
 1

Abstract*

The research described in this paper highlights a
fruitful interplay between biology and computation.
The sequencing of complete genomes from multiple
organisms has revealed that most differences in
organism complexity are due to elements of gene
regulation that reside in the non protein coding
portions of genes. Both within and between species,
transcription factor binding sites and the proteins that
recognize them govern the activity of cellular pathways
that mediate adaptive responses and survival.
Experimental identification of these regulatory
elements is by nature a slow process. The availability
of complete genomic sequences, however, opens the
door for computational methods to predict binding
sites and expedite our understanding of gene
regulation at a genomic level. Just as with traditional
experimental approaches, the computational
identification of the molecular factors that control a
gene�s expression level has been problematic. As a
case in point, the identification of putative motifs,
which is the subject of this paper, is a challenging
combinatorial task. For it, powerful new motif finding
algorithms and high performance implementations are
described. Heavy use is made of graph algorithms,
some of which are exceedingly computationally
intensive and involve the use of emergent mathematical
methods. An approach to fully dynamic load balancing
is developed in order to make effective use of highly
parallel platforms.

1. Introduction

* This research has been supported in part by the National Science
Foundation under grants EIA-9972889 and CCR-0075792, by the
Office of Naval Research under grant N00014-01-1-0608, by the
Department of Energy under contract DE-AC05-00OR22725, and by
the Tennessee Center for Information Technology Research under
award E01-0178-081.

1.1. Computational identification of cis-

regulatory elements and modules

Coordinate regulation of gene expression provides
the basis for activation and repression of specific
cellular pathways and the adaptive response to
changing cellular conditions. Although the coding
regions of each gene involved in any given pathway
are now/will soon be known as mouse and human
genome sequence are annotated, the molecular
mechanisms that mediate shared regulation and
determine which subsets of genes interact in specific
pathways are poorly understood. These molecular
mechanisms, consisting of transcription factor (TF)
proteins and their DNA binding sites (TFBSs), form
the architecture of gene regulatory networks, which in
turn underlie basic physiology and adaptive responses
within an organism. While traditional approaches to
identifying factors that control regulation of a single
gene have been largely experimental, the availability of
complete genomic sequence for human and mouse
opens the door for computational approaches to predict
regulatory sequence with a throughput that surpasses
the scope of experimental techniques.

Eukaryotic gene transcriptional regulation is now
appreciated to be organized in 2 basic levels. The first
level consists of individual TFBSs, short motifs (8-15
bp) in non protein-coding DNA to which TFs bind in
cis. A single TF protein binds not to an exact DNA
motif but rather to a consensus motif in which the
precise identity of some bases is critical while other
bases within the string can vary. Specific collections
of TFBSs are organized into modules that mediate a
gene�s reponse to a specific factor, representing the
second level of eukaryotic regulatory organization
(reviewed in Halfon and Michelson [15] and Bolouri
and Davidson [8]). For example, transcriptional
control of the Endo16 gene during sea urchin
development is mediated through 56 individual TFBSs
that cluster into 7 regulatory modules within 2.2 kb of
DNA sequence upstream of the gene�s transcriptional
start site [36]. Genes that have shared expression

High Performance Computational Tools for Motif Discovery*

N. E. Baldwin, R. L. Collins, M. A Langston, C. T. Symons
Department of Computer Science, University of Tennessee

M. R. Leuze, B. H. Voy
Oak Ridge National Laboratory

 2

patterns under a specific condition�for example,
genes up-or down-regulated in pancreatic beta cells in
response to glucose exposure�are widely assumed to
share at least some TFBSs or modules that, coupled
with the corresponding TFs, mediate a common gene
expression response. This �guilt-by-association�
concept is increasingly used as a starting point from
which to identify a subset of genes that can be mined
for the presence of shared regulatory mechanisms [28].

1.2. Review of Computational Approaches

Motif-finding. The body of literature on motif
discovery is extensive. We are aware of over 300
papers directly related to computational methods
designed to identify transcription factor binding sites in
DNA sequences. The difficulty of the problem has led
to the development of numerous approaches for
analyzing non-coding regions of eukaryotic genomes
with the goal of finding those elements that regulate
gene expression.

