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Abstract* 
 
The research described in this paper highlights a 
fruitful interplay between biology and computation.  
The sequencing of complete genomes from multiple 
organisms has revealed that most differences in 
organism complexity are due to elements of gene 
regulation that reside in the non protein coding 
portions of genes.  Both within and between species, 
transcription factor binding sites and the proteins that 
recognize them govern the activity of cellular pathways 
that mediate adaptive responses and survival.  
Experimental identification of these regulatory 
elements is by nature a slow process.  The availability 
of complete genomic sequences, however, opens the 
door for computational methods to predict binding 
sites and expedite our understanding of gene 
regulation at a genomic level.  Just as with traditional 
experimental approaches, the computational 
identification of the molecular factors that control a 
gene�s expression level has been problematic.  As a 
case in point, the identification of putative motifs, 
which is the subject of this paper, is a challenging 
combinatorial task.  For it, powerful new motif finding 
algorithms and high performance implementations are 
described.  Heavy use is made of graph algorithms, 
some of which are exceedingly computationally 
intensive and involve the use of emergent mathematical 
methods.  An approach to fully dynamic load balancing 
is developed in order to make effective use of highly 
parallel platforms. 
 
 
 
 
1. Introduction 
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1.1. Computational identification of cis-

regulatory elements and modules 
 

Coordinate regulation of gene expression provides 
the basis for activation and repression of specific 
cellular pathways and the adaptive response to 
changing cellular conditions.  Although the coding 
regions of each gene involved in any given pathway 
are now/will soon be known as mouse and human 
genome sequence are annotated, the molecular 
mechanisms that mediate shared regulation and 
determine which subsets of genes interact in specific 
pathways are poorly understood.  These molecular 
mechanisms, consisting of transcription factor (TF) 
proteins and their DNA binding sites (TFBSs), form 
the architecture of gene regulatory networks, which in 
turn underlie basic physiology and adaptive responses 
within an organism.  While traditional approaches to 
identifying factors that control regulation of a single 
gene have been largely experimental, the availability of 
complete genomic sequence for human and mouse 
opens the door for computational approaches to predict 
regulatory sequence with a throughput that surpasses 
the scope of experimental techniques. 

Eukaryotic gene transcriptional regulation is now 
appreciated to be organized in 2 basic levels.  The first 
level consists of individual TFBSs, short motifs (8-15 
bp) in non protein-coding DNA to which TFs bind in 
cis. A single TF protein binds not to an exact DNA 
motif but rather to a consensus motif in which the 
precise identity of some bases is critical while other 
bases within the string can vary.  Specific collections 
of TFBSs are organized into modules that mediate a 
gene�s reponse to a specific factor, representing the 
second level of eukaryotic regulatory organization 
(reviewed in Halfon and Michelson [15] and Bolouri 
and Davidson [8]).  For example, transcriptional 
control of the Endo16 gene during sea urchin 
development is mediated through 56 individual TFBSs 
that cluster into 7 regulatory modules within 2.2 kb of 
DNA sequence upstream of the gene�s transcriptional 
start site [36]. Genes that have shared expression 
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patterns under a specific condition�for example, 
genes up-or down-regulated in pancreatic beta cells in 
response to glucose exposure�are widely assumed to 
share at least some TFBSs or modules that, coupled 
with the corresponding TFs, mediate a common gene 
expression response.  This �guilt-by-association� 
concept is increasingly used as a starting point from 
which to identify a subset of genes that can be mined 
for the presence of shared regulatory mechanisms [28]. 
 
1.2. Review of Computational Approaches 
 
Motif-finding.  The body of literature on motif 
discovery is extensive. We are aware of over 300 
papers directly related to computational methods 
designed to identify transcription factor binding sites in 
DNA sequences. The difficulty of the problem has led 
to the development of numerous approaches for 
analyzing non-coding regions of eukaryotic genomes 
with the goal of finding those elements that regulate 
gene expression.  

