is speed. However, BLAST is
computationally intensive and has qualities that lend it to
being parallelizable. An open source parallelization of
BLAST was initiated in 2003 [27]. It implements the
technique of message passing interface (MPI) to send out
sequence database fragments to different nodes to perform
the computation. This tool, mpiBLAST, attempts to
reduce disk I/O in a single machine and parallelize
BLAST on PC clusters.

mpiBLAST parallelizes individual queries. Through
segmenting, the target database is divided into nearly
identical length fragments, which are stored on a shared
device. The size of each fragment is ideally designed to be
small enough to fit into main memory. Once the
mpiBLAST request is sent, the query is broadcasted into
requested nodes. After receiving the responses from the
slave or worker nodes, the master node assigns individual
segments by copying them into local storage on one of the
idle workers. Each node then performs ncbiBLAST of the
query sequence individually on the assigned fragment of
the original database. The slave or worker node will not
return the result to the master node until it completes its
computation. The master node will keep monitoring and
assigning the database fragments to idle nodes until all
fragments have been assigned. When all the requested
nodes finish their sub-tasks, the master node will combine
the results and send it back to the job sender.

Since each slave node works individually, those worker
processes do not need to communicate to each other. Data
decomposition is done by command --removedb before
terminating execution.

1.3. Parallelization

ncbiBLAST, wuBLAST, and mpiBLAST all have a
level of parallelization built in. The default setting of
ncbiBLAST is to run on a one processor using multi-
threads. wuBLAST runs two threads at the same time in
one processor machine. mpiBLAST requires at least two
nodes and can run on an unlimited amount depending on
the number processors available. Theoretically, searching
for sequence similarities in a parallel fashion should be
faster than using a single processor on the same data set.
With this pre-assumption, mpiBLAST should be the
fastest of the three BLAST programs. In addition, the
more nodes that are used, the faster the job can be
completed. Taking the parallelization mechanisms into
account, the efficiency of ncbiBLAST, wuBLAST, and
mpiBLAST on the three types of problems described in
the methods section are compared.

Command line parameters available in wuBLAST
allow a smooth transition into distributed database search.
The command line options, dbrecmax and dbrecmin,
allow user to block a range of database records to search
by specifying the first and last database records to search,
respectively [17]. A query sequence can then be searched
against different portions of the database spread
throughout a number of different nodes on a
multiprocessor system. The results can then be combined
into a single file, yielding results similar to a serial
BLAST search. There are not any tools built into
wuBLAST to handle the communication between
sequence searches handled in this fashion.

2. Methods

2.1. Types of sequence searches

DNA sequence similarity searches can be performed at
a number of levels. For instance, it is possible to search a
single, relatively short sequence (such as a single EST)
against a larger database and retrieve results from BLAST
in a manner of seconds. However, interesting similarity
questions also can occur by searching a large database of
smaller sequences (in terms of sequence length) to find
similarities within the sequences (for example, clustering
of ESTs). A large database of smaller sequences can be
searched against a database of larger sequences as well to
find interesting similarities (such as localizing ESTs
within a genome). In addition, it is important to find
similarities between databases of longer sequences as well
(for instance, in finding conservation in the genomic
sequences of two comparative organisms). The efficiency
of these three types of searches is studied using
ncbiBLAST, wuBLAST, and mpiBLAST.

2.2. System and software

The three classes of comparisons made were based on
the current version of the appropriate BLAST software
available at the time of analysis. ncbiBLAST 2.2.9
(release date 5/12/2004) was downloaded from [18]. For
wuBLAST, an academically licensed version 2.0MP
WashU [22-Aug-2004] was downloaded from [19].
mpiBLAST 1.2.1 (2/6/2004) was downloaded from [24].

