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Abstract 
 

 The computational power needed for searching 
exponentially growing databases, such as GenBank, has 
increased dramatically. Three different implementations 
of the most widely used sequence alignment tool, known 
as BLAST (Basic Local Alignment Search Tool), are 
studied for their efficiency on nucleotide-nucleotide 
comparisons. The performance of these implementations 
are evaluated using target databases and query sequences 
of varying lengths and number of entries constructed from 
human genomic and EST sequences. In general, WU 
BLAST was found to be most efficient when the database 
and query composition are unknown. NCBI BLAST 
appears to work best when the database contains a small 
number of sequences, while mpiBLAST shows the power 
of database distribution when the number of bases per 
target database is large. The optimal number of compute 
nodes in mpiBLAST varies depending upon the database, 
yet in the cases studied, remains surprisingly low. 
 
 
1. Introduction 
 

Since the inception of the Human Genome Project in 
1990, vast amounts of DNA and protein sequence data 
have been observed and generated by biologists and 
researchers in individual labs and large-scale sequencing 
centers throughout the world. This is due to advances in 
sequencing technology and the introduction of the first 
automated sequencing machines in 1986 [1]. A graph of 
the growth of one repository of sequence data, GenBank 
[2] shows an exponential growth in sequence data since 
its origination in 1982. The current release of GenBank 
(release 144.0) [3] contains 43.2 billion bases of DNA and 
protein sequence data. From a computer science 
perspective, scientists and scholars are interested in 
finding more efficient algorithms to retrieve and manage 
data in sequence database systems and to mine these 
databases for interesting properties.  

One form of sequence data available is called an 
expressed sequence tag (EST), which represents a 
segment of a cDNA clones from a corresponding mRNA. 
ESTs potentially represent genes actively transcribed 
within a particular cell at a specific point in time. The 
average length of an EST is 200 – 600 base pairs [4, 5].  
In addition to the human genome, researchers are 
interested in sequence analysis of comparative genomes, 
such as mouse [6], rat [7], rice [8, 9], and the mustard 
plant, Arabidopsis [10]. According to the latest 
information released by NCBI [11] as of Jan 15, 2005, the 
total number of human ESTs in the dbEST database [12] 
is over 6 million and there are a total of over 25 million 
entries for all organisms combined. By using comparison 
and alignments between EST and genomic sequences, 
these partial tags help to re-build the gene structure within 
each organism. Therefore, clustering large number of 
sequences becomes important to help identify any 
organism’s transcriptome, or transcribed portion of the 
genome. 

A number of DNA and protein sequence alignment 
tools have been established, including FASTA [13, 14], 
BLAST [15, 16, 17, 18, 19], BLAT [20] and MUMmer 
[21]. Determining which alignment method performs the 
best in terms of computational efficiency and desired 
sensitivity under different conditions is not a 
straightforward task. One of the most (if not the most) 
widely used Bioinformatics tools used to study sequence 
similarity is BLAST. As a point of fact, about 140,000 
daily visitors in early 2004 used NCBI’s version via the 
available web page [22]. Hence, the efficiency of three 
versions of BLAST, including NCBI BLAST 
(ncbiBLAST) [15, 16, 18], WU-BLAST (wuBLAST) [19] 
and mpiBLAST [23] are compared using various length 
query sequences and target databases. 
 
1.1. BLAST 
 

In 1990, researchers at the National Center for 
Biotechnology Information (NCBI) released a new 
software package for rapid DNA and protein sequence 



 

  

comparison [15]. This tool, known as Basic Local 
Alignment Search Tool (or more commonly by its 
acronym BLAST) can be used to detect high scoring local 
similarity segments between a sequence and a database of 
one or more sequences. BLAST directly computes the 
approximate alignments by improving upon the ideas of 
dynamic programming algorithm [24, 25], through 
assigning and recording scores in terms of insertions, 
deletions, and substitutions.  

Only relatively conserved subsequences are considered 
in calculating the local similarity between two sequences. 
The initial filter of the BLAST algorithm searches for 
seed sequences of a particular length (11 bases for NCBI 
nucleotide-nucleotide BLAST) with a 100% conservation 
between the target and query sequences. Initial hits of 
seed sequences are then extend to check for larger regions 
of similarity. Though these searches, BLAST makes it 
possible to look for sequence homology within sequences 
by performing database searches, motif searches, and 
gene identification for both DNA and protein sequences. 
The original implementations of BLAST focus on an 
ungapped algorithm, where two sequences could only 
have matches and mismatches scattered throughout. 

