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Abstract 
 

A successful approach to building QSAR models was 
proposed by other researchers. It uses binary particle 
swarm optimization (BPSO) for feature selection in the 
first stage, and a back propagation neural network in the 
second stage to generate a QSAR model based on the 
features selected in the first stage.  

This paper starts by re-establishing the results of this 
approach on an extended number of data sets. A new 
method is then proposed that addresses the limitation of 
back propagation. The new approach uses particle swarm 
optimization (PSO) in the second stage for training and 
bootstrap aggregation (Bagging) in order to overcome 
the instability of PSO. The proposed approach yields 
robust QSAR models, while reducing the variability due 
to the choice of the back propagation parameters.   
 
1. Introduction  
 

A structure-activity study can indicate which features of 
a given molecule correlate with its activity, thus making it 
possible to synthesize new and more potent compounds 
with enhanced biological activities. QSAR analysis is 
based on the assumption that the behavior of compounds 
is correlated to the characteristics of their structure[1]. In 
general, a QSAR model is represented as follows: 
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where the parameters P1 through Pn are a set of measured 
(or computed) properties of the compounds and C0 
through Cn are the calculated coefficients of the QSAR 
model.  

Several approaches have been previously proposed for 
the development of QSAR models. Linear regression has 
been one of the more successful techniques used to 
construct QSAR models [1] [ 2 ]. However, even with 
moderate numbers of features this technique can result in 
over-fitting [1]. In order to avoid over-fitting, linear 

regression is often used in combination with principal 
component analysis (PCA) [3].      

Recently, neural networks and genetic algorithms were 
found to be efficient in constructing QSAR models [4] 
[ 5 ]. The advantage of using a non-linear method 
compared to a linear method such as linear regression is 
that more complex and non-linear QSAR models can be 
derived, which in turn can better reflect the possible 
relationship between the features of the molecule and its 
activity. In this paper, we propose to investigate the use of 
PSO and neural networks [6] in the construction of QSAR 
models.  

A successful and scalable approach to generating 
QSAR models has been previously proposed by 
Agrafiotis and Cedeno [7]. This approach uses Binary 
Particle Swarm Optimization (BPSO) for feature selection 
followed by a neural network which is trained using back 
propagation (BP) for the construction of the QSAR 
model. The effectiveness of this approach was 
demonstrated on three data sets. In [7], the BPSO-BP 
method was compared with simulated annealing and it 
was shown that BPSO was capable of discovering a better 
and more diverse set of solutions than simulated 
annealing. The major disadvantage of BPSO-BP is the 
difficulty in choosing parameters for the back propagation 
that can ensure efficient network training. For example, 
the tests described in Section 3 show how an inadequate 
choice for the values of the weight updating parameters 
(e.g.., the learning rate) can result in poorly-trained QSAR 
models. We address this limitation by using PSO instead 
of back propagation as a training technique for the neural 
network that constructs the QSAR models. However, 
during our investigation, we established that while PSO 
effectively addresses the issues related to the neural 
network parameters, it yields QSAR models that may be 
unstable. This is not unique to models developed by PSO. 
All neural network models have the potential to exhibit 
instability. In order to capitalize on this instability, 
bootstrap aggregation (Bagging) [8] is used. Bagging is a 
technique that combines the �opinions� of multiple 
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models in such a way that the aggregated results are more 
predictive and robust. The model instability is key to 
obtaining the various �opinions.� 
 
2. Background 
       

This section briefly presents an overview of PSO, 
Binary PSO (BPSO) and neural network technology. The 
benchmark data sets and a description of the process 
underlying the experimental validation for the proposed 
approach are also described. 
 