In order to test the parallel versions, a 16-node (32 cpu)
Microway Athlon MP GigaCluster™ with an additional
master node was used. Each node on the cluster has a dual
AMD Athlon™ MP 2400+ 384K cache, 512MB DDR,
266 MHz ECC/REG low profile, plus a 40GB hard drive.
Red Hat Linux version 7.3 with MPICH, Portable Batch
System (PBS), and Microway Cluster Management
Software was installed. The performance of wuBLAST,

ncbiBLAST, and mpiBLAST were compared using three
different systems. Each job was sent and managed by PBS.

wuBLAST and ncbiBLAST were also compared using
two identical PCs. These PCs were equipped with a dual
AMD Athlon™ MP processor 2800+ 512KB cache.
These machines also have a 640K system RAM, a 2048
Extended RAM and a 120G mass drive as a storage
system. The operating system is Suse Linux version 9.1,
2.6.4-52-smp i686 machine, and i386 hardware platform.

2.3. Data

Comparisons were made by focusing on human EST
and genomic data. EST sequence data was downloaded
using the GenBank Flat File Release 141.0. The resulting
305 dbEST files were parsed to select only those with
Homo sapiens as the organism. After the human ESTs
were filtered, they were masked for repetitive elements
using RepeatMasker [28].

The repeat masked human goldenpath genomic
assembly hg16-Jul2003 was downloaded for use from
http://hgdownload.cse.ucsc.edu/goldenPath/hg16/chromosomes/.
Each of the individual human contigs for a particular
chromosome was placed into a file based on their
cytogenetic position as an individual sequence entry.
Blastable databases for each chromosome were created
using the appropriate tool (xdformat for wuBLAST;
formatdb for ncbiBLAST; and mpiformatdb for
mpiBLAST).

After reviewing all of the filtered data, thirteen
representative human EST sequence files and five
representative chromosomal sequence files were chosen
(Table 1). Each sequence file contains data for multiple

Table 1. Data used for BLAST comparisons

Sequence
Name File Size # of

sequences
of

bases
chr14 88,935,052 1 87,191,216
chr22 35,039,241 11 34,352,072
chr17 80,964,851 30 79,376,966
chr9 120,146,880 60 117,790,386
chr1 231,366,553 91 226,828,929
est283 3,350 7 2,593
est277 7,259 15 5,781
est136 300,995 521 210,054
est147 724,214 1,085 563,737
est149 1,603,440 2,433 1,244,897
est126 2,466,032 3,031 2,053,889
est241 3,312,648 4,991 2,502,256
est176 7,002,704 10,149 5,274,323
est113 19,434,153 20,347 16,714,000
est270 16,447,012 24,764 12,934,924
est1 19,969,430 36,800 14,021,420
est91 33,883,614 50,522 27,683,871
est166 33,064,286 71,748 25,130,960

sequences. Each of these files was chosen based on the
total number of sequences in the file; the total number of
bases in the file; and the average sequence length to be
representative snapshots of the entire human EST and
genomic data sets.

2.4. Comparisons made

In order to determine the efficiency of the various
implementations of BLAST, the representative EST and
genomic data are used in four separate comparisons with
different query sequences (Q) and target databases (T):
EST (Q) vs. EST (T); EST (Q) vs. chromosome (T);
chromosome (Q) vs. EST (T); and chromosome (Q) vs.
chromosome (T).

EST vs. EST compares when sequences in both the
database and query are short. Chromosome vs.
chromosome tests when both query sequences and target
databases are large sequences. Compared to an EST
sequence, the number of nucleotide bases in a finished
chromosome contig is much larger. But the number of
sequences in each chromosome file is smaller, ranging
from one sequence (chr14) to 91 sequences (chr1) for the
representative sequences. Therefore, in EST vs. chromo-
some, the longer (in base length) sequences were used as
a database and the smaller sequences were used as the
query. In order to determine if the order in which these
comparisons are made makes a difference, we reversed
the database and query sequences as chromosome vs. EST
is performed.

In mpiBLAST, using the command mpiformatdb, the
database will be segmented into fragments. The database
created may not contain the same number of sequences,
but should be nearly equal size overall, if possible. In
order to determine the number of fragments to use in
mpiBLAST, three different sequences, chr22, chr1, and

Table 2. Fragment information in mpiBLAST

sequence # of fragment size per fragment
chr22 9 ~1MB

 8 ~2MB
 5 ~4MB
 3 ~9MB
 1 ~35MB

chr1 44 ~2MB
 30 ~5MB
 25 ~8MB
 20 ~11MB
 15 ~19MB
 10 ~29MB
 1 ~227MB

est166 26 ~1MB
 13 ~2MB
 7 ~4MB
 1 ~26MB

est166 were used. The number of fragments, or nodes
used, is broken down according to the resulting fragment
size. The results are shown in Table 2.

