

Abstract

 A large number of bioinformatics analysis tools
available today are processor intensive. Keeping in mind
that the amount of biological data to be analyzed is
growing steadily, and these tools are not easily
deployable on Beowulf clusters, we propose BioFilter.
BioFilter is a software implementation of an architecture
that provides a framework for the deployment of these
tools on a cluster thereby providing large performance
increases. Another facet of bioinformatics analysis is that
the tools, in general, are not used in isolation, but are
used collaboratively during an analysis. Our architecture
provides a way to create pipelines of different analysis
tools chained together in a cluster environment, passing
the output from one analysis tool as the input to another
analysis tool.

1. Introduction

Informatics based biological research is dependent on
many computational software tools that differ depending
on the research areas, i.e. genome sequencing, genome
annotation, structure prediction, etc. However, the basic
idea is that each software tool transforms data from one
form to another. That data is then analyzed for vital
information or passed along as input to the next
computational tool. Consider a genome analysis team that
sets up analysis pipelines to annotate a genome. A typical
analysis pipeline might include a gene prediction tool like
Glimmer [1,2] to predict the genes in the genome DNA
sequence and a tRNA prediction tool like tRNAscan [3]
to predict tRNA genes. Similarity searches on these genes
could involve BLAST [4] and the output used as is or
passed to other parsing tools for taxonomic analysis. The
gene sequences from the gene prediction tool could serve
as input to secondary structure prediction tools like Psort
[5], and Coils [6], be analyzed for complexity using Seg
[7,8], or used with protein domain search tools like
Prodom [9], Blocks [10,11] and Prosite [12]. The
underlying point is that genome analysis involves a lot of
data streaming between tools which if done manually

would be a waste of time for the annotator and would
waste disk space when storing intermediate data. Finally,
in a research environment, the structure of the analysis
pipeline is not fixed but is dynamic due to the very nature
of scientific inquiry.

The architecture we describe has two advantages: i)
the pipeline allows one to automate and reconfigure
workflows easily; ii) the parallel aspect provides for
performance acceleration. Performance acceleration
might be improved more than what we have achieved
when methodology like MPI is used. However, such
methodologies do introduce unnecessary complexity.
Tradeoffs are required to efficiently address complexity
and performance. Furthermore, the ease with which a new
tool can be introduced into the architecture played an
important role in our decisions.

The BioFilter architecture addresses the aspect of
dynamic analysis pipelines and automatic data streaming
by using the Pipes and Filters architecture pattern [13,
14]. The basic idea of the Pipes and Filters pattern is
"Objects that have compatible interfaces but perform
different transformations and computations on data
streams can be dynamically connected to perform
arbitrary operations" [13]. The tools in the analysis
pipeline are modeled as objects in the Pipes and Filters
pattern. This enables the user to create dynamic pipelines
with automated data streaming.

Parallelization of CPU intensive bioinformatics tools
can be achieved by splitting the input data set and running
these tools as multiple services on the Beowulf cluster.
BioFilter achieves parallelization by using the Broker
architectural pattern [14] to structure and coordinate
services. To implement this architecture we use the
Client-Dispatcher-Server [14] pattern during the design
stage. The server runs the computational tool and since
there are multiple servers running on different nodes, each
computational tool is duplicated. The client manages
splitting of the input data set and plays the role of an
object with a compatible interface in the Pipes and Filters
pattern. The dispatcher acts as an intermediate layer
between the Client and the Server providing location
transparency by means of a name service, and hides the
details of the connection between clients and servers.

BioFilter: An Architecture for Parallel Deployment and Dynamic Chaining of
Standalone Bioinformatics Tools.

Thomas Brettin and Avinash Kewalramani

Genomic Sequencing and Computational Biology Group (B-5), Bioscience Division
Los Alamos National Laboratory. Bikini Atoll Road, SM 30,Los Alamos, NM 87545

brettin@lanl.gov, avinash@lanl.gov

Thus the BioFilter architecture turns the cluster into a data
flow computer, based on the concept of data-driven
computation as defined in [18]. Each pipeline is
analogous to a data flow graph, with each cluster
processor corresponding to a node in this graph. Every
node carries out some operation based on availability of
data. The specific operation carried out by each node and
the routing of data between nodes is all part of the
software implementation of the architecture.