In 1995, one of the original authors of BLAST began 
development of the algorithm at Washington University 
(WU), independent of the NCBI effort. In the same year, 
the first release of wuBLAST (version 1.4) was made 
public. The performance of that original effort was very 
similar to ncbiBLAST [19]. However, independent 
development over the last ten years has led to the 
possibility of differences in efficiency. Those possible 
differences are explored. 

In the nearly 15 years since the original development, a 
number of changes have been incorporated [17]. By 1997, 
both flavors of BLAST had incorporated the concept of 
alignments containing gaps [16]. Both NCBI and WU 
versions of BLAST have a number of programs in the 
suite. Among these are programs for nucleotide-
nucleotide comparison (blastn); protein-protein 
comparison (blastp); nucleotide-protein comparison 
(tblastn); and translated nucleotide-nucleotide 
comparison (tblastx). In addition, the NCBI suite offers 
programs for looking at patterns gathered from multiple 
alignments of sequence conservation as seeds into 
sequence alignment. These two programs including 
position specific iterated blast (PSI-BLAST) [16] and 
pattern hit initiated blast (PHI-BLAST) [26]. 

While there are a number of different programs in the 
suite that could be studied, large-scale genomic level 
sequence comparisons are going to be vitally important as 
more and more genomes become available. Therefore, the 
nucleotide-nucleotide program, blastn, will be 
compared for both of these versions of BLAST. 
 

1.2. mpiBLAST 
 

One of the problems in searching large quantities of 
DNA and protein sequences, even with heuristic 
algorithms such as BLAST, is speed. However, BLAST is 
computationally intensive and has qualities that lend it to 
being parallelizable. An open source parallelization of 
BLAST was initiated in 2003 [27]. It implements the 
technique of message passing interface (MPI) to send out 
sequence database fragments to different nodes to perform 
the computation. This tool, mpiBLAST, attempts to 
reduce disk I/O in a single machine and parallelize 
BLAST on PC clusters. 

mpiBLAST parallelizes individual queries. Through 
segmenting, the target database is divided into nearly 
identical length fragments, which are stored on a shared 
device. The size of each fragment is ideally designed to be 
small enough to fit into main memory. Once the 
mpiBLAST request is sent, the query is broadcasted into 
requested nodes. After receiving the responses from the 
slave or worker nodes, the master node assigns individual 
segments by copying them into local storage on one of the 
idle workers. Each node then performs ncbiBLAST of the 
query sequence individually on the assigned fragment of 
the original database. The slave or worker node will not 
return the result to the master node until it completes its 
computation. The master node will keep monitoring and 
assigning the database fragments to idle nodes until all 
fragments have been assigned. When all the requested 
nodes finish their sub-tasks, the master node will combine 
the results and send it back to the job sender. 

Since each slave node works individually, those worker 
processes do not need to communicate to each other. Data 
decomposition is done by command --removedb before 
terminating execution. 
 
1.3. Parallelization 
 

ncbiBLAST, wuBLAST, and mpiBLAST all have a 
level of parallelization built in. The default setting of 
ncbiBLAST is to run on a one processor using multi-
threads. wuBLAST runs two threads at the same time in 
one processor machine. mpiBLAST requires at least two 
nodes and can run on an unlimited amount depending on 
the number processors available. Theoretically, searching 
for sequence similarities in a parallel fashion should be 
faster than using a single processor on the same data set. 
With this pre-assumption, mpiBLAST should be the 
fastest of the three BLAST programs. In addition, the 
more nodes that are used, the faster the job can be 
completed. Taking the parallelization mechanisms into 
account, the efficiency of ncbiBLAST, wuBLAST, and 
mpiBLAST on the three types of problems described in 
the methods section are compared. 



 

  

Command line parameters available in wuBLAST 
allow a smooth transition into distributed database search. 
The command line options, dbrecmax and dbrecmin, 
allow user to block a range of database records to search 
by specifying the first and last database records to search, 
respectively [17]. A query sequence can then be searched 
against different portions of the database spread 
throughout a number of different nodes on a 
multiprocessor system. The results can then be combined 
into a single file, yielding results similar to a serial 
BLAST search. There are not any tools built into 
wuBLAST to handle the communication between 
sequence searches handled in this fashion. 
 