For TFs for which the consensus binding site is 
known, additional sites in collections of genes can be 
discovered by searching for hits against a position 
weight matrix (PWM) constructed from the statistical 
likelihood of base representation at each position of the 
binding site.  However, robust matrix models require 
extensive experimental data from which to construct 
them, and at present only a small subset of  TFs in 
multicellular eukaryotes are represented in databases 
such as ConSite [34]. Therefore ab initio approaches to 
TFBS discovery hold the most promise for rapid 
discovery of motifs, particularly given the ongoing 
annotation and availability of eukaryotic genomes.  
Most approaches to motif discovery search for patterns 
that are overrepresented in the regulatory regions of 
orthologous or coregulated genes. Search strategies fall 
into two major categories, those that use local 
heuristics, such as Gibbs sampling [21] or expectation 
maximization [5, 22], and those that use globally 
optimal methods, such as enumeration of all motifs in 
the search space [29, 32, 33]. Globally optimal 
methods are exhaustive and deterministic, but, due to 
computational complexity, tend to be limited to 
detection of short patterns. Heuristic approaches may 
find longer patterns, but may fail to converge to a 
globally optimal solution. For a recent review of motif 
discovery methods, particularly heuristic approaches, 
see Wasserman and Krivan [34]. 

Some methods use a process known as 
�phylogenetic footprinting,� in which orthologous 
sequences are compared to first identify highly 
conserved regions of noncoding DNA, under the 
premise that selection pressure for conservation is due 

to the presence of functional elements within.  
Searching for motifs only within conserved regions is 
an effective way to limit the search area to the most 
meaningful regions, thus significantly reducing the 
numbers of false positive motifs that are identified.  In 
fact, Krivan and Wasserman [20] recently reported that 
regulatory elements were ~ 320 times more likely to 
occur in conversed vs. nonconserved regions, based on 
computational and experimental findings from a set of 
liver-specific genes. These methods may compare two 
or more orthologs, may take phylogenetic relationships 
into consideration [7], and may be based on global or 
local alignment. Clustal W [31] and DIALIGN [26] are 
methods for multiple sequence alignment that are used 
to locate local genomic regions of similarity. 

Widely used motif discovery algorithms based on 
Gibbs sampling include AlignAce [18], ANN-Spec 
[35], BioProspector [24], Co-Bind [14], and MDscan 
[25]. Among other heuristic approaches are MEME 
[4], which uses expectation maximization, and 
CONSENSUS [16, 17], which uses a greedy algorithm. 
Hybrid algorithms combining concepts from sample-
driven heuristics and pattern-driven enumeration are 
beginning to emerge; among these hybrid algorithms is 
MULTIPROFILER [19]. 
 
Module-finding.  Despite the increasing recognition 
that modules, rather than individual TFBSs, mediate 
transcriptional regulation in eukaryotes, computational 
approaches to predict modules lag far behind motif 
discovery efforts.  The simplest approach has been to 
search for pairs of TFBSs that either overlap or lie in 
close proximity to each other, for which the spacing 
between sites is relatively invariable.  This method has 
proven successful for specific combinations of TFBSs 
that are known to work in concert, such as Mef2 and 
MyoD [11], and it may also be useful for recognizing 
pairs of sites that bind TFs that function as 
heterodimers, as do many nuclear hormone receptors.  
However, simply searching for pairs of sites 
oversimplifies the typical biological situation and is 
unlikely to define more than a very small fraction of 
regulatory modules.   Approaches that are not restricted 
to either only pairs of sites or to strict rules about 
spacing between TFBSs are much more likely to 
accurately model the molecular reality of 
transcriptional regulation. Recent success has been 
reported for techniques that search for modules by 
cluster analysis of defined TFBS [6, 13, 15], and 
methods such as this benefit from the lack of 
restrictions on numbers and positions of TFBSs within 
a module. 
1.3. Lipogenic genes 
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Due to their agricultural importance in several species, 
the genes involved in lipogenesis represent an 
extremely well-characterized set of genes in terms of 
their expression levels and the TFBSs that mediate 
their individual regulation.  Synthesis and storage of 
lipids from carbohydrate precursors allows an 
organism to store excess energy for later periods in 
which calories may be scarce.  This lipogenic response 
is innately sensitive to both the presence of excess 
carbohydrates, such as glucose, and to hormones such 
as insulin that signal an organism that energy is 
abundant.  Lipogenesis is activated by coordinate 
regulation of genes encoding enzymes involved in the 
pathway of lipid synthesis from glucose precursors.  
An abundance of prior studies demonstrate that the 
majority of this activation is due to changes in the 
genes� transcriptional activities, and many important 
TFBSs have been identified for genes in the lipogenic 
pathway (reviewed in Foufelle and Ferre [12]).  
Consistent with the guilt-by-association concept, 
several TFBSs are found in multiple lipogenic genes, 
suggesting that common regulatory mechanisms 
underlie at least a subset of shared regulation.  
Therefore, due to the wealth of experimentally-
confirmed binding site data that exists for these genes 
and the detailed knowledge about their regulation 
during changing nutritional conditions, we selected this 
class of genes to which to apply our system for first 
identifying potential TFBSs and then collating these 
sites into regulatory modules.   
 