For TFs for which the consensus binding site is
known, additional sites in collections of genes can be
discovered by searching for hits against a position
weight matrix (PWM) constructed from the statistical
likelihood of base representation at each position of the
binding site. However, robust matrix models require
extensive experimental data from which to construct
them, and at present only a small subset of TFs in
multicellular eukaryotes are represented in databases
such as ConSite [34]. Therefore ab initio approaches to
TFBS discovery hold the most promise for rapid
discovery of motifs, particularly given the ongoing
annotation and availability of eukaryotic genomes.
Most approaches to motif discovery search for patterns
that are overrepresented in the regulatory regions of
orthologous or coregulated genes. Search strategies fall
into two major categories, those that use local
heuristics, such as Gibbs sampling [21] or expectation
maximization [5, 22], and those that use globally
optimal methods, such as enumeration of all motifs in
the search space [29, 32, 33]. Globally optimal
methods are exhaustive and deterministic, but, due to
computational complexity, tend to be limited to
detection of short patterns. Heuristic approaches may
find longer patterns, but may fail to converge to a
globally optimal solution. For a recent review of motif
discovery methods, particularly heuristic approaches,
see Wasserman and Krivan [34].

Some methods use a process known as
�phylogenetic footprinting,� in which orthologous
sequences are compared to first identify highly
conserved regions of noncoding DNA, under the
premise that selection pressure for conservation is due

to the presence of functional elements within.
Searching for motifs only within conserved regions is
an effective way to limit the search area to the most
meaningful regions, thus significantly reducing the
numbers of false positive motifs that are identified. In
fact, Krivan and Wasserman [20] recently reported that
regulatory elements were ~ 320 times more likely to
occur in conversed vs. nonconserved regions, based on
computational and experimental findings from a set of
liver-specific genes. These methods may compare two
or more orthologs, may take phylogenetic relationships
into consideration [7], and may be based on global or
local alignment. Clustal W [31] and DIALIGN [26] are
methods for multiple sequence alignment that are used
to locate local genomic regions of similarity.

Widely used motif discovery algorithms based on
Gibbs sampling include AlignAce [18], ANN-Spec
[35], BioProspector [24], Co-Bind [14], and MDscan
[25]. Among other heuristic approaches are MEME
[4], which uses expectation maximization, and
CONSENSUS [16, 17], which uses a greedy algorithm.
Hybrid algorithms combining concepts from sample-
driven heuristics and pattern-driven enumeration are
beginning to emerge; among these hybrid algorithms is
MULTIPROFILER [19].

Module-finding. Despite the increasing recognition
that modules, rather than individual TFBSs, mediate
transcriptional regulation in eukaryotes, computational
approaches to predict modules lag far behind motif
discovery efforts. The simplest approach has been to
search for pairs of TFBSs that either overlap or lie in
close proximity to each other, for which the spacing
between sites is relatively invariable. This method has
proven successful for specific combinations of TFBSs
that are known to work in concert, such as Mef2 and
MyoD [11], and it may also be useful for recognizing
pairs of sites that bind TFs that function as
heterodimers, as do many nuclear hormone receptors.
However, simply searching for pairs of sites
oversimplifies the typical biological situation and is
unlikely to define more than a very small fraction of
regulatory modules. Approaches that are not restricted
to either only pairs of sites or to strict rules about
spacing between TFBSs are much more likely to
accurately model the molecular reality of
transcriptional regulation. Recent success has been
reported for techniques that search for modules by
cluster analysis of defined TFBS [6, 13, 15], and
methods such as this benefit from the lack of
restrictions on numbers and positions of TFBSs within
a module.
1.3. Lipogenic genes