2. Methods 
 
2.1. Types of sequence searches 
 

DNA sequence similarity searches can be performed at 
a number of levels. For instance, it is possible to search a 
single, relatively short sequence (such as a single EST) 
against a larger database and retrieve results from BLAST 
in a manner of seconds. However, interesting similarity 
questions also can occur by searching a large database of 
smaller sequences (in terms of sequence length) to find 
similarities within the sequences (for example, clustering 
of ESTs). A large database of smaller sequences can be 
searched against a database of larger sequences as well to 
find interesting similarities (such as localizing ESTs 
within a genome). In addition, it is important to find 
similarities between databases of longer sequences as well 
(for instance, in finding conservation in the genomic 
sequences of two comparative organisms). The efficiency 
of these three types of searches is studied using 
ncbiBLAST, wuBLAST, and mpiBLAST. 
 
2.2. System and software 
 

The three classes of comparisons made were based on 
the current version of the appropriate BLAST software 
available at the time of analysis. ncbiBLAST 2.2.9 
(release date 5/12/2004) was downloaded from [18]. For 
wuBLAST, an academically licensed version 2.0MP 
WashU [22-Aug-2004] was downloaded from [19]. 
mpiBLAST 1.2.1 (2/6/2004) was downloaded from [24]. 

In order to test the parallel versions, a 16-node (32 cpu) 
Microway Athlon MP GigaCluster™ with an additional 
master node was used. Each node on the cluster has a dual 
AMD Athlon™ MP 2400+ 384K cache, 512MB DDR, 
266 MHz ECC/REG low profile, plus a 40GB hard drive. 
Red Hat Linux version 7.3 with MPICH, Portable Batch 
System (PBS), and Microway Cluster Management 
Software was installed. The performance of wuBLAST, 

ncbiBLAST, and mpiBLAST were compared using three 
different systems. Each job was sent and managed by PBS. 

wuBLAST and ncbiBLAST were also compared using 
two identical PCs. These PCs were equipped with a dual 
AMD Athlon™ MP processor 2800+ 512KB cache. 
These machines also have a 640K system RAM, a 2048 
Extended RAM and a 120G mass drive as a storage 
system. The operating system is Suse Linux version 9.1, 
2.6.4-52-smp i686 machine, and i386 hardware platform. 
 
2.3. Data 
 

Comparisons were made by focusing on human EST 
and genomic data. EST sequence data was downloaded 
using the GenBank Flat File Release 141.0. The resulting 
305 dbEST files were parsed to select only those with 
Homo sapiens as the organism. After the human ESTs 
were filtered, they were masked for repetitive elements 
using RepeatMasker [28].  

The repeat masked human goldenpath genomic 
assembly hg16-Jul2003 was downloaded for use from 
http://hgdownload.cse.ucsc.edu/goldenPath/hg16/chromosomes/. 
Each of the individual human contigs for a particular 
chromosome was placed into a file based on their 
cytogenetic position as an individual sequence entry. 
Blastable databases for each chromosome were created 
using the appropriate tool (xdformat for wuBLAST; 
formatdb for ncbiBLAST; and mpiformatdb for 
mpiBLAST). 

After reviewing all of the filtered data, thirteen 
representative human EST sequence files and five 
representative chromosomal sequence files were chosen 
(Table 1). Each sequence file contains data for multiple  

 
Table 1. Data used for BLAST comparisons 

Sequence 
Name File Size # of  

sequences   
# of  

bases 
chr14 88,935,052 1  87,191,216 
chr22 35,039,241 11  34,352,072 
chr17 80,964,851 30  79,376,966 
chr9 120,146,880 60  117,790,386 
chr1 231,366,553 91   226,828,929 
est283 3,350 7   2,593 
est277 7,259 15  5,781 
est136 300,995 521  210,054 
est147 724,214 1,085  563,737 
est149 1,603,440 2,433  1,244,897 
est126 2,466,032 3,031  2,053,889 
est241 3,312,648 4,991  2,502,256 
est176 7,002,704 10,149  5,274,323 
est113 19,434,153 20,347  16,714,000 
est270 16,447,012 24,764  12,934,924 
est1 19,969,430 36,800  14,021,420 
est91 33,883,614 50,522  27,683,871 
est166 33,064,286 71,748   25,130,960 



 

  

sequences. Each of these files was chosen based on the 
total number of sequences in the file; the total number of 
bases in the file; and the average sequence length to be 
representative snapshots of the entire human EST and 
genomic data sets. 
 