3. Results

3.1. EST vs. EST

The first series of comparisons made dealt with short
length sequence databases versus short length sequence
queries. All thirteen representative EST sequence files
(Table 1) were put into an individually blastable database.
Each database was then searched for comparisons to the
thirteen representative EST sequence files one at a time.

What is interesting to note is that when the number of
sequences in the database is small, ncbiBLAST seems to
perform marginally better than wuBLAST (Figure 1a). On
the system tested, the results indicate a delay of up to
~690 sec (~11.5 min) can be observed on the data used.

However, as the number of sequences in the database
increases, the time spent in wuBLAST for sequences
comparison tends to be smaller in comparison to
ncbiBLAST (Figure 1b). This is especially evident in the
four comparisons of the last two sequences, est91 vs.
est91, est91 vs. est166, est166 vs. est91, and est166 vs.
est166, where it took wuBLAST 3,669 ~ 7,702 sec (61.2
~ 128.4 min) to complete the work. It took ncbiBLAST
8,557 ~ 14,312 sec (142.6 ~ 238.5 min), or approximately
twice as long, to do the same job.

The sequence file est270, which contains 24,764
sequences, needs more time to complete each task
(Results not shown). When est270 served as a query, it
even needs more time to finish compared to the other
three longer sequences, est1, est91, and est166. When
est270 is compared against itself, it needs 12,822 sec
(213.7 min) to complete. This makes the cumulative time
to complete the whole series higher than any series in
Figure 2.

Suppose the time needed to complete a database search
is based on the number of sequences. est166 contains the
most number of sequences. If est166 is served as a query
to search database, almost every job needs the longest
time to complete. However, est270 does not contain the
largest number of sequences in these thirteen files but
took the longest time to complete its task against itself. Or
suppose the larger number of bases per sequence would
take more time to complete a database search. If the
number of nucleotide bases is divided by the number of
sequences in each EST data in Table 1, the average
number of bases per sequence in the EST dataset ranges
from ~350 (est166) to ~821 (est113). est113 should take
the longest time to complete because it contains the
largest average number of bases per sequence. But it did
not.

Comparison of wuBLAST and ncbiBLAST (est vs. est)
number of sequences in DB < 4,991

0

500

1000

1500

2000

2500

7 15 52
1

1,0
85

2,4
33

3,0
31

4,9
91

10
,14

9

20
,34

7

24
,76

4

36
,80

0

50
,52

2

71
,74

8

number of sequences in query

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

) w283
w277
w136
w147
w149
w126
n283
n277
n136
n147
n149
n126

Comparison of wuBLAST and ncbiBLAST (est vs. est)
larger number of sequences in DB

0

2000

4000

6000

8000

10000

12000

14000

16000

7 15 52
1

1,0
85

2,4
33

3,0
31

4,9
91

10
,14

9

20
,34

7

24
,76

4

36
,80

0

50
,52

2

71
,74

8

number of sequences in query

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

)

w241
w176
w113
w270
w1
w91
w166
n241
n176
n113
n270
n1
n91
n166

Figure 1a. ncbiBLAST performs best when the
number of sequences in the database is small

Figure 1b. wuBLAST performs best when the
number of sequences in the database is greater

(w: result run by wuBLAST, n: result run by ncbiBLAST, 283: est283, 241: est241, and so on)

 Figure 2. Cumulative results of wuBLAST and
ncbiBLAST in the EST vs. EST comparison.

(283: est283, 277: est277 and so on)

There are 13 EST sequences with different lengths and
number of nucleotide bases. The cumulative time taken to
complete all 13 comparisons for each query is shown
(Figure 2). wuBLAST could take ~750 sec (~12.5 min) to
~2111 sec (~35.2 min) longer than ncbiBLAST in the first
six databases, est283, est277, est136, est147, est149, and
est126 (Figure 2).