 3

Due to their agricultural importance in several species,
the genes involved in lipogenesis represent an
extremely well-characterized set of genes in terms of
their expression levels and the TFBSs that mediate
their individual regulation. Synthesis and storage of
lipids from carbohydrate precursors allows an
organism to store excess energy for later periods in
which calories may be scarce. This lipogenic response
is innately sensitive to both the presence of excess
carbohydrates, such as glucose, and to hormones such
as insulin that signal an organism that energy is
abundant. Lipogenesis is activated by coordinate
regulation of genes encoding enzymes involved in the
pathway of lipid synthesis from glucose precursors.
An abundance of prior studies demonstrate that the
majority of this activation is due to changes in the
genes� transcriptional activities, and many important
TFBSs have been identified for genes in the lipogenic
pathway (reviewed in Foufelle and Ferre [12]).
Consistent with the guilt-by-association concept,
several TFBSs are found in multiple lipogenic genes,
suggesting that common regulatory mechanisms
underlie at least a subset of shared regulation.
Therefore, due to the wealth of experimentally-
confirmed binding site data that exists for these genes
and the detailed knowledge about their regulation
during changing nutritional conditions, we selected this
class of genes to which to apply our system for first
identifying potential TFBSs and then collating these
sites into regulatory modules.

2. The Motif Discovery Toolkit

The suite of novel computational tools that we have
developed for the Motif Discovery Toolkit [23]
constitute a new approach for identifying functional
DNA in non-coding regions by sequence comparison.
Our approach differs from other motif-finding methods
in a number of important ways, which collectively
make it unique: it is applicable to any collection of
related genomic sequences; it does not depend on the
global alignment of these sequences; it does not require
a motif to be present in each sequence of the collection,
and it is able to discover multiple copies of a motif in a
single sequence; it can find multiple motifs in a single
run; and it is a general computational method, that is, it
does not require specific biological information about
the sequences being examined.

Our motif discovery toolkit contains tools for a
large number of tasks, including filtering sequences,
finding short inexact matches, combining short
matches, constructing graphs to represent relationships
between motifs, identifying interesting graph
structures, producing position weight matrix and

profile hidden Markov models of motifs, scoring
sequences relative to a motif model, and searching for
inexact inverted and direct palindromes.

A significant feature of our Motif Discovery Toolkit
is its extensive use of graph algorithms. Few previous
approaches to motif discovery have made explicit use
of graph algorithms. An exception is WINNOWER
[27], which transforms the search for motifs to the task
of finding large cliques in multipartite graphs but is
limited to problems of relatively small size. The
integration into the Motif Discovery Toolkit of a
number of innovative graph algorithms, some of which
execute three orders of magnitude faster than
competitors, will allow consideration of problems
much larger than any previously addressed.
Additionally, although the Motif Discovery Toolkit
uses global search methods, it examines only those
patterns actually found in the input sequences, rather
than all 4n possible patterns for an n-base sequence,
thus greatly improving efficiency. We are also
developing novel statistical approaches to quantify the
relationship between two sequences, incorporating
biological information into a distance metric. As a
result, the graphs we examine are generally smaller
than would be the case if an edge between two patterns
were weighted only by the number of matches. Our
metric tends to connect only those patterns for which
there is a biologically significant relationship.
Collectively, these new ideas make the Toolkit well
suited to the task of motif discovery.

3. Use of the Toolkit

A typical search for shared motifs using the Motif
Discovery Toolkit proceeds through the following
steps:

Step 0: Sequence selection. Input consists of an
arbitrary set of nucleotide sequences that may contain
common motifs, such as the upstream regions from
orthologs, co-expressed, or co-regulated genes.

Step 1: Filtering. Filtering of input sequences with
RepeatMasker [30] or additional tools that more
aggressively remove low-complexity DNA. Filtering
may also be done through identification of regions
conserved between pairs of orthologous sequences.

Step 2: Extracting (l,m) subsequences. (l,m)
subsequences are pairs of subsequences of length l for
which m or more of the nucleotide bases are identical.
All (l,m) subsequences between every pair of input
sequences and within an individual input sequence are
found.

Step 3: Combining (l,m) subsequences.
Overlapping and adjacent (l,m) subsequences are

 4

merged into the longest possible pairs of subsequences.
Non-adjacent (l,m) subsequences that are separated by a
small gap of fixed or variable size may also be
combined. Step 3 results in the set of maximal
subsequences, an important intermediate data structure.