The BioFilter architecture is unique in that it does not

attempt to take the existing tools and alter their algorithms
for parallel execution. This type of approach is tool-
specific and can be slow in terms of development time.
Therefore, attempting to modify the tools is not feasible
as the number of tools to parallelize increases.
Parallelization in BioFilter is achieved by duplication of
computational tools allowing easy and seamless
integration of many bioinformatics tools into a cluster
environment. Since the original computational tools
remain unaltered after being plugged into the BioFilter
architecture, the output of the tool is the same as if it were
run on a workstation in its original form. The BioFilter
architecture is in no way constrained by the cluster
hardware configuration, the kind of operating system or
the queuing system running on the cluster. Our
implementation utilizes the forking capability of UNIX
system, the PERL programming language, and a Beowulf
cluster with shared disk resources.

2. Architectural and Design patterns

Architectural patterns, as used by us, specify the

system-wide structural properties of an application and
have an impact on the architecture of its subsystems. They
provide a set of predefined subsystems, specify their

responsibilities and include rules and guidelines for
organizing the relationships between them [14]. The
dominant architectural patterns for BioFilter are the Pipes
and Filters pattern and the Broker pattern. Pipes and Filter
pattern provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a
filter component with data being passed through pipes
between adjacent filters. Recombination of these filters
facilitates building families of related systems. Because

bioinformatics analysis involves processing data streams,
this pattern was a natural choice. The Broker pattern is
used to structure distributed software systems with
decoupled components that interact by remote service
invocations. Since our architecture aims to provide
bioinformatics tools as services on the cluster, this pattern
was also a natural choice.

Design patterns, as used by us, are medium-scale
patterns that are smaller in scope than architectural
patterns. A design pattern provides a scheme for refining
the subsystems or components of a software system, or
the relationships between them. It describes a commonly
recurring structure of component communication that
solves a general design problem within a particular
context [14]. At the design level, our architecture utilizes
the Pull Pipeline variant [14] of the Pipes and Filter
architectural pattern and relies heavily on the Filter design
pattern [13]. It also relies on the Client-Dispatcher-Server
pattern [14] to implement the broker architecture.

3. Architecture

In genome analysis, input data sets can be thousands
of sequences (DNA or amino acid) obtained either from
an external source or as results from one of the tools in
the pipeline. Tools generally process one element from

Fig 1. Class diagram of the BioFilter architecture

the input data set at a time. For example PFAM [15] takes
one query sequence from the input set of query sequences
and searches it against a database of Hidden Markov
models. The search result is independent of the results of
other query sequences. This allows for splitting the input
data set into mutually exclusive sets that individual
servers can process.

Many bioinformatics tools search a query against a
flat file database, BLAST is one of these tools. Attempts
to increase the performance of these tools could split the
database and distribute it on several nodes on the cluster.
The reason for doing this is that if the database size is
smaller, then it is more likely to fit into main memory
avoiding disk access, and therefore the search is faster.

However, this requires sending the same input element to
many nodes. Synchronization issues, such as building the
result for each input element by accumulating results from
different nodes, affect tool performance, development
time and cost.

Our approach to the database search relies on having a
single monolithic database and process one input element

at a time with a clear distinction between them (partial
results don�t have to be merged). We split the input data
set into individual elements, and each of these elements
goes to a different node for processing. The single
monolithic database is present on a shared disk that is
visible to each node. The alternative strategy of having
the whole database on each node�s local disk was

Fig. 2. Sequence diagram depicting the runtime behavior of the BioFilter architecture

examined but there was no significant performance
improvement. However the local database could improve
performance where the shared disk access is slow due to
network bandwidth limitations.