2.1 PSO 
           

PSO is a non-linear method which falls under the class 
of evolutionary computation techniques. Particle swarms 
explore the search space through a population of particles, 
which adapt by returning to previously successful regions 
[6]. The movement of the particles is stochastic; however 
it is influenced by the particle�s own memories as well as 
the memories of its peers. Each particle keeps track of its 
coordinates in the problem space. PSO also keeps track of 
the best solution for all the particles (gbest) achieved so 
far, as well as the best solution (pbest) achieved so far by 
each particle. At the end of a training iteration, PSO 
changes the velocity of each particle toward its pbest and 
the current gbest value. The individual velocity is updated 
by using the following equation: 

)]()([2)]([1)()1( tixibprtixiprtivtiv −+−+=+ ηηω   (2)  

where vi is the current velocity of the ith particle, pi is the 
position with the best fitness value visited by the ith 
particle, and b(i) is the particle with the best fitness among 
all the particles. Each particle is updated by using the 
following equation: 

)()()1( tvtxtx iii +=+                          (3)     
In the proposed approach, PSO is used to evolve the 

weights of a neural network that generates a QSAR model. 
PSO is initialized so that each dimension of the particle 
represents a weight of the link connecting two processing 
elements (PEs) in the network. PSO tries to minimize the 
error between the target values and predicted values of the 
biological activities of the compounds. At the end of each 
iteration, the smallest fitness value is remembered by 
PSO, and the corresponding particle is retained as gbest.  

 
2.2 BPSO 
 
    The PSO technique described above is the real valued 
PSO, whereby each dimension can take on any real 
valued number. On the other hand, in Binary PSO 
(BPSO), the technique described in this section, each 
dimension of the particle can only take on the discrete 
values of 0 or 1.  

In the proposed approach, BPSO is used in the first 
stage for feature selection. The input presented to the 
network consists of a matrix where the rows represent 
chemical compounds and the columns correspond to 
molecular descriptors. Each compound has a value for a 
given descriptor. An ideal QSAR model will be able to 
accurately predict the biological activity of the 
compounds based on their values for a subset of the 
descriptors. In the remainder of the paper, the terms 
�descriptors� and �features� will be used interchangeably.   

The xij
th dimension of the ith particle can only take on 

the values 0 or 1 indicating whether the jth feature is 
selected or not. The dimensionality of the particle is equal 
to the total number of features.  

In Equation 3, xi is the current position of the ith 
particle. Initially xij is a real number. After the update 
step, xij is converted to a binary value using probabilistic 
selection, which is the fractional value of xij and is treated 
as a probability threshold that determines the subset 
membership. Each feature (i.e., each dimension of the 
particle) is assigned a slice of a roulette wheel whose size 
is proportional to its value xij. The subset of selected 
features is obtained by spinning the wheel and selecting 
the features to which the marker points. Only a predefined 
number of features can be selected. A total of k spins are 
performed, which enables k features to be selected. The 
selected dimensions are set to 1, the remaining 
dimensions are set to 0. The actual probabilities, pij, for 
each dimension are computed as follows:    
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where xij is the fractional coordinate obtained by applying 
Equation 3, and a is a scaling factor referred to as a 
selection pressure. In this paper, a is set to 2 [7]. 

As will be discussed in Section 3, the computational 
advantage of BPSO is that the near-optimal solutions 
could be found much faster than by using a random search. 
This feature allows BPSO to perform feature selection 
efficiently in data sets with large numbers of features.  
 
2.3 Neural networks and back propagation 

     
A neural network has two elementary components: 

processing elements (PEs) and connection weights. Back 
propagation is one of the methods that can be used to 
update the weights of a neural network during training. 
This is the training technique that was used in [7] for the 
successful construction of QSAR models.  

Weight adjustment between PEs in back propagation is 
carried out according to the difference between the target 
value and the output value of the neural network. In back 
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propagation, the difference of the error is measured by the 
mean square error, as shown below: 
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where tkj is the jth target value of the kth compound, and zkj 
is the output.  