2.4. Comparisons made 
 

In order to determine the efficiency of the various 
implementations of BLAST, the representative EST and 
genomic data are used in four separate comparisons with 
different query sequences (Q) and target databases (T): 
EST (Q) vs. EST (T); EST (Q) vs. chromosome (T); 
chromosome (Q) vs. EST (T); and chromosome (Q) vs. 
chromosome (T).  

EST vs. EST compares when sequences in both the 
database and query are short. Chromosome vs. 
chromosome tests when both query sequences and target 
databases are large sequences. Compared to an EST 
sequence, the number of nucleotide bases in a finished 
chromosome contig is much larger. But the number of 
sequences in each chromosome file is smaller, ranging 
from one sequence (chr14) to 91 sequences (chr1) for the 
representative sequences. Therefore, in EST vs. chromo- 
some, the longer (in base length) sequences were used as 
a database and the smaller sequences were used as the 
query. In order to determine if the order in which these 
comparisons are made makes a difference, we reversed 
the database and query sequences as chromosome vs. EST 
is performed.  

In mpiBLAST, using the command mpiformatdb, the 
database will be segmented into fragments. The database 
created may not contain the same number of sequences, 
but should be nearly equal size overall, if possible. In 
order to determine the number of fragments to use in 
mpiBLAST, three different sequences, chr22, chr1, and  

 
Table 2. Fragment information in mpiBLAST 

sequence # of fragment size per fragment
chr22 9 ~1MB 

 8 ~2MB 
 5 ~4MB 
 3 ~9MB 
 1 ~35MB 

chr1 44 ~2MB 
 30 ~5MB 
 25 ~8MB 
 20 ~11MB 
 15 ~19MB 
 10 ~29MB 
 1 ~227MB 

est166 26 ~1MB 
 13 ~2MB 
 7 ~4MB 
 1 ~26MB 

 

est166 were used. The number of fragments, or nodes 
used, is broken down according to the resulting fragment 
size. The results are shown in Table 2. 
 
3. Results 
 
3.1. EST vs. EST 
 

The first series of comparisons made dealt with short 
length sequence databases versus short length sequence 
queries. All thirteen representative EST sequence files 
(Table 1) were put into an individually blastable database. 
Each database was then searched for comparisons to the 
thirteen representative EST sequence files one at a time.  

What is interesting to note is that when the number of 
sequences in the database is small, ncbiBLAST seems to 
perform marginally better than wuBLAST (Figure 1a). On 
the system tested, the results indicate a delay of up to 
~690 sec (~11.5 min) can be observed on the data used. 

However, as the number of sequences in the database 
increases, the time spent in wuBLAST for sequences 
comparison tends to be smaller in comparison to 
ncbiBLAST (Figure 1b). This is especially evident in the 
four comparisons of the last two sequences, est91 vs. 
est91, est91 vs. est166, est166 vs. est91, and est166 vs. 
est166, where it took wuBLAST 3,669 ~ 7,702 sec (61.2  
~ 128.4 min) to complete the work. It took ncbiBLAST 
8,557 ~ 14,312 sec (142.6 ~ 238.5 min), or approximately 
twice as long, to do the same job. 

The sequence file est270, which contains 24,764 
sequences, needs more time to complete each task 
(Results not shown). When est270 served as a query, it 
even needs more time to finish compared to the other 
three longer sequences, est1, est91, and est166. When 
est270 is compared against itself, it needs 12,822 sec 
(213.7 min) to complete. This makes the cumulative time 
to complete the whole series higher than any series in 
Figure 2. 

Suppose the time needed to complete a database search 
is based on the number of sequences. est166 contains the 
most number of sequences. If est166 is served as a query 
to search database, almost every job needs the longest 
time to complete. However, est270 does not contain the 
largest number of sequences in these thirteen files but 
took the longest time to complete its task against itself. Or 
suppose the larger number of bases per sequence would 
take more time to complete a database search. If the 
number of nucleotide bases is divided by the number of 
sequences in each EST data in Table 1, the average 
number of bases per sequence in the EST dataset ranges 
from ~350 (est166) to ~821 (est113).  est113 should take 
the longest time to complete because it contains the 
largest average number of bases per sequence. But it did 
not. 
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Figure 1a. ncbiBLAST performs best when the 
number of sequences in the database is small 

Figure 1b. wuBLAST performs best when the 
number of sequences in the database is greater 

(w: result run by wuBLAST, n: result run by ncbiBLAST, 283: est283, 241: est241, and so on) 
 

 Figure 2. Cumulative results of wuBLAST and 
ncbiBLAST in the EST vs. EST comparison. 