Step 4: Graph construction. For a specified motif
length or pattern, a graph is constructed. Edges that
meet specified criteria are extracted from the set of
maximal subsequences. Nodes of the graph correspond
to subsequences from the input sequences.

Step 5: Clustering. Clusters of motifs are
identified using information contained in the graph
constructed in step 4. Clusters may be chosen and
refined in a number of ways. A cluster may correspond
to a clique, a connected component, or the nodes
located in a highly-connected region of the graph. A
variety of graph algorithms may be applied to identify
highly-connected regions. Options include k-
connected components, dense k-subgraph, cut sets,
separators, neighborhood search, treewidth and many
others. Central to solving most of these are
optimization variants of the NP-hard clique problem.
Maximum clique, maximal cliques, near-clique, bi-
clique and clique intersection graphs are just a few
examples. Clusters may also be formed by choosing
all nodes within a specified distance (a k-
neighborhood) of a starting node, which may
correspond to a known transcription factor binding site
or to a significant palindromic sequence.

Step 6: Develop motif models. Models of the
clusters chosen in step 5 are developed. Models include
position weight matrix models and profile hidden
Markov models. The model may be used to refine the
cluster, by trimming low scoring motifs, or to quickly
screen a larger collection of genomic sequences,
including an organism�s entire genome.

4. High Performance Computations

4.1. Clique, Vertex Cover and Fixed-Parameter
Tractability

A clique in an undirected graph is a subset of
vertices each pair of which is connected by an edge.
Formally, the decision problem usually asked is
whether an arbitrary graph G of order n contains a
clique of size k<n or more. Clique is extraordinarily
difficult. Not only is it NP-complete, but it cannot
even be approximated to within a constant factor
(assuming P≠NP). One might hope therefore that
fixing the value of k would help, via the theory of

fixed-parameter tractability� (FPT). But clique is not
FPT (unless the W hierarchy collapses). Fortunately,
the NP-complete vertex cover is a complementary dual
to clique. That is, G has a clique of size at least n-k if
and only if the complement of G has a vertex cover of
size at most k. Vertex cover is FPT. We shall give
only a brief sketch of the practical significance of this
in the sequel. We refer the reader to [10] for
background, rationale and structural foundations on
FPT as an effective algorithm design paradigm.

4.2. Kernelization and Branching

FPT algorithms generally proceed in two main
stages. The first stage is termed �kernelization.� Here
the goal is to reduce a problem of size n to its
computational kernel, whose size depends only on k.
We have reported extensively on our work on
kernelization elsewhere. See, for example, [1].

The second stage is called �branching.� Here the
goal is to explore the kernel as efficiently as possible.
Given the complexity of the underlying problem, this
step is exhaustive in nature. Some form of high
performance computing is generally required even on
problem instances of only modest size. Although
subproblems can be solved independently, their
relative computational needs are difficult to estimate in
advance. This frequently causes a very uneven
processor loading, thereby eliminating the opportunity
for attractive speedup. This has been shown to be
especially troublesome in the case of �no� instances
(those without small enough covers). For details,
timings and a primitive form of load balancing, see [2].

There are many other pragmatic issues, including
input preprocessing, parametric tuning and the
interleaving of kernelization and branching. As we
scale up to problems of larger size, however, it has
become clear that parallel load balancing during
branching remains a major stumbling block. Much
more work is needed on this subject, and we turn to it
now.

4.3. Parallel Load Balancing

Branching uses a tree to structure the exploration of
the kernel�s search space, thus breaking the vertex
cover problem into disjoint subtrees. This makes the
problem very well suited for parallel programming.
Due to the unpredictable nature of the search, however,

� A problem is fixed-parameter tractable if it has an algorithm that
runs in O(f(k)nc) time, where n is the problem size, k is the input
parameter, and c is a constant.