The results for mpiBLAST using an EST vs. EST
comparison are shown using est166 as the database, and
four of the representative EST sequences files as the query
(est136, est147, est241, and est176). Besides a master
node, all mpiBLAST searches were tested using the
number of nodes from 1 to 15, due to the upper limitation
of 16-nodes on the system. The results indicate that as the
number of nodes used to complete the search increases,
the total search time decreases (Figure 3). However, as a
very interesting side note, mpiBLAST does not appear to
be more efficient at searching for sequence similarities.

3.2. EST vs. chromosome

This series of comparisons was created to test short
length sequence databases versus long length sequence
queries. As in EST vs. EST, all thirteen representative
EST sequence files were put into an individually blastable
database. Each database was searched for comparisons to
the five representative chromosome sequence files one at a
time.

Each database search is accomplished as a series after
being searched by 5 queries. Figure 4 shows the

Comparison of wuBLAST, ncbiBLAST, & mpiBLAST

<db> est166.fa (25,130,960 bases)

75

166

85

219

91

432

79

346

84

326

0

50

100

150

200

250

300

350

400

450

500

est136.fa (210,054 bases) est147.fa (563,737 bases)

query

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

)

wuBLAST
ncbiBLAST
mpiBLAST-7
mpiBLAST-13
mpiBLAST-26

Comparison of wuBLAST, ncbiBLAST, & mpiBLAST
<db> est166.fa (25,130,960 bases)

711

1622
1047

2268

3728

10553

2792

7502

2528

6586

0

2000

4000

6000

8000

10000

12000

est241.fa (2,502,256 bases) est176.fa (5,274,323 bases)

query

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

) wuBLAST
ncbiBLAST
mpiBLAST-7
mpiBLAST-13
mpiBLAST-26

Figure 3a. est166 target database vs. est136
and est147 query sequences.

Figure 3b. est166 target database vs. est241
and est176 query sequences.

Comparison of wuBLAST and ncbiBLAST (est vs. est)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

28
3 (

7)

27
7 (

15
)

13
6 (

52
1)

14
7 (

1,0
85

)

14
9 (

2,4
33

)

12
6 (

3,0
31

)

24
1 (

4,9
91

)

17
6 (

10
,14

9)

11
3 (

20
,34

7)

27
0 (

24
,76

4)

1 (
36

,800
)

91
 (5

0,5
22

)

16
6 (

71
,74

8)

databases (number of sequences in database)

cu
m

ul
at

iv
e

tim
e

to
 c

om
pl

et
e

se
ar

ch

se
rie

s
(s

ec
)

wuBLAST
ncbiBLAST

Comparison of wuBLAST and ncbiBLAST (est vs. chr)

0

10000

20000

30000

40000

50000

60000

283 277 136 147 149 126 241 176 113 270 1 91 166

databases

cu
m

ul
at

iv
e

tim
e

to
 c

om
pl

et
e

se
ar

ch

se
rie

s
(s

ec
)

wuBLAST
ncbiBLAST

Figure 4. Cumulative results of wuBLAST and

ncbiBLAST for EST vs. chromosome.
(283: est283, 277: est277, …)

comparison between wuBLAST and ncbiBLAST as the
cumulative time to finish the whole series of searches.
Generally speaking, wuBLAST works better than
ncbiBLAST in this comparison. On average,
ncbiBLAST takes 1.6 ~ 4.5 times longer to accomplish
the whole series of comparisons than wuBLAST.

The results of wuBLAST (Figure 5) appear to be
ordered in increasing time. However, the results of
ncbiBLAST drop in the middle of the graph for chr14.
The number of nucleotide bases in chr14 is 87,191,216.
However, there is only one sequence in chr14. It is
possible this sequence may cause memory problems due
to its length, or that disk I/O transfer contributes to a
bottleneck.