The weights are adjusted toward the gradient direction 
that produces a better fitness [6] as shown in the 
following equation:  
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where j, i are the indices of the adjacent layers, wji is the 
weight from the ith PE in the previous layer to the jth PE in 
the current layer and old

jiw∆  is the previous weight 
change. The variable yki represents the ith output for the kth 
pattern. The parameters α and β are positive constants 
called learning rate and momentum rate respectively. 
They control the amount of weight adjustments during the 
weight update process [6].   
 
2.4 Data sets  
 

 Four data sets were used in this study. The Selwood 
data set [9] has 31 compounds with 53 features for each 
compound, and a set of corresponding antifilarial 
antimycin activities. The activity is measured as                
-[log(EC50)], where EC50 is the concentration of an analog 
needed to reduce the concentration of adenine in cell 
lysate  by 50%. This data set has been used by many 
others to construct QSAR models using a variety of 
techniques [4,9,10,11,12]. It was also used to test feature 
selection by using BPSO for feature selection and a neural 
network for building the QSAR models that are trained by 
using back propagation [7]. This approach was compared 
to simulated annealing and was found in [7] to be able to 
identify a better and more diverse set of solutions. 

The BEN data set [13] has 57 compounds with 42 
features for each compound. The biological activity is 
expressed as the binding affinities for the benzodiazepine 
GABAA receptor preparations. This data set was also used 
in [7]. 

The Breneman data set [14] has 64 compounds with 
428 features for each compound. Among the data sets that 
are used in this paper, the Breneman data set has the 
largest number of features. In a previous study by other 
researchers [15], this HIV related data set was used to 
perform feature reduction. The model proposed in [15] 
reduced the number of features to 35, and the results 
proved to be better than the full feature set [15].  

The dihydrofolate reductase (DHFR) data set [16] has 
256 compounds, with 13 features for each compound. The 
biological activity is measured by the concentration that 

inhibits the dihydrofolate reductase enzyme. This data set 
was previously used by others to construct QSAR models 
by using neural network and multiple linear regression 
methods [16].  

In the implementation of back propagation, each input 
can only take on a real value between 0 and 1 [6]. 
Therefore, the feature values and the biological activities 
in the data sets have to be scaled to values between 0 and 
1. However, because networks cannot train when the 
output value is 0, the biological activity had to be scaled 
between 0.001 and 1. 

When PSO is used to update the weights of a neural 
network, the input data does not have to be scaled [6]. 
This finding was verified on the data sets used in this 
paper. However, as previously mentioned, scaling is 
necessary for back propagation, and therefore, for 
comparison purposes, scaling was also used with PSO.  
 
2.5 Evaluation Method 
 

Leave-n-out testing, which is regarded as an indication 
of the generalization ability of the QSAR model [2], was 
used to assess the quality of the models obtained by the 
various approaches. Each time, only a subset of the 
compounds is used in the training process. For each data 
set, approximately 10%-15% of the compounds were left 
out for testing. The experiment is carried out multiple 
times until each compound is left out once. The predictive 
ability of the network is measured by the average error of 
the leave-n-out compounds. Equation 7 shows how this 
average error is calculated. 

    ∑ −=
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where Ti is the target value of the ith compound, and Oi is 
the output value of the ith compound. The overall average 
error is calculated for all the compounds (i.e., both testing 
and training compounds), and the average testing error is 
the average error for the n compounds that are left out for 
testing. 

The correlation coefficient is also an index that can be 
used to measure the quality of the QSAR models 
generated by the various approaches. Equation 8 shows 
the Pearson correlation coefficient 
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where n is the number of test patterns, and x and y are the 
measured and predicted biological activities of the 
compounds, respectively.  

Since the test data set contains only a small number of 
compounds, the correlation coefficients of the test set are 
not significant enough to represent the relationship 
between the target values and the predicted values. 
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Therefore, only the overall correlation coefficient (i.e. the 
correlation coefficient for all the compounds: testing and 
training) is calculated for each training set. 