2. The Motif Discovery Toolkit 
 

The suite of novel computational tools that we have 
developed for the Motif Discovery Toolkit [23] 
constitute a new approach for identifying functional 
DNA in non-coding regions by sequence comparison. 
Our approach differs from other motif-finding methods 
in a number of important ways, which collectively 
make it unique: it is applicable to any collection of 
related genomic sequences; it does not depend on the 
global alignment of these sequences; it does not require 
a motif to be present in each sequence of the collection, 
and it is able to discover multiple copies of a motif in a 
single sequence; it can find multiple motifs in a single 
run; and it is a general computational method, that is, it 
does not require specific biological information about 
the sequences being examined. 

Our motif discovery toolkit contains tools for a 
large number of tasks, including filtering sequences, 
finding short inexact matches, combining short 
matches, constructing graphs to represent relationships 
between motifs, identifying interesting graph 
structures, producing position weight matrix and 

profile hidden Markov models of motifs, scoring 
sequences relative to a motif model, and searching for 
inexact inverted and direct palindromes. 

A significant feature of our Motif Discovery Toolkit 
is its extensive use of graph algorithms. Few previous 
approaches to motif discovery have made explicit use 
of graph algorithms. An exception is WINNOWER 
[27], which transforms the search for motifs to the task 
of finding large cliques in multipartite graphs but is 
limited to problems of relatively small size. The 
integration into the Motif Discovery Toolkit of a 
number of innovative graph algorithms, some of which 
execute three orders of magnitude faster than 
competitors, will allow consideration of problems 
much larger than any previously addressed. 
Additionally, although the Motif Discovery Toolkit 
uses global search methods, it examines only those 
patterns actually found in the input sequences, rather 
than all 4n possible patterns for an n-base sequence, 
thus greatly improving efficiency.  We are also 
developing novel statistical approaches to quantify the 
relationship between two sequences, incorporating 
biological information into a distance metric. As a 
result, the graphs we examine are generally smaller 
than would be the case if an edge between two patterns 
were weighted only by the number of matches. Our 
metric tends to connect only those patterns for which 
there is a biologically significant relationship. 
Collectively, these new ideas make the Toolkit well 
suited to the task of motif discovery. 
 
3. Use of the Toolkit 
 
A typical search for shared motifs using the Motif 
Discovery Toolkit proceeds through the following 
steps: 

Step 0: Sequence selection.  Input consists of an 
arbitrary set of nucleotide sequences that may contain 
common motifs, such as the upstream regions from 
orthologs, co-expressed, or co-regulated genes. 

Step 1: Filtering.  Filtering of input sequences with 
RepeatMasker [30] or additional tools that more 
aggressively remove low-complexity DNA.  Filtering 
may also be done through identification of regions 
conserved between pairs of orthologous sequences. 

Step 2: Extracting (l,m) subsequences.  (l,m) 
subsequences are pairs of subsequences of length l for 
which m or more of the nucleotide bases are identical. 
All (l,m) subsequences between every pair of input 
sequences and within an individual input sequence are 
found. 

Step 3: Combining (l,m) subsequences.  
Overlapping and adjacent (l,m) subsequences are 
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merged into the longest possible pairs of subsequences.  
Non-adjacent (l,m) subsequences that are separated by a 
small gap of fixed or variable size may also be 
combined.  Step 3 results in the set of maximal 
subsequences, an important intermediate data structure. 