3.3. chromosome vs. EST

The gain in efficiency of running mpiBLAST instead
of ncbiBLAST can be seen after using chromosome
sequences as the database. The results for mpiBLAST
using chromosome vs. EST comparison are shown using
chr22 and chr1 as databases, and two representative EST
sequences, est136 and est147, as the queries. The results

Comparison of wuBLAST and ncbiBLAST (est vs. chr)

0

5000

10000

15000

20000

25000

chr22
(34,352,072)

chr17
(79,376,966)

chr14
(87,191,216)

chr9
(117,790,386)

chr1
(226,828,929)

how many nucleotide bases per chromosome

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

)

w283
w277
w136
w147
w149
w126
w241
w176
w270
w1
w113
w166
w91
n283
n277
n136
n147
n149
n126
n241
n176
n270
n1
n113
n166
n91

Figure 5. Results of wuBLAST and ncbiBLAST
for EST vs. chromosome. (w: result run by wuBLAST,

n: result run by ncbiBLAST, 283: est283, 241: est241, …)

of the comparison among wuBLAST, ncbiBLAST, and
mpiBLAST are shown in Figure 6a and Figure 6b, with
mpiBLAST run using a variable number of nodes (as
listed in the figure legend). As Table 3 illustrates, the
optimal number of nodes used varies depending upon the
query sequence and the size of the database fragments.

3.4. chromosome vs. chromosome

A small number of bases per sequence (EST) and large
number of bases per sequence (chromosome) have been
chosen as queries to search the databases, in the EST vs.
EST, EST vs. chromosome, and chromosome vs. EST
comparisons. If both the query and database contain a
large number of bases per sequence, it is possible the
performance would vary drastically due to a high
memory load and increased disk I/O. In order to test this,
all five chromosome contig files were put into an
individually blastable database, and each database was
searched for comparisons to the five representative
chromosome sequence files one at a time.

Twenty-five comparisons were made and four

Comparison of wuBLAST, ncbiBLAST, & mpiBLAST
<db> chr22.fa (34,352,072 bases)

166

343

492

942

511

966

394

743

383

735

386

744

397

747

0

200

400

600

800

1000

1200

est136.fa (210,054 bases) est147.fa (563,737 bases)

query

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

)

wuBLAST
ncbiBLAST
mpiBLAST-1
mpiBLAST-3
mpiBLAST-5
mpiBLAST-8
mpiBLAST-9

Comparison of wuBLAST, ncbiBLAST, & mpiBLAST
<db> chr1.fa (226,828,929 bases)

65
7 11

86

25
32

56
32

35
89

73
40

15
59

33
13

15
60

32
08

16
00

32
29

15
37

32
69

15
88

30
56

14
72

30
98

0

1000

2000

3000

4000

5000

6000

7000

8000

est136.fa (210,054 bases) est147.fa (563,737 bases)

query

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

) wuBLAST
ncbiBLAST
mpiBLAST-1
mpiBLAST-10
mpiBLAST-15
mpiBLAST-20
mpiBLAST-25
mpiBLAST-30
mpiBLAST-44

Figure 6a. chr22 target database vs. est136
and est147 query sequences.

Figure 6b. chr1 target database vs. est136 and
est147 query sequences.

Table 3. Optimal number of nodes used with
mpiBLAST on a varying number of database
fragments. Listed in the first column is the number of
database fragments. The second and third columns list
the optimal number of nodes used for two separate
queries: est136 and est147 with chromosome 22 (chr22)
as the target database.
chr22 est136 est147 chr1 est136 est147
mpiBLAST-1 2 3 mpiBLAST-1 2 1
mpiBLAST-3 4 3 mpiBLAST-10 6 7
mpiBLAST-5 6 3 mpiBLAST-15 7 7
mpiBLAST-8 6 5 mpiBLAST-20 6 9
mpiBLAST-9 4 5 mpiBLAST-25 8 7
 mpiBLAST-30 5 13
 mpiBLAST-44 11 15

cumulative results are generated in Figure 7. In general,
ncbiBLAST could take 1.7 ~ 2.8 times longer to
complete the whole series of work than wuBLAST. The
cumulative time to complete the whole series of
comparisons with chr1 as the database in wuBLAST is
53,301 sec (~14.8 hr) (results not shown). The result to
compare chr1 to chr1 in ncbiBLAST took more than
600,000 sec (~166.7 hr or ~ 6.9 days) to complete. The
reason for the tremendous slowdown in ncbiBLAST for
chr1 is unknown, but could be related to the large
number of sequences (91) and bases (226,828,929),
which could cause a heavy memory load.