The reported testing correlation coefficient is calculated 
by cross validating all the predictions for all the test data 
sets (i.e., considering the correlation coefficient between 
the biological activity and the predicted activity for every 
compound throughout the data set). Therefore, for each 
data set, only one testing correlation coefficient is 
reported. 
       
3. Results 
  

For all the experiments conducted in this paper the 
number of features was fixed. The number of features for 
the Selwood and BEN data sets was set according to the 
results presented in [7]. The number of features for the 
Breneman and DHFR data sets was set to 3. Exploring the 
optimal number of features for each data set is the subject 
of future work.  
 
3.1 BPSO-BP         
 

The approaches investigated in this paper have a 
general architecture that consists of two stages. In the first 
stage BPSO is used for feature selection and in the second 
stage a neural network is used to generate a QSAR model 
based on the features selected in the first stage. The first 
approach, which is discussed in this subsection, will be 
referred to as BPSO-BP. This approach uses back 
propagation to train the neural network in the second 
stage. The second approach, which is discussed in the 
next subsection, will be referred to as BPSO-PSO.  

BPSO-BP was initially proposed in [7] and it is used in 
this paper as a base case for comparison. In [7], BPSO-BP 
was shown to successfully generate highly predictive 
QSAR models. In this paper, this result is established for 
an extended number of data sets. Furthermore, the 
difficulty in selecting an adequate learning rate for back 
propagation is demonstrated.  

BPSO-BP consists of two nested loops. BPSO is the 
outer loop, and each iteration of this loop generates a set 
of selected features. The neural network with back 
propagation is the inner loop. The neural network takes 
the selected features as input, and is trained for a 
predefined number of iterations. The model fitness is fed 
back to the BPSO stage to guide the feature selection in 
the outer loop.  

The population size in BPSO was set to 10 particles, 
and BPSO training was carried out for 50 iterations (the 
outer loop). The neural network was trained for 300 
iterations (the inner loop) for each BPSO iteration.  

Table 1 shows the leave-three-out result for the 
Selwood data set. The lowest average testing error 

corresponds to the case where compounds 25 through 27 
were left out and the highest average testing error 
corresponds to the case where compounds 1 through 3 
were left out. The overall correlation coefficient is 
0.8899, which is comparable to the result obtained in [9] 
(0.90) by using linear regression, and to the one obtained 
in [7] (0.912). The features selected by BPSO-BP in this 
paper are similar to those selected by the methods 
presented in [7]. For example, features 3, 4, 49 
correspond to the first ranking set of features selected in 
[7], and 31, 34, 49 correspond to the second ranking set of 
features. These two sets were both selected as shown in 
Table 1. Furthermore, feature 49 is the most frequently 
selected feature in both Table 1 and in [7]. All the features 
selected in Table 1 were also selected in [7] except for 
feature 44 which was not selected in [7]. The feature set 
that contained feature 44 produced the highest testing 
error in Table 1. This may be indicative of the fact that 
the method failed to train in this case. The testing 
correlation coefficient is 0.6902, which is lower than the 
overall correlation coefficient (0.8899). 

      
Table 1. BPSO-BP for the Selwood data set 

 
Left out 

Compounds 
Selected 
features 

Overall 
avg error Roverall 

Avg 
testing 
error 

1-3 3, 4, 44 0.1122 0.8139 0.3253 
4-6 3, 6, 49 0.0948 0.9062 0.1152 
7-9 32, 49, 50 0.0943 0.8971 0.1428 

10-12 4, 34, 49 0.1071 0.8836 0.1384 
13-15 3, 4, 49 0.0998 0.9021 0.2085 
16-18 31, 34, 49 0.1048 0.8794 0.2254 
19-21 31, 34, 49 0.0950 0.8904 0.1749 
22-24 34, 49, 51 0.0934 0.9081 0.1093 
25-27 35, 49, 51 0.0897 0.9112 0.0651 
28-31 35, 49, 51 0.0897 0.9072 0.1200 
Avg NA 0.0981 0.8899 0.1625 

Rtesting = 0.6902 
 
It should be noted that low average testing error and 

overall average error, and high overall correlation 
coefficient and testing correlation coefficient are desired. 
The minimum value for the average testing error and 
overall average error is zero, whereas the maximum value 
for the overall correlation coefficient and testing 
correlation coefficient is one. 