 5

these subtrees are often unbalanced with respect to
solution density. Simply dividing the problem and
distributing the subtrees among processors has the
potential to make the computation effectively
sequential if all but a handful of processors complete
the search of their respective subtrees early. We have
already incorporated a very simple form of load
balancing designed to handle the extreme case in which
all but one processor finish while the vast majority of
the computation remains to be done on the single
remaining active processor. This strategy suffices in a
surprising number of cases. When it works,
computation times can be reduced by days when using
32 or 64 processors to search for large cliques in
protein domain data [2]. Nevertheless, the
shortcomings of this approach are manifest. It is of no
help when there are more than one, but still only a few,
difficult subtrees. Even when there is only one, there is
a troubling amount of overhead because there is no job
queue. Instead, the subtree must be sent back to be re-
split, and all work that has already been done on it is
lost.

We are now developing a dynamic parallel
branching procedure to balance the workload more
consistently and without wasting cycles. A central
scheduler maintains a job queue and assigns new jobs
to processors as they become available. When a
processor is handling an excessively large subtree and
room appears in the job queue, that processor prunes
off a branch of its subtree and sends it to the scheduler
to be reassigned as soon as another processor becomes
available. The notion of subtree size is relative, of
course, and can be tailored to a given problem, network
configuration and processor architecture. In this
manner, subtrees need be searched at most once, and
all processors can be kept busy with useful tasks.

The major differences between the former and the
current dynamic branching implementations are based
around communications and queuing.

Communication. In our initial approach, the vertex
cover driver consists mainly of a process splitter,
which executes secure shell (ssh) commands to
initialize a branching process on each processor.
Processors then operate in complete isolation from one
another and from the driver. When a processor finishes
searching its subtree, relevant information is stored in
an output file. The driver continuously monitors the
files to see what has been written, and will perform one
of two operations. If all but one of the processors have
finished their respective jobs, but no satisfying cover
has been found, then the driver halts the task on the
only processor still working and uses the splitter to
divide and redistribute subtrees across all processors.
On the other hand, if a cover has been found, then the

driver halts all tasks and returns the cover to the user.
See Figure 1.

Figure 1: Original Load Balancing Architecture
In our new approach, communication is handled in a

client/server-style environment. Here the driver
contains both a splitter and a scheduler to open a socket
before executing ssh to initialize branching at the
processors. Each parallel process then requests a
connection with the scheduler, and uses this connection
to communicate job status, indicate availability and so
forth. This client/server design eliminates the need for
polling the file system, because a processor can simply
notify the scheduler when it is free. Likewise, the
driver can signal all of the clients directly if a solution
is found so that they can terminate quickly and cleanly.
The scheduler follows the threaded server design with
one thread per client. Note that this design can also be
used when only one processor is available, in which
case it will likely outperform sequential codes in
current use in single-processor environments due to
uneven subtree sizes. There are additional benefits to
direct communication. The overhead of file I/O is
eliminated. Moreover, with this design we should be
able to incorporate software management tools such as
Netsolve [3], thereby making our codes more easily
available to others. See Figure 2.

Queuing. Because it is not known in advance which
subtrees will take the longest to run to completion, load
balancing mechanisms must be designed with dynamic
pruning and reallocation in mind. The chief advantage
of our original approach was its simplicity. But
without a job queue, even when it works to reduce the
overall runtime its disadvantages in terms overhead can
be significant. This drawback is illustrated graphically
in Figure 3.

Splitter
If a cover is found

then halt

If no cover is
found and only
one machine is

still working, then
redistribute the

load

Vertex Cover Driver Files
output 1

output 2

output N

Branching

Branching

Branching
Processor 1

Processor 2

Processor N

... ...

ssh

 6

Figure 2: New Load Balancing Architecture

Our new approach avoids redundant computation by
pruning off a new subtree at its parent�s current
computational location. Only the new subtree is sent
back to the scheduler for placement in the job queue.
No previously-searched part of the original subtree is
examined again. The decision to prune must balance
the short-term pruning overhead with its long-term
computational benefit. Subtree size and difficulty can
only be approximated, and overly frequent pruning
must be avoided. We are currently experimenting with
a number of pruning factors, including subtree size
estimates, elapsed time since the last pruning operation
was performed, search tree depth, processor
availability and other variables. We believe it will be a
challenging but rewarding task to determine a near-
optimal pruning strategy as we ramp up to bigger and
bigger instances of the clique problem and many of its
variants.