There is another synchronization issue with the
collection of results. When there is a one-to-one
relationship between the input and output, the results
should be collected and returned in the same order as the

input is received. This does not slow down the process by
a large degree as long as the deviation on the mean
processing time for any individual job is small. In the case
of genome analysis, we find this to be true the vast
majority of the time, particularly if we pre-sort the input
by the size of each input element. This is because the
processing time for these tools is proportional to the input
size. The results are collected from the nodes in the order
in which individual jobs were launched and then passed to
the next processing step in the pipeline or presented to the
user if it is the last processing stage.

The static structure of the system is depicted using the
UML class diagram (Figure.1). The classes represent an
implementation that is based almost exclusively on the
Filter design pattern and the Client-Dispatcher-Server
design pattern. The runtime behavior of the system can be
divided into three distinct phases. These phases are
summarized using a blast filter and a blast parser filter in
Figure 2 and examined in more detail in Figures 3-5.
These phases are: i) initialization of the dispatcher and
servers, ii) transformation of the original record by
pulling it through a series of filters, and iii) shut-down of
the dispatcher and servers.

In the initialization phase (Figure 2, Steps 1-7 and
Figure 3), the parent process (running on a front-end

node) forks off a single child process to run as the
dispatcher. It then creates a new concrete source object
that acts as the data source to the pipeline, in this case a
FastaRecordsFile. Next, the required number of blast
servers and blast parser servers to carry out the job are
instantiated on backend nodes through the queuing system
(in our case OpenPBS) as new processes. One of the first
things a server does is to register with the dispatcher.

In the transformation phase (Figure 2, Step 8-18 and

Figure 4), the parent instantiates the BlastFilter and the
BlastParserFilter and sets the appropriate parameters on
each filter. Filters are instantiated and remain active in the
parent process. The filters pass work off to their
respective servers that were launched in the initiation
phase. A filter remembers how many servers it is
interacting with in order to manage the number of records
being transformed at any give time. The parent chains the
filters together by providing a reference, for example, the
BlastParserFilter is given a reference to a BlastFilter, thus
chaining the two filters together. The getRecord method is
called on the last filter in the pipeline, which in this
example is the BlastParserFilter, and it returns a new
BlastSummaryRecord. Figure 4 shows that the
BlastSummaryRecord is the final product of a data stream
being transformed by multiple filters and not just the
BlastParserFilter.

The final phase represents a smooth shutdown of the
system (Figure 5). In this phase, we shut down the
dispatcher, which in turn shuts down the servers
registered with it. Shutdown is initiated from the parent
and occurs after all the input records have been processed.

Crash recovery is critical for distributed systems like
BioFilter, where servers are distributed on different nodes

Fig. 3. Sequence diagram depicting creation of new servers

and all of them are communicating with the dispatcher or
the client filter on the parent node. Since the
communication between these components is based on the
TCP/IP socket framework, one of the components could
go down and the interacting component would block for
data on a socket causing the application to hang. A
specific example is a pipeline with a single BlastFilter and
20 BlastServers, in which the filter takes 20 sequences at
a time and sends them to the servers for processing and
then blocks for results from these servers. If one of the
nodes running a server goes down, the filter could block
for results from that server forever. Timed sockets
provide a reasonable solution to this problem. In the

socket communication part of the system, the time that the
component blocks for results is predetermined. This time
limit may be variable for different components and for
different communication combinations between
components. In the filter implementations, the time limit
is a settable parameter. As an example, a BlastFilter may
block for 5 minutes for result of a data transformation on
a backend server and then time out, however the same
BlastFilter when communicating with the dispatcher may
only block for 30 seconds and then time out. The
variation in blocking time related to data transformation is
dependent on computational intensity of the job
submitted. The job is resubmitted to a backend server if
the timeout occurs.

The input to output relationship gives rise to three
kinds of Filter variants in the system: i) simple filters
model a one-to-one relationship between input and output,
ii) split filters model a one-to-many relationship between
input and output, and iii) join filters model a many-to-one
relationship between input and output.