For the BEN data set, the lowest average testing error 
(0.0639) corresponds to the case where compounds 41 
through 44 were left out, and the highest average testing 
error (0.1862) corresponds to the case where compounds 
29 through 32 were left out. The overall correlation 
coefficient (0.9357) is comparable to the one obtained in 
[7] (0.951). Features 0 and 1 are the most frequently 
selected features in both [7] and in this paper. 
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The results obtained for the Selwood and BEN data sets 
together with the results reported in [7] show that BPSO 
can successfully identify the key features needed to 
construct predictive QSAR models. BPSO accomplishes 
this result by using 10 particles and 50 iterations, which 
adds up to 500 searches out of 23,426 and 52,426 possible 
solutions for the Selwood and BEN data sets, respectively. 
The quick convergence of BPSO allows it to process a 
large number of features efficiently. 

For the Breneman data set, the lowest average testing 
error (0.0427) corresponds to the case where compounds 
41 through 44 were left out, and the highest average 
testing error (0.5189) corresponds to the case where 
compounds 33 through 36 were left out. This latter case is 
an obvious case of failure to train, which affects the 
average testing error of the model.  

Also, as opposed to the previous two data sets, the 
model generated for the Breneman data set seems to be 
less robust. A new set of features was selected every time 
a different set of compounds was left out. Furthermore, 
only few of the features were selected more than twice.   

For the DHFR data set, the lowest average testing error 
(0.0253) corresponds to the case where compounds 61 
through 80 were left out, and the highest average testing 
error (0.1328) corresponds to the case where compounds 
241 through 256 were left out. For this data set, 12 out of 
the 13 times, BPSO selected the feature set 8, 9, and 10.  

While the above results demonstrate that BPSO-BP can 
construct predictive QSAR models, the choice of the 
appropriate network parameters, as illustrated by the 
following experiments on the BEN data set, is critical for 
adequate neural network training. 

In the first experiment, six runs of the QSAR modeling 
by using BPSO-BP were carried out. Compounds 13 
through 16 of the BEN data set were left out. The learning 
rate value was set to 1. In the six runs, the number of 
training iterations was increased from 100 to 600. Figure 
1 shows the overall average error (the lower line) and the 
average testing error (the upper line). As the number of 
training iterations increases, the training error decreases 
from 0.0940 for 100 iterations to 0.0622 for 600 
iterations. However, when 500 training iterations are 
used, the overall average error jumps to 0.1006, which is 
the highest value of the overall average error among the 
six runs. The average testing error oscillates as the 
number of iteration changes. The large value of the 
learning rate is responsible for the oscillation. As will be 
shown next, this oscillation can be avoided by selecting a 
smaller learning rate. However, this will be at the cost of 
an increase in computational time. 

Figure 2 shows the results of the second experiment in 
which another six runs of QSAR modeling by using 
BPSO-BP were carried out. In this case, the learning rate 
was set to 0.01. Figure 3 shows the overall average error 
(the lower line) and the average testing error (the upper 

line) of this experiment. As the number of training 
iterations increases, both the training error and testing 
error decreases. However, the convergence progresses 
very slowly. With 600 iterations, the overall average error 
is 0.1200 and the average testing error is 0.1460, these 
values are considerably higher than their values at 
convergence (i.e. 0.0668 and 0.0709, respectively). 