5. Application to the Lipogenic Gene System

We applied the Motif Discovery Toolkit to a collection
of 12 lipogenic mouse genes and their human
orthologs. For each of the orthologous pairs, we
extracted the genomic sequence consisting of the entire
upstream region,� the transcribed region,§ and 5K bp
downstream. An initial filtering, designed to retain
only conserved regions, was performed by comparison

� The �upstream region� of a gene is that region from the beginning
of transcription up to the next known gene or pseudo gene. In those
instances where this distance is significantly that 100K bp, the
upstream region is limited to 100K bp.
§ When there are multiple transcripts of a gene, the �transcribed
region� is that region from the 5' end of the exon farthest upstream in
any transcript to the 3' end of the exon farthest downstream in any
transcript.

between orthologous mouse and human upstream
regions. We first found all (50,25) matches between the
corresponding mouse and human sequences, and then
produced the set of maximal subsequences by merging
matches that were adjacent, overlapping, or separated
by a fixed gap of size 30 or smaller. These parameters
were chosen with the goal of discovering relatively
large regions with at least 50% similarity.

Figure 3: Original Subtree Splitting Mechanism

Figure 4: New Subtree Splitting Mechanism

The highest scoring subsequence within each
maximal subsequence was identified using a scoring
function based on subsequence length, number of
matches, and nucleotide base frequencies.
Subsequences with a score of 20.0 or greater were
considered to be conserved and were retained.**

Two observations are relevant at this point: 1) It is
not necessary to identify all conserved regions of the
sequences. If we begin with sufficiently many
sequences and identify a sufficiently large percentage
of the conserved regions, it is probable that the motif
corresponding to the binding sites of a TF will be
present often enough to be discovered. Additional
putative binding sites for this TF may then be found

** A score of 20.0 is comparable in probability to 34 consecutive
matches between two sequences or 70% similarity between two
sequences of length 100, assuming, in both cases, equal distribution
of all four bases.

1 2 3 4

all work here is lost

......
finished finished

finished

still
active

split up
processor 4Õs subtree

and redistribute it among
all processors

1 2 3 4......
still

active

send a subtree to the job queue

still
active

still
active

pruning
needed

Vertex Cover Driver

Processor 1

...

ssh

Splitter

Initialize
Branching

Handle Machine

Branching

Branching
Processor 2

Branching
Processor N

Job List

Handle Machine

Handle Machine

Job Scheduler
Open
Socket

... ...

 7

using other tools. 2) High scoring subsequences may
be useful in aligning two sequences. We have explored
the use of a greedy algorithm that examines the
subsequences in order from highest to lowest score,
accepting new subsequences into the alignment only if
they are consistent with the set of subsequences already
accepted. The resulting alignments compare very
favorably with those produced by Avid [9]. However,
in identifying conserved regions, we do not depend on
global alignment of sequences, in order to bypass the
possibility that small genomic arrangements (insertions
or deletions) over time might have disrupted the
sequential organization of these regions.
The collection of mouse sequences, filtered to retain
only conserved regions, was then analyzed. (15,7)
sequences between and within strings were found and
merged into maximal subsequences using a fixed-
length gap of 5 or smaller. Edges were extracted from
the maximal subsequences, and the resulting graphs
were searched for interesting structures. Motif length
and minimum edge weight parameters were adjusted to
produce graphs in which the largest connected
components were not so large as to preclude
examination by hand. The application of state-of-the-
art graph algorithms to the problem of identifying
biologically relevant structures in the motif graphs will
enable us to efficiently search the parameter space,
resulting in significant improvements to the detection
of subtle motifs.

6. Results

Eight motif clusters were used to create position
specific log-odds weight matrix models, and each
model was used to search the entire collection of
mouse sequences filtered to remove only exons. Some
of these clusters correspond to binding sites for
transcription factors known to the TransFac database,
such as AP-1 (activator protein 1), Gfi-1 (growth factor
independence1), Oct-1 (octamer factor 1), and
C/EBPbeta (CCAAT / enhancer binding protein beta).
Other clusters appear to correspond to novel TF
binding sites. Some motifs from the search can be
grouped into modules, such as those upstream from
Lep and Thrsp, as illustrated in Figure 5. We expect to
improve greatly our ability to detect motif modules
through the use of co-occurrence matrices, bipartite
graphs, and fast graph algorithms.