Simple filters have a one-to-one mapping between
input and output data. Fasta2TblFilter is an example of
simple filter, which takes in a single FastaRecord and
produces a single record in a tabulated format. Another
example of a simple filter is a TranslationFilter, which
takes in a single FastaRecord containing a nucleotide
sequence and produces a single FastaRecord containing

the translated protein sequence.
Split filters transform a single input data object into

multiple output data objects, with an internal queue to
hold the split results, providing a one to many mapping
between input and output data. GlimmerFilter is an
example of split filter that takes as input a single
FastaRecord containing a nucleotide sequence (a
chromosome or a microbial genome) and produces zero or
more FastaRecords representing the genes contained in
the input sequence. Another example of the split filter is
an OrfFilter that takes a FastaRecord containing a single
nucleotide sequence and produces zero or more
FastaRecords representing the open reading frames of the
input sequence.

 Fig. 4. Sequence diagram depicting transformation of data

Join Filters do the opposite of Split Filters. They
collect all the input data objects and then transform them
producing a single output data object. These filters
provide a many to one mapping between input and output
data. The BuildImmFilter (representing part of the
GLIMMER software) is an example of join filter that
takes in one or more FastaRecords in the tabulated format
and produces a single Interpolative Markov model that
can be used to predict genes.

In any dynamic real-world pipeline, there can be any
possible combination of the above three variants as
demonstrated in a gene prediction pipeline. In a gene
prediction pipeline the concrete source is a
FastaRecordsFile holding a single genome FastaRecord.
This is input to the OrfFilter (split) that identifies open
reading frames (ORF) in the genome and produces many
Fasta formatted ORFRecords. Each of these ORFRecords
is then passed to a Fasta2Tblfilter (simple), which just re-
formats the ORFRecord into a tab-delimited format. All
these tab-delimited formatted ORFs become input to the
BuildImmFilter (join), which produces a single model
file. This model file and the original genome FastaRecord
from the concrete source are then fed to a GlimmerFilter
(split) that produces nucleotide sequence records of the
predicted genes in the genome. These records are then
passed to a TranslationFilter (simple), which produces
FastaRecords containing the corresponding amino acid
sequences.

At the present time, the architecture includes the

OpenPBS queuing system on the cluster
(http://www.openpbs.org). The design is flexible enough
to incorporate new queuing systems and the
implementation does not exclude the use of processors
outside the cluster. The architecture supports interaction
and job submission to servers on any remote machine, not
necessarily one of the cluster nodes, and the
implementation includes this functionality. This type of
integration with nodes outside the cluster is possible since
the communication is socket based and only requires that

the server be ready to accept jobs. This flexibility has
been useful in situations where the tool software is OS or
hardware dependent and cannot be supported by the
existing cluster hardware architecture or OS.

4. Performance results

4.1. System specifications

The Beowulf cluster has 240 nodes running Linux,
each node with a single Pentium III, 1200 MHz processor,
a 20 GB local disk space and memory ranging from 1GB-
2GB. The nodes share a disk via the Netapps disk server
(http://www.netapps.com). The network capacity of the
channel from the node to the switch is 100 Mbps and of
the channel from the switch to the Netapps is a 1 Gbps.

4.2. Benchmark tests

Benchmark tests were conducted on the cluster
described above. A few of these tests are presented next.
Many of our tests were examined using a calculation
called speed-up ratio. The speed-up ratio for x nodes
equals the job execution time on the initial number of
nodes divided by the job execution time on x nodes.
For example.
Initial no. of nodes = 1; Job runtime on 1 node = 50 secs.

No. of nodes = 6; Job runtime on 6 nodes = 10 secs.
Speed-up Ratio (6 nodes) = 50/10 = 5.

Using 1000 identical bacterial protein sequences as
queries against the NR database, the number of BLAST
servers was varied from 1 to 50. As expected, the average
time per BLAST search decreases as the number of nodes
increase (Figure 6). Also, as the number of nodes
increases the speed-up ratio increases (Figure 6). Also to
determine that our architecture scales well as the input
data size increases, we repeated the above test with 10000
sequences. The results for this test were almost identical

Fig. 5: Sequence diagram depicting shutdown of the system

to the one shown in Figure 6 thus proving that our
architecture is data scalable.