(283: est283, 277: est277 and so on) 
 

There are 13 EST sequences with different lengths and 
number of nucleotide bases. The cumulative time taken to 
complete all 13 comparisons for each query is shown 
(Figure 2). wuBLAST could take ~750 sec (~12.5 min) to 
~2111 sec (~35.2 min) longer than ncbiBLAST in the first 
six databases, est283, est277, est136, est147, est149, and 
est126 (Figure 2). 

The results for mpiBLAST using an EST vs. EST 
comparison are shown using est166 as the database, and 
four of the representative EST sequences files as the query 
(est136, est147, est241, and est176). Besides a master 
node, all mpiBLAST searches were tested using the 
number of nodes from 1 to 15, due to the upper limitation 
of 16-nodes on the system. The results indicate that as the 
number of nodes used to complete the search increases, 
the total search time decreases (Figure 3). However, as a 
very interesting side note, mpiBLAST does not appear to 
be more efficient at searching for sequence similarities.  

 
3.2. EST vs. chromosome 
 

This series of comparisons was created to test short 
length sequence databases versus long length sequence 
queries. As in EST vs. EST, all thirteen representative 
EST sequence files were put into an individually blastable 
database. Each database was searched for comparisons to 
the five representative chromosome sequence files one at a 
time. 

Each database search is accomplished as a series after 
being searched by 5 queries. Figure 4 shows the 
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Figure 3a. est166 target database vs. est136 
and est147 query sequences. 

Figure 3b. est166 target database vs. est241 
and est176 query sequences. 
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Figure 4. Cumulative results of wuBLAST and 

ncbiBLAST for EST vs. chromosome.  
(283: est283, 277: est277, …) 

 
comparison between wuBLAST and ncbiBLAST as the 
cumulative time to finish the whole series of searches. 
Generally speaking, wuBLAST works better than  
ncbiBLAST in this comparison. On average, 
ncbiBLAST takes 1.6 ~ 4.5 times longer to accomplish 
the whole series of comparisons than wuBLAST. 

The results of wuBLAST (Figure 5) appear to be 
ordered in increasing time. However, the results of 
ncbiBLAST drop in the middle of the graph for chr14.  
The number of nucleotide bases in chr14 is 87,191,216. 
However, there is only one sequence in chr14. It is 
possible this sequence may cause memory problems due 
to its length, or that disk I/O transfer contributes to a 
bottleneck. 
 
3.3. chromosome vs. EST 
 

The gain in efficiency of running mpiBLAST instead 
of ncbiBLAST can be seen after using chromosome 
sequences as the database. The results for mpiBLAST 
using chromosome vs. EST comparison are shown using 
chr22 and chr1 as databases, and two representative EST 
sequences, est136 and est147, as the queries. The results  
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Figure 5. Results of wuBLAST and ncbiBLAST 
for EST vs. chromosome. (w: result run by wuBLAST, 

n: result run by ncbiBLAST, 283: est283, 241: est241, …) 
 
of the comparison among wuBLAST, ncbiBLAST, and 
mpiBLAST are shown in Figure 6a and Figure 6b, with 
mpiBLAST run using a variable number of nodes (as 
listed in the figure legend). As Table 3 illustrates, the 
optimal number of nodes used varies depending upon the 
query sequence and the size of the database fragments. 
 
3.4. chromosome vs. chromosome 
 

A small number of bases per sequence (EST) and large 
number of bases per sequence (chromosome) have been 
chosen as queries to search the databases, in the EST vs. 
EST, EST vs. chromosome, and chromosome vs. EST 
comparisons. If both the query and database contain a 
large number of bases per sequence, it is possible the 
performance would vary drastically due to a high 
memory load and increased disk I/O. In order to test this, 
all five chromosome contig files were put into an 
individually blastable database, and each database was 
searched for comparisons to the five representative 
chromosome sequence files one at a time. 

Twenty-five comparisons were made and four 
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Figure 6a. chr22 target database vs. est136 
and est147 query sequences. 

Figure 6b. chr1 target database vs. est136 and 
est147 query sequences. 