Figure 5: Putative regulatory modules. The lines
correspond to 150 bp segments upstream from
the start of transcription in the lipogenic genes.
Three promoters for Acac are known. The
symbols represent putative motifs found using
weight matrix models. Observe the similar motif
groupings upstream from Lep and Thrsp.

References

[1] F. N. Abu-Khzam, R. L. Collins, M. A. Langston,

W. H. Suters and C. T. Symons, Kernelization
Algorithms for the Vertex Cover Problem: Theory
and Experiments, Proceedings, Workshop on
Algorithm Engineering and Experiments
(ALENEX), New Orleans, LA, 2004.

[2] F. N. Abu-Khzam, M. A. Langston and P.
Shanbhag, Scalable Parallel Algorithms for
Difficult Combinatorial Problems: A Case Study in
Optimization, Proceedings, International
Conference on Parallel and Distributed Computing
and Systems (PDCS), Los Angeles, CA, 2003.

[3] D. Arnold, W. Lee, J. Dongarra and M. Wheeler,
Providing Infrastructure and Interface to High
Performance Applications in a Distributed Setting,
Proceedings, ASTC High Performance Computing
Symposium, Washington, DC, 2001.

[4] T. L. Bailey and C. Elkan, Fitting a mixture model
by expectation maximization to discover motifs in
biopolymers, Proc Int Conf Intell Syst Mol Biol, 2
(1994), pp. 28-36.

[5] T. L. Bailey and C. Elkan, Unsupervised learning
of multiple motifs in biopolymers using expectation
maximization, Machine Learning, 21 (1995), pp.
51-80.

[6] B. P. Berman, Y. Nibu, B. D. Pfeiffer, P.
Tomancak, S. E. Celniker, M. Levine, G. M. Rubin
and M. B. Eisen, Exploiting transcription factor
binding site clustering to identify cis-regulatory
modules involved in pattern formation in the
Drosophila genome, Proc Natl Acad Sci U S A, 99
(2002), pp. 757-62.

[7] M. Blanchette, B. Schwikowski and M. Tompa, An
exact algorithm to identify motifs in orthologous

Acac (1)
Acac (2)
Acac (3)

Acly
Agt

Fasn
G6pd1
Insig1

Lep
Mod1

Pgd
Scd2

Srebf1
Thrsp

 8

sequences from multiple species, Proc Int Conf
Intell Syst Mol Biol, 8 (2000), pp. 37-45.

[8] H. Bolouri and E. H. Davidson, Modeling
transcriptional regulatory networks, Bioessays, 24
(2002), pp. 1118-29.

[9] N. Bray, I. Dubchak and L. Pachter, AVID: A
global alignment program, Genome Res, 13
(2003), pp. 97-102.

[10] R. G. Downey and M. R. Fellows, Parameterized
Complexity, Springer-Verlag, 1999.

[11] J. W. Fickett, Coordinate positioning of MEF2 and
myogenin binding sites, Gene, 172 (1996), pp.
GC19-32.

[12] F. Foufelle and P. Ferre, New perspectives in the
regulation of hepatic glycolytic and lipogenic
genes by insulin and glucose: a role for the
transcription factor sterol regulatory element
binding protein-1c, Biochem J, 366 (2002), pp.
377-91.

[13] M. C. Frith, J. L. Spouge, U. Hansen and Z. Weng,
Statistical significance of clusters of motifs
represented by position specific scoring matrices in
nucleotide sequences, Nucleic Acids Res, 30
(2002), pp. 3214-24.

[14] D. GuhaThakurta and G. D. Stormo, Identifying
target sites for cooperatively binding factors,
Bioinformatics, 17 (2001), pp. 608-21.

[15] M. S. Halfon and A. M. Michelson, Exploring
genetic regulatory networks in metazoan
development: methods and models, Physiol
Genomics, 10 (2002), pp. 131-43.