We also carried out tests to demonstrate that the
architecture is flexible enough to provide a performance
speed-up for many bioinformatics tools and is not
restricted to only speeding up BLAST. Three hundred
identical bacterial protein sequences were used as input to
the various tools like Blocks, Hmmpfam, and Prosite that
had been plugged into the BioFilter architecture. For
tRNAscan, the input was single record that represented
182,950 bases of a larger genome sequence. Performance
gains for each of these tools were measured and are
presented in Table 1 and 2. The other bioinformatics tools
that have been deployed in our architecture to date and
have realized similar performance gains are PSI-Blast,
Prodom, Psort, Primer3 [16], and Phd [17]. Finally,
speed-up is not the only reason that a tool is integrated
into BioFilter. An example is the Glimmer program. This
program runs sufficiently fast that speed-up is not an
issue. This program and others like Coils and Seg have
been included in the BioFilter architecture for the purpose
of constructing pipelines that consist of many tools.

Data in Table 1 and Table 2 show that for tools that

are computationally light the speed-up ratio stops
increasing and sometimes starts to decrease as the number
of servers increase. This is because the total time to
initialize and run the servers via the queuing system,
distribute the data to be processed and collect the results
is comparable to the time taken to actually process the
data. In the tests we did, the speed-up ratio stops
increasing at around 10-15 nodes for computationally
light tools like Prosite, tRNAScan and Block whereas for
computationally intensive tools like Blast and Hmmpfam
it stops increasing around 40-50 nodes. However, if we
were to use a tool that was more computationally
intensive, then the number of nodes at which speed-up
gain stops should be higher.

5. Future work

The process of incorporating a new tool into the
architecture is straightforward. All the user has to do is
write four derived classes; namely the ToolRecord,
ToolRecordsFile, ToolFilter and ToolServer. Most of the
functionality is part of the base classes that these four
classes will extend. This makes the functionality of the
derived classes lightweight and hence easy to program.
After the initial design was laid out, it took us 3-4 man-
hours for incorporating a new tool.

The process of incorporating a new tool does require a
programmer with knowledge of Perl. We understand that
a biologist/scientist might be interested more in the
analysis of results than in writing these programs and we
think that a GUI and/or a XML based language can
reduce the step of writing code. Future work could focus
on eliminating the step of writing code.

6. Conclusion

In this paper we have presented an architecture, that
provides an environment for easy deployment of tools on

the Beowulf cluster, that are embarrassingly parallel and
whose input data set can be easily partitioned. The
performance gain is two-fold, a development time
performance gain is achieved since the plugging of a new
stand-alone tool into BioFilter is very easy, and a runtime
performance gain is achieved by parallel execution. The
architecture is efficient yet simple due to synergy between
simple and well-documented software patterns. It is also
flexible in that it is independent of the cluster queuing
system and has the capability to interact with nodes
outside the cluster. The usage of Pipes and Filters pattern
eliminates intermediate files, provides filter reuse and
allows rapid prototyping of pipelines by filter
recombination. The use of Client-Dispatcher-Server
pattern provides server redundancy; location and
migration transparency; reconfiguration of servers and

Fig. 6: Searching the NR database using BLAST (Time taken and Speed-up ratio)

Table 1: Time taken for various tools versus the
number of processors used (NT : Not Tested)
 Hmmpfam Blocks tRNAScan

Prosite

1 70924.97 4951.31 4191.27 1781.8
2 35551.28 2511.64 2120.17 1174.2
3 23734.37 1705.08 1442.82 805.40
4 17808.74 1307.40 1088.65 627.70
5 14505.87 1067.18 913.23 497.31
7 10267.57 796.24 687.70 391.10
10 7193.54 580.45 517.60 330.17
13 5763.63 493.28 408.84 250.74
16 4594.60 418.43 338.73 214.49
20 3707.27 429.14 298.26 248.93
30 2537.61 NT NT NT
40 2079.87 NT NT NT
50 1886.69 NT NT NT

fault tolerance. However, our architecture has problematic
issues like difficult pipeline disaster recovery and error
handling and high dependency on the interface of the
dispatcher. In addition, the setup of pipelines can only be
done by writing programs or scripts which use the
existing classes in BioFilter. The solutions to these issues
could be perceived as future work as could be the building
of a GUI that allows construction of pipelines by non-
programmers using simple drag-and-drop techniques.
Acknowledgements: This work was funded as part of the
Sexually Transmitted Diseases Database project under an
Inter Agency Agreement between the National Institute of
Allergy and Infectious Diseases (NIAID/NIH) and the
Department of Energy.