4. Discussion

Figure 8 shows the results obtained by using different
numbers of database fragments segmented for
mpiBLAST. Ideally, the speed up could be predicted to
be linear, as long as the number of fragments does not
exceed the number of available processors. Take 13
fragments in Figure 8a for instance. Theoretically, the
result running on 2 nodes should be half of the result
running on 1 node. The result running on 3 nodes should
be one third of the result running on 1 node, and so on.

Comparison of wuBLAST and ncbiBLAST (chr vs. chr)

0

10000

20000

30000

40000

50000

60000

chr22
(34,352,072)

chr17
(79,376,966)

chr14
(87,191,216)

chr9
(117,790,386)

number of nucleotide bases in database

cu
m

ul
at

iv
e

tim
e

to
 c

om
pl

et
e

se
ar

ch

se
ri

es
 (s

ec
)

wuBLAST
ncbiBLAST

Figure 7. Cumulative results of wuBLAST and

ncbiBLAST using chromosome vs.
chromosome.

Thus, running on 15 nodes should come out with the best
result. However, as Figure 8a illustrates, the results of
using multiple database is segmented into 7 fragments,
running on 3 ~ 4 nodes will provide the best result. If the
database is divided into either 13 or 26 fragments, the
best results will be obtained by running on 6 ~ 7 nodes in
mpiBLAST. However, when the chromosome is used as
the database, the optimal number of nodes changes
(Figure 8b).

The average number of bases per sequence for each
chromosome is far larger than the average number of
bases per sequence for the ESTs. Hence, if both the size
of a chromosome fragment and the size of an EST
fragment is ~1MB, the chromosome fragment would
contain fewer sequences with a larger average size than
the EST fragment.

blastn compares sequences one by one between the
database file and the query file. Fewer comparisons in a
query will result in a smaller time requirement for the
comparison. Therefore, the number of sequences in the
chromosome database fragment in the chromosome vs.
EST comparison is far less than the number of sequences
in the EST database fragment.

Comparison of mpiBLAST by different size of fragments

<db> est166.fa <query> est136.fa

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of nodes in mpiBLAST

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

)

1 fragment
7 fragments
13 fragments
13 fragments-p
26 fragments
26 fragments-p

Comparison of mpiBLAST
with different number of fragments in database

<db> chr1.fa <query> est136.fa

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of nodes in mpiBLAST

tim
e

to
 c

om
pl

et
e

ta
sk

 (s
ec

)

1 fragment
10 fragments
15 fragments
20 fragments
25 fragments
30 fragments
44 fragments

Figure 8a. est166 target database vs. est136
query sequence in mpiBLAST.

Figure 8b. chr1 target database vs. est136
query sequence in mpiBLAST

The idea behind mpiBLAST is to try to decrease the
disk I/O. It performs better than ncbiBLAST running on
a single processor because the content of each fragment
can be easily fit into cached memory. It avoids the
allocation problem of large contents in memory causing
more disk I/O. However, spreading into different nodes
to complete the whole task required time for
communication between the master node and
slave/worker nodes. Figures 6 and 8 indicate where
potential bottlenecks occur. Another consideration is
network flow. A network bottleneck could be a problem
if lots of data need to be transported at the same time.

5. Conclusion

Based on the results above, in general, wuBLAST
works the best among these three tools using the default
settings. But when dealing with a smaller number of
sequences in the database, ncbiBLAST can perform well.
mpiBLAST can speed up the search when the number of
sequences in a fragment is small but the number of
nucleotide bases is large. The user can choose a suitable
BLAST to work with different size of data and different
number of sequences.

To help identify any organism’s transcriptome, or
transcribed portion of the genome, clustering large
number of sequences is needed and necessary. It requires
not only thousands of comparisons to sequences in a
database, but rather billions of records are there to be
searched. Therefore, finding the best technique to take
advantage of computation in parallel becomes paramount.

6. Acknowledgements

The authors thank members of Bioinformatics
Research Group at the University of Louisville for their
comments and suggestions. ER also acknowledges
support of the National Center for Research Resources
grant 2P20RR016481-04 (Nigel Cooper, PI).