 

  

Table 3. Optimal number of nodes used with 
mpiBLAST on a varying number of database 
fragments. Listed in the first column is the number of 
database fragments. The second and third columns list 
the optimal number of nodes used for two separate 
queries: est136 and est147 with chromosome 22 (chr22) 
as the target database. 
chr22 est136 est147 chr1 est136 est147
mpiBLAST-1 2 3 mpiBLAST-1 2 1 
mpiBLAST-3 4 3 mpiBLAST-10 6 7 
mpiBLAST-5 6 3 mpiBLAST-15 7 7 
mpiBLAST-8 6 5 mpiBLAST-20 6 9 
mpiBLAST-9 4 5 mpiBLAST-25 8 7 
      mpiBLAST-30 5 13 
      mpiBLAST-44 11 15 
 
cumulative results are generated in Figure 7. In general, 
ncbiBLAST could take 1.7 ~ 2.8 times longer to 
complete the whole series of work than wuBLAST. The 
cumulative time to complete the whole series of 
comparisons with chr1 as the database in wuBLAST is 
53,301 sec (~14.8 hr) (results not shown). The result to 
compare chr1 to chr1 in ncbiBLAST took more than 
600,000 sec (~166.7 hr or ~ 6.9 days) to complete.  The 
reason for the tremendous slowdown in ncbiBLAST for 
chr1 is unknown, but could be related to the large 
number of sequences (91) and bases (226,828,929), 
which could cause a heavy memory load. 

 
4. Discussion 
 

Figure 8 shows the results obtained by using different 
numbers of database fragments segmented for 
mpiBLAST. Ideally, the speed up could be predicted to 
be linear, as long as the number of fragments does not 
exceed the number of available processors. Take 13 
fragments in Figure 8a for instance. Theoretically, the 
result running on 2 nodes should be half of the result 
running on 1 node. The result running on 3 nodes should 
be one third of the result running on 1 node, and so on.  
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Figure 7. Cumulative results of wuBLAST and 

ncbiBLAST using chromosome vs. 
chromosome. 

 
Thus, running on 15 nodes should come out with the best 
result. However, as Figure 8a illustrates, the results of 
using multiple database is segmented into 7 fragments, 
running on 3 ~ 4 nodes will provide the best result. If the 
database is divided into either 13 or 26 fragments, the 
best results will be obtained by running on 6 ~ 7 nodes in 
mpiBLAST. However, when the chromosome is used as 
the database, the optimal number of nodes changes 
(Figure 8b). 

The average number of bases per sequence for each 
chromosome is far larger than the average number of 
bases per sequence for the ESTs. Hence, if both the size 
of a chromosome fragment and the size of an EST 
fragment is ~1MB, the chromosome fragment would 
contain fewer sequences with a larger average size than 
the EST fragment.  

blastn compares sequences one by one between the 
database file and the query file. Fewer comparisons in a 
query will result in a smaller time requirement for the 
comparison. Therefore, the number of sequences in the 
chromosome database fragment in the chromosome vs. 
EST comparison is far less than the number of sequences 
in the EST database fragment.  
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Comparison of mpiBLAST
with different number of fragments in database
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Figure 8a. est166 target database vs. est136 
query sequence in mpiBLAST. 

Figure 8b. chr1 target database vs. est136 
query sequence in mpiBLAST 



 

  

The idea behind mpiBLAST is to try to decrease the 
disk I/O. It performs better than ncbiBLAST running on 
a single processor because the content of each fragment 
can be easily fit into cached memory. It avoids the 
allocation problem of large contents in memory causing 
more disk I/O. However, spreading into different nodes 
to complete the whole task required time for 
communication between the master node and 
slave/worker nodes. Figures 6 and 8 indicate where 
potential bottlenecks occur. Another consideration is 
network flow. A network bottleneck could be a problem 
if lots of data need to be transported at the same time. 

 
5. Conclusion 
 

Based on the results above, in general, wuBLAST 
works the best among these three tools using the default 
settings. But when dealing with a smaller number of 
sequences in the database, ncbiBLAST can perform well. 
mpiBLAST can speed up the search when the number of 
sequences in a fragment is small but the number of 
nucleotide bases is large. The user can choose a suitable 
BLAST to work with different size of data and different 
number of sequences. 

To help identify any organism’s transcriptome, or 
transcribed portion of the genome, clustering large 
number of sequences is needed and necessary. It requires 
not only thousands of comparisons to sequences in a 
database, but rather billions of records are there to be 
searched. Therefore, finding the best technique to take 
advantage of computation in parallel becomes paramount. 
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