Choosing the appropriate learning rate is often difficult 
and data set dependent. 
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Figure 1. Average testing and overall average 
errors with constant learning rate equal to 1 
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Figure 2. Average testing and overall average 
errors with constant learning rate equal to 0.01 

 
3.2 BPSO-PSO 
 

The prediction ability of the previous approach was 
shown to be sensitive to the learning rate, a back 
propagation training parameter. In this section, an 
approach that reduces the dependency of the prediction 
ability on the network parameters is proposed. This 
approach was earlier denoted by BPSO-PSO and has a 
similar first stage as the BPSO-BP. Both methods use 
BPSO for feature selection. However, they differ in the 
second stage. In BPSO-PSO, PSO instead of back 
propagation is used in the second stage to train the weight 
values of the neural network.  

In the second stage of BPSO-PSO, each particle 
represents a set of weights, and the mean square error 
produced by the neural network is used as the fitness 
measure of PSO. The updated particles are fed to the 
neural network as new weights. It is expected that, after a 
certain number of iterations, the near-optimal weights can 
be obtained.  
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Unlike in back propagation where the learning rate 
governs the amount of adjustment to the weights in every 
iteration, in PSO the search for a solution is guided by the 
best solution that has been achieved so far. In addition, no 
data set dependent parameters need to be tuned to ensure 
convergence.   

 In this implementation, BPSO is carried out for 50 
iterations with 10 particles, and PSO is carried out for 100 
iterations with 20 particles for each BPSO iteration.  

For the Selwood data set, the lowest average testing 
error (0.0604) corresponds to the case where compounds 
7 through 9 were left out, and the highest average testing 
error (0.3246) corresponds to the case where compounds 
25 through 27 were left out. The overall correlation 
coefficient (0.8768) is close to the result obtained in [9] 
(0.90) by using linear regression and to the one obtained 
in [7] (0.912) by using BPSO-BP. The features selected in 
this case are similar to those selected by BPSO-BP. 
Furthermore, all the features selected in this case were 
also selected in [7] except for feature 32. For both BPSO-
BP and BPSO-PSO, feature 49 is the most frequently 
selected feature. The testing correlation coefficient is 
0.7024, which is slightly higher than the testing 
correlation coefficient (0.6902) obtained by using BPSO-
BP.  

For the BEN data set, the lowest average testing error 
(0.0478) corresponds to the case where compounds 9 
through 12 were left out, and the highest average testing 
error (0.3442) corresponds to the case where compounds 
21 through 24 were left out. The overall correlation 
coefficient (0.9092) is comparable to that obtained in [7] 
(0.951) by using BPSO-BP. Also, the selected features are 
similar to those selected in [7]. The testing correlation 
coefficient (0.7612) is slightly lower than the one 
obtained by using BPSO-BP (0.7987). 

For the Breneman data set, the lowest average testing 
error (0.0254) corresponds to the case where compounds 
25 through 28 were left out, and the highest average 
testing error (0.3744) corresponds to the case where 
compounds 1 through 4 were left out. Similar to the 
BPSO-BP case, this approach also selects completely 
different features each time a new set of compounds are 
left out. Furthermore, there is little overlap between the 
features selected by BPSO-BP and those selected in this 
case by BPSO-PSO. Whether this indicates a very diverse 
solution space for the Breneman data set, or that some of 
the features are highly correlated is the subject of current 
investigation. The testing correlation coefficient (0.6942) 
is slightly higher than the one obtained by using BPSO-
BP (0.6427). 

For the DHFR data set, the lowest average testing error 
(0.0430) corresponds to the case where compounds 81 
through 100 were left out, and the highest average testing 
error (0.1396) corresponds to the case where compounds 
241 through 256 were left out. Interestingly, this approach 

selects exactly the same set of features every time. The 
selected features in this case also overlap with the ones 
selected by BPSO-BP. Features 1, 8 and 9 were selected 
every time for the DHFR data set with BPSO-PSO.  
These same features were selected most of the time 
except for one case where features 1, 8, and 9 were 
selected for the DHFR data set with BPSO-BP. The 
testing correlation coefficient (0.7829) obtained by using 
BPSO-PSO is slightly higher than the one obtained by 
using BPSO-BP (0.7384). 
       