References

[1] L.M. Smith et al., “Fluorescence detection in automated

DNA sequence analysis”, Nature, 1986, vol. 321, no.
6071, pp. 674 – 679

[2] GenBank,
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

[3] NCBI (National Center of Biotechnology Institution) –
GenBank Flat File Release 144.0,
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

[4] M.D. Adams et al., “Complementary DNA Sequencing:
Expressed Sequence Tags and Human Genome Project”,
Science, 1991, vol. 252, no. 5013, pp. 1651-6

[5] M.S. Boguski, “The turning point in genome research”,
Trends Biochem. Sci., 1995, vol. 20, no. 8, pp. 295-6

[6] NCBI, Mouse Genome Sequencing,
http://www.ncbi.nlm.nih.gov/genome/seq/MmHome.html

[7] NCBI, Rat Genome Resources,
http://www.ncbi.nlm.nih.gov/genome/guide/rat/

[8] T. Sasaki et al., “The genome sequence and structure of
rice chromosome 1”, Nature, 2002, vol. 420, no. 6913, pp.
312 – 316

[9] US Rice Genome Sequencing,
http://www.usricegenome.org/

[10] TAIR (The Arabidopsis Information Resource),
http://www.arabidopsis.org/

[11] NCBI, dbEST summary,
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html

[12] M.S. Boguski et al., “dbEST – database for “expressed
sequences tags”, Nature Genetics, 1993, vol. 4, no. 4, pp.
332 – 333

[13] D.J. Lipman and W.R. Pearson, “Rapid and sensitive
protein similarity searches”, Science, 1985, vol. 227, pp.
1435 – 1441

[14] W.R. Pearson and D.J. Lipman, “Improved Tools for
Biological Sequence Comparison”, Proc. Natl. Acad. Sci.,
U.S.A., 1988, vol. 85, no. 8, pp. 2444 – 2448

[15] S.F. Altschul et al., “Basic Local Alignment Search Tool”,
J. Mol. Biol., 1990, vol. 215, pp. 403-410

[16] S.F. Altschul et al., “Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs”,
Nucleic Acids Research, 1997, vol. 25, pp. 3389 – 3402

[17] Korf, I., M. Yandell, and J. Bedell., BLAST – An Essential
Guide to the Basic Local Alignment Search Tool, O’Reilly
& Assoicates, Inc., Sebastopol, CA, U.S.A., July 2003

[18] NCBI BLAST, http://www.ncbi.nlm.nih.gov/BLAST/
[19] WU-BLAST, http://blast.wustl.edu/
[20] W.J. Kent WJ, “BLAT – the BLAST-like alignment tool”,

Genome Research, 2002, vol. 12, no. 4, pp. 656 – 664
[21] A.L. Delcher et al., “Fast algorithms for large-scale

genome alignment and comparison”, Nucleic Acids
Research, 2002, vol. 30, no. 11, pp. 2478 – 2483

[22] S. McGinnis and T.L. Madden, “BLAST: at the core of a
powerful and diverse set of sequence analysis tools”,
Nucleic Acids Research, 2004, vol. 32, Web Server issue,
pp. W20 – W25

[23] mpiBLAST, http://mpiblast.lanl.gov/
[24] S.B. Needleman and C.D. Wunsch, “A general method

applicable to the search for similarities in the amino acid
sequences of two proteins”, J. Mol. Biol., 1970, vol. 48,
pp. 443 – 453

[25] M.S. Waterman, “General methods of sequence
comparison”, Bull. Math. Biol., 1984, vol. 46, pp. 473 –
500

[26] Z. Zhang et al., “Protein sequence similarity searches
using patterns as seeds”, Nucleic Acids Research, 1998,
vol. 26, no. 17, pp. 3986 – 3990

[27] A.E. Darling et al., “The Design, Implementation, and
Evaluation of mpiBLAST”, in Cluster World Conference
& Expo and the 4th International Conference on Linux
Clusters: The HPC Revolution 2003, LA-UR 03-2862,
June 2003, San Jose, CA, U.S.A.

[28] RepeatMasker, http://www.repeatmasker.org