7. References

[1] S. Salzberg, A. Delcher, S. Kasif, and O. White.,"Microbial
gene identification using interpolated Markov models" Nucleic
Acids Research 26:2 (1998), 544-548.

[2] A.L. Delcher, D. Harmon, S. Kasif, O. White, and S.L.
Salzberg., "Improved microbial gene identification with
GLIMMER" Nucleic Acids Research, 27:23, 4636-4641.

[3] Lowe, T.M. & Eddy, S.R. (1997) ``tRNAscan-SE: a program
for improved detection of transfer RNA genes in genomic
sequence'', Nucl. Acids Res., 25, 955-964.

[4] Altschul, S.F.,et al., "Basic local alignment search tool.". J
Mol Bio. 215 403-410(1990)

[5] Nakai K, Kanehisa M.,"Expert system for predicting protein
localization sites in gram-negative bacteria." Proteins.
1991;11(2):95-110.

[6] Lupas A., Van Dyke M., and Stock J.,"Predicting Coiled
Coils from Protein Sequences", Science 252:1162-1164.

[7]Wootton, J. C. and S. Federhen (1993)., "Statistics of local
complexity in amino acid sequences and sequence databases.",
Computers in Chemistry 17:149-163.

Table 2: Speed-up Ratio for various tools versus
the number of processors used (NT : Not Tested)
 Hmmpfam Blocks tRNAScan

Prosite

1 1 1 1 1
2 1.99 1.97 1.98 1.52
3 2.99 2.90 2.90 2.21
4 3.98 3.79 3.85 2.84
5 4.89 4.64 4.59 3.58
7 6.91 6.22 6.09 4.56
10 9.86 8.53 8.10 5.4
13 12.31 10.03 10.25 7.11
16 15.44 11.83 12.37 8.31
20 19.13 11.54 14.04 7.16
30 27.95 NT NT NT
40 34.10 NT NT NT
50 37.59 NT NT NT

[8] Wootton, J. C. and S. Federhen (1996).," Analysis of
compositionally biased regions in sequence databases. Methods
in Enzymology 266: 554-571.

[9] Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, Peyruc
D, Kahn D (2002) ProDom: Automated clustering of
homologous domains. Briefings in Bioinformatics. vol 3.

[10] J.G. Henikoff, E.A. Greene, S. Pietrokovski & S. Henikoff,
"Increased coverage of protein families with the blocks database
servers", Nucl. Acids Res. 28:228-230 (2000).

[11] S.Henikoff, J.G.Henikoff & S. Pietrokovski, "Blocks+: A
non-redundant database of protein alignment blocks derived
from multiple compilations", Bioinformatics (1999)

[12] Sigrist C.J., Cerutti L., Hulo N., Gattiker A., Falquet L.,
Pagni M., Bairoch A., Bucher P., "PROSITE: a documented
database using patterns and profiles as motif descriptors." Brief
Bioinform. 3:265-274(2002).

[13] Mark Grand. "Patterns in Java .Volume 1" ,Second
Edition,Wiley Publication Inc ,2002

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad,Michael Stal."Pattern Oriented Software
Architecture Volume 1:A system of Patterns"
Chicester,England:John Wiley and Sons, 1996.

[15] Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L,
Eddy SR, Griffiths-Jones S, Howe KL, Marshall M,
Sonnhammer ELL. Nucleic Acids Res. 30:276-280 (2002)

[16] Steve Rozen, Helen J. Skaletsky (1996,1997,1998)
Primer3.

[17] B Rost: PHD: predicting one-dimensional protein structure
by profile based neural networks. Methods in Enzymology,
1996, 266, 525-539.

[18] Kai Hwang, Faye E Briggs ,�Computer architecture and
parallel processing� McGraw Hill Inc 1984.