3.3 Discussion 

 
Two methods for QSAR modeling are discussed in this 

paper. The first method, BPSO-BP, was already proposed 
in the literature [7] and BPSO-PSO is introduced in this 
paper. The results obtained with four different data sets in 
each case are presented. Table 2 summarizes the findings 
which indicate that the two approaches are comparable. 
 

Table 2.  Average errors and correlation 
coefficients 

 
 Selwood BEN Breneman DHFR 

Overall avg 
error 0.0981 0.0711 0.0953 0.0891 

Roverall 0.8899 0.9357 0.8668 0.7613 
Avg testing 

error 0.1625 0.1249 0.1483 0.0925 B
PS

O
-B

P 

Rtesting 0.6902 0.7987 0.6427 0.7384 
Overall avg 

error 0.1032 0.0847 0.0963 0.0869 

Roverall 0.8768 0.9092 0.8621 0.7892 
Avg testing 

error 0.1637 0.1472 0.1532 0.0934 

B
PS

O
- P

SO
 

Rtesting 0.7024 0.7612 0.6942 0.7829 

 
     Compared to BPSO-BP, BPSO-PSO produced less 

stable results. While back propagation uses a predefined 
way of updating the weights, the weight updating process 
in PSO is influenced by random factors. Also PSO 
explores a larger candidate solution space than back 
propagation. Both of these aspects of PSO may lead to 
less stable results. To illustrate this, consider the case 
where compounds 1-3 are left out in the Selwood data set. 
Ten BPSO-BP models and ten BPSO-PSO models were 
built, and the standard deviations of the ten results were 
calculated as shown in Table 3. The last row of Table 3 is 
the standard deviation of the corresponding column. 
Compared to BPSO-BP, BPSO-PSO has higher standard 
deviation of the overall average error, the average testing 
error and the overall correlation, which indicates a less 
robust QSAR model generation process.  One approach to 
addressing this instability is to run multiple instances of 
BPSO-PSO and retain the QSAR model with the highest 
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fitness score. The Bagging technique discussed in the next 
section builds on this idea. 

 
Table 3: Standard deviation of BPSO- BP and 

BPSO-PSO results 
 

 BPSO-BP BPSO-PSO 

 
Overall 

avg 
error 

Roverall 
Avg 

testing  
error 

Overall 
avg 
error 

Roverall 
Avg 

testing  
error 

1 0.1323 0.7659 0.3555 0.1229 0.8154 0.2931 
2 0.1315 0.7639 0.3533 0.1067 0.8830 0.1317 
3 0.1272 0.7667 0.3717 0.1150 0.8268 0.2916 
4 0.1324 0.7663 0.3553 0.0977 0.8873 0.1696 
5 0.1373 0.7498 0.3762 0.1290 0.7012 0.3472 
6 0.1326 0.7678 0.3702 0.1213 0.7773 0.3682 
7 0.1352 0.7636 0.3763 0.1205 0.7970 0.3432 
8 0.1327 0.7673 0.3546 0.1286 0.7573 0.3872 
9 0.1324 0.7674 0.3546 0.0931 0.9007 0.1226 
10 0.1320 0.7664 0.3568 0.1298 0.7657 0.3604 
 0.0022 0.0065 0.0098 0.0131 0.0523 0.1019 

 
4. Bagging method for QSAR 
     

The bootstrap aggregation (Bagging) [8] method 
aggregates the results from different models. The success 
of this technique relies on the instability of the prediction 
method [8]. If slight perturbation of the training process 
results in significant changes in the outcome, then 
bagging can improve the robustness of the QSAR models. 