Step 4: Graph construction.  For a specified motif 
length or pattern, a graph is constructed. Edges that 
meet specified criteria are extracted from the set of 
maximal subsequences. Nodes of the graph correspond 
to subsequences from the input sequences. 

Step 5: Clustering.  Clusters of motifs are 
identified using information contained in the graph 
constructed in step 4.  Clusters may be chosen and 
refined in a number of ways. A cluster may correspond 
to a clique, a connected component, or the nodes 
located in a highly-connected region of the graph. A 
variety of graph algorithms may be applied to identify 
highly-connected regions.  Options include k-
connected components, dense k-subgraph, cut sets, 
separators, neighborhood search, treewidth and many 
others.  Central to solving most of these are 
optimization variants of the NP-hard clique problem.  
Maximum clique, maximal cliques, near-clique, bi-
clique and clique intersection graphs are just a few 
examples.  Clusters may also be formed by choosing 
all nodes within a specified distance (a k-
neighborhood) of a starting node, which may 
correspond to a known transcription factor binding site 
or to a significant palindromic sequence. 

Step 6: Develop motif models.  Models of the 
clusters chosen in step 5 are developed. Models include 
position weight matrix models and profile hidden 
Markov models. The model may be used to refine the 
cluster, by trimming low scoring motifs, or to quickly 
screen a larger collection of genomic sequences, 
including an organism�s entire genome. 
 
4. High Performance Computations 
 
4.1. Clique, Vertex Cover and Fixed-Parameter 
Tractability 
 

A clique in an undirected graph is a subset of 
vertices each pair of which is connected by an edge.  
Formally, the decision problem usually asked is 
whether an arbitrary graph G of order n contains a 
clique of size k<n or more.  Clique is extraordinarily 
difficult.  Not only is it NP-complete, but it cannot 
even be approximated to within a constant factor 
(assuming P≠NP).  One might hope therefore that 
fixing the value of k would help, via the theory of 

fixed-parameter tractability� (FPT).  But clique is not 
FPT (unless the W hierarchy collapses).  Fortunately, 
the NP-complete vertex cover is a complementary dual 
to clique.  That is, G has a clique of size at least n-k if 
and only if the complement of G has a vertex cover of 
size at most k.  Vertex cover is FPT.  We shall give 
only a brief sketch of the practical significance of this 
in the sequel. We refer the reader to [10] for 
background, rationale and structural foundations on 
FPT as an effective algorithm design paradigm. 
 
4.2. Kernelization and Branching 
 

FPT algorithms generally proceed in two main 
stages.  The first stage is termed �kernelization.�  Here 
the goal is to reduce a problem of size n to its 
computational kernel, whose size depends only on k.  
We have reported extensively on our work on 
kernelization elsewhere.  See, for example, [1]. 

The second stage is called �branching.�  Here the 
goal is to explore the kernel as efficiently as possible.  
Given the complexity of the underlying problem, this 
step is exhaustive in nature.  Some form of high 
performance computing is generally required even on 
problem instances of only modest size.  Although 
subproblems can be solved independently, their 
relative computational needs are difficult to estimate in 
advance.  This frequently causes a very uneven 
processor loading, thereby eliminating the opportunity 
for attractive speedup.  This has been shown to be 
especially troublesome in the case of �no� instances 
(those without small enough covers).  For details, 
timings and a primitive form of load balancing, see [2].   

There are many other pragmatic issues, including 
input preprocessing, parametric tuning and the 
interleaving of kernelization and branching.  As we 
scale up to problems of larger size, however, it has 
become clear that parallel load balancing during 
branching remains a major stumbling block.  Much 
more work is needed on this subject, and we turn to it 
now. 
 