[16] G. Z. Hertz, G. W. Hartzell, 3rd and G. D. Stormo,
Identification of consensus patterns in unaligned
DNA sequences known to be functionally related,
Comput Appl Biosci, 6 (1990), pp. 81-92.

[17] G. Z. Hertz and G. D. Stormo, Identifying DNA and
protein patterns with statistically significant
alignments of multiple sequences, Bioinformatics,
15 (1999), pp. 563-77.

[18] J. D. Hughes, P. W. Estep, S. Tavazoie and G. M.
Church, Computational identification of cis-
regulatory elements associated with groups of
functionally related genes in Saccharomyces
cerevisiae, J Mol Biol, 296 (2000), pp. 1205-14.

[19] U. Keich and P. A. Pevzner, Finding motifs in the
twilight zone, Bioinformatics, 18 (2002), pp. 1374-
81.

[20] W. Krivan and W. W. Wasserman, A predictive
model for regulatory sequences directing liver-
specific transcription, Genome Res, 11 (2001), pp.
1559-66.

[21] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S.
Liu, A. F. Neuwald and J. C. Wootton, Detecting
subtle sequence signals: a Gibbs sampling strategy
for multiple alignment, Science, 262 (1993), pp.
208-14.

[22] C. E. Lawrence and A. A. Reilly, An expectation
maximization (EM) algorithm for the identification
and characterization of common sites in unaligned

biopolymer sequences, Proteins, 7 (1990), pp. 41-
51.

[23] M. R. Leuze and B. H. Jones, A constructive
approach to discovery of motif clusters in genomic
sequences, Technical Report, Oak Ridge National
Laboratory, 2003.

[24] X. Liu, D. L. Brutlag and J. S. Liu, BioProspector:
discovering conserved DNA motifs in upstream
regulatory regions of co-expressed genes, Pac
Symp Biocomput (2001), pp. 127-38.

[25] X. S. Liu, D. L. Brutlag and J. S. Liu, An algorithm
for finding protein-DNA binding sites with
applications to chromatin-immunoprecipitation
microarray experiments, Nat Biotechnol, 20
(2002), pp. 835-9.

[26] B. Morgenstern, K. Frech, A. Dress and T. Werner,
DIALIGN: finding local similarities by multiple
sequence alignment, Bioinformatics, 14 (1998), pp.
290-4.

[27] P. A. Pevzner and S. H. Sze, Combinatorial
approaches to finding subtle signals in DNA
sequences, Proc Int Conf Intell Syst Mol Biol, 8
(2000), pp. 269-78.

[28] J. Quackenbush, Genomics. Microarrays--guilt by
association, Science, 302 (2003), pp. 240-1.

[29] S. Sinha and M. Tompa, A statistical method for
finding transcription factor binding sites, Proc Int
Conf Intell Syst Mol Biol, 8 (2000), pp. 344-54.

[30] A. F. A. Smit and P. Green, RepeatMasker, see
http://ftp.genome.washington.edu/RM/RepeatMask
er.html.

[31] J. D. Thompson, D. G. Higgins and T. J. Gibson,
CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties
and weight matrix choice, Nucleic Acids Res, 22
(1994), pp. 4673-80.

[32] M. Tompa, An exact method for finding short
motifs in sequences, with application to the
ribosome binding site problem, Proc Int Conf Intell
Syst Mol Biol (1999), pp. 262-71.

[33] J. van Helden, B. Andre and J. Collado-Vides,
Extracting regulatory sites from the upstream
region of yeast genes by computational analysis of
oligonucleotide frequencies, J Mol Biol, 281
(1998), pp. 827-42.

[34] W. W. Wasserman and W. Krivan, In silico
identification of metazoan transcriptional
regulatory regions, Naturwissenschaften, 90
(2003), pp. 156-66.

[35] C. T. Workman and G. D. Stormo, ANN-Spec: a
method for discovering transcription factor binding
sites with improved specificity, Pac Symp
Biocomput (2000), pp. 467-78.

[36] C. H. Yuh and E. H. Davidson, Modular cis-
regulatory organization of Endo16, a gut-specific
gene of the sea urchin embryo, Development, 122
(1996), pp. 1069-82.