In order to implement bagging, the data set is split into 
two sets: the training set and the test set. The training set 
is used to train the bagging model, and the test set is 
retained to test the quality of the bagging model. To 
provide enough data information for training, usually a 
large portion of the data is used as the training set and a 
small portion as the test set. Multiple neural network 
models are built based on the training data set. Each 
model is referred to as a bag. Each time, a different small 
portion of data is left out from the training set, forming a 
sub-training set. The sub-training set is constructed by 
randomly sampling with replacement a predefined 
percentage of compounds from the training set. Therefore, 
some compounds may appear in the sub-training set more 
than once. This characteristic creates more instability in 
the models generated across the bags, which is a desirable 
feature as explained in [8]. The sub-training set is the data 
set that is fed into the BPSO-neural network system 
during training. The validation set is used to establish the 
predictability of the neural network, (i.e., the quality of 
the model). The bagging model is constructed by 
averaging the output of all the models generated by using 
the above process.    
 
 
 

4.2 Results and discussion 
     

The bagging technique was implemented for BPSO-
PSO. As suggested in [8], 20 bags were built for each 
QSAR model. Also, as suggested in [15], 60% of the 
entire data set was randomly picked as the training data 
set. Furthermore, out of the data set used for training, 
10% was left out for testing as in the experiments 
discussed in Section 3.  

 
Table 4: Standard deviation with and without 

bagging 
 

 

Standard 
Deviation 

of the 
Overall avg 

error 

Standard 
Deviation 
of Roverall  

Standard 
Deviation 

of the 
Avg 

testing 
error 

Selwood 0.0066 0.0095 0.0162 
BEN 0.0048 0.0117 0.0250 

Breneman 0.0507 0.0279 0.0761 

B
ag

gi
ng

 
DHFR 0.0087 0.0136 0.0092 

Selwood 0.0257 0.0840 0.0842 
BEN 0.0379 0.0788 0.1136 

Breneman 0.1302 0.2689 0.1980 

W
ith

ou
t 

B
ag

gi
ng

 

DHFR 0.0202 0.0494 0.0745 
 
To illustrate the importance of bagging in generating 

robust QSAR models, ten bagging models and ten models 
without bagging were built for each data set using BPSO-
PSO, and the overall average error, overall correlation 
coefficient and average testing error were obtained for 
each model. The standard deviation for all three 
parameters and for each model was calculated and is 
listed in Table 4. For each data set, models with bagging 
have smaller standard deviation for overall average error, 
overall correlation coefficient and average testing error. A 
smaller standard deviation indicates a more robust QSAR 
model generation process.  

It can be argued that bagging increases computational 
time and places the BPSO-PSO with bagging at a 
disadvantage compared to BPSO-BP with a small 
learning rate which was itself computationally intensive. 
However, the computation needed to generate the bags 
can be done in parallel whereas the computation 
underlying back propagation is inherently sequential and 
cannot be parallelized.  

 
6. Conclusions and Future Work 

 
Two approaches for constructing QSAR models and 

selecting relevant features have been discussed in this 
paper. The approaches are based upon computational 
intelligence tools such as PSO and neural networks. Four 
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data sets have been used to test each of the two 
approaches.  

Both BPSO-BP and BPSO-PSO produce QSAR models 
with comparable predictive capabilities. However, the 
limitation of BPSO-BP lies in the difficulty of 
determining some of the back propagation neural network 
parameters. For instance, a large value of the learning rate 
for back propagation enables the network to converge 
rapidly. However, oscillation may occur around the most 
predictive QSAR model. A small value of the learning 
rate avoids this oscillation. However, this is at the cost of 
a longer computational time. BPSO-PSO addresses this 
problem by using PSO to update the weights in the neural 
network. However, due to the random nature of PSO, 
BPSO-PSO produces less robust QSAR models compared 
to BPSO-BP. For this purpose, bagging is used to 
minimize the instability of the QSAR models. The BPSO-
PSO approach with bagging produces robust models that 
are as predictive as the BPSO-BP approach.  

The number of features selected for the QSAR models 
was fixed in each of the experiments conducted in this 
paper. Determining the appropriate number of features is 
the subject of future work. 
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