4.3. Parallel Load Balancing 
 

Branching uses a tree to structure the exploration of 
the kernel�s search space, thus breaking the vertex 
cover problem into disjoint subtrees.  This makes the 
problem very well suited for parallel programming.  
Due to the unpredictable nature of the search, however, 

                                                 
� A problem is fixed-parameter tractable if it has an algorithm that 
runs in O(f(k)nc) time, where n is the problem size, k is the input 
parameter, and c is a constant. 
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these subtrees are often unbalanced with respect to 
solution density.  Simply dividing the problem and 
distributing the subtrees among processors has the 
potential to make the computation effectively 
sequential if all but a handful of processors complete 
the search of their respective subtrees early.  We have 
already incorporated a very simple form of load 
balancing designed to handle the extreme case in which 
all but one processor finish while the vast majority of 
the computation remains to be done on the single 
remaining active processor.  This strategy suffices in a 
surprising number of cases.  When it works, 
computation times can be reduced by days when using 
32 or 64 processors to search for large cliques in 
protein domain data [2].  Nevertheless, the 
shortcomings of this approach are manifest.  It is of no 
help when there are more than one, but still only a few, 
difficult subtrees.  Even when there is only one, there is 
a troubling amount of overhead because there is no job 
queue.  Instead, the subtree must be sent back to be re-
split, and all work that has already been done on it is 
lost. 

We are now developing a dynamic parallel 
branching procedure to balance the workload more 
consistently and without wasting cycles.  A central 
scheduler maintains a job queue and assigns new jobs 
to processors as they become available.  When a 
processor is handling an excessively large subtree and 
room appears in the job queue, that processor prunes 
off a branch of its subtree and sends it to the scheduler 
to be reassigned as soon as another processor becomes 
available.  The notion of subtree size is relative, of 
course, and can be tailored to a given problem, network 
configuration and processor architecture.  In this 
manner, subtrees need be searched at most once, and 
all processors can be kept busy with useful tasks. 

The major differences between the former and the 
current dynamic branching implementations are based 
around communications and queuing.   

Communication.  In our initial approach, the vertex 
cover driver consists mainly of a process splitter, 
which executes secure shell (ssh) commands to 
initialize a branching process on each processor.  
Processors then operate in complete isolation from one 
another and from the driver.  When a processor finishes 
searching its subtree, relevant information is stored in 
an output file.  The driver continuously monitors the 
files to see what has been written, and will perform one 
of two operations.  If all but one of the processors have 
finished their respective jobs, but no satisfying cover 
has been found, then the driver halts the task on the 
only processor still working and uses the splitter to 
divide and redistribute subtrees across all processors.  
On the other hand, if a cover has been found, then the 

driver halts all tasks and returns the cover to the user.  
See Figure 1. 

 

 

 

 

 

 

 

 
 

 

Figure 1: Original Load Balancing Architecture 
In our new approach, communication is handled in a 

client/server-style environment.  Here the driver 
contains both a splitter and a scheduler to open a socket 
before executing ssh to initialize branching at the 
processors.  Each parallel process then requests a 
connection with the scheduler, and uses this connection 
to communicate job status, indicate availability and so 
forth.  This client/server design eliminates the need for 
polling the file system, because a processor can simply 
notify the scheduler when it is free.  Likewise, the 
driver can signal all of the clients directly if a solution 
is found so that they can terminate quickly and cleanly.  
The scheduler follows the threaded server design with 
one thread per client.  Note that this design can also be 
used when only one processor is available, in which 
case it will likely outperform sequential codes in 
current use in single-processor environments due to 
uneven subtree sizes.  There are additional benefits to 
direct communication.  The overhead of file I/O is 
eliminated.  Moreover, with this design we should be 
able to incorporate software management tools such as 
Netsolve [3], thereby making our codes more easily 
available to others.  See Figure 2. 
 
Queuing. Because it is not known in advance which 
subtrees will take the longest to run to completion, load 
balancing mechanisms must be designed with dynamic 
pruning and reallocation in mind.  The chief advantage 
of our original approach was its simplicity.  But 
without a job queue, even when it works to reduce the 
overall runtime its disadvantages in terms overhead can 
be significant.  This drawback is illustrated graphically 
in Figure 3. 
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Figure 2: New Load Balancing Architecture  
 

Our new approach avoids redundant computation by 
pruning off a new subtree at its parent�s current 
computational location.  Only the new subtree is sent 
back to the scheduler for placement in the job queue.  
No previously-searched part of the original subtree is 
examined again.  The decision to prune must balance 
the short-term pruning overhead with its long-term 
computational benefit.  Subtree size and difficulty can 
only be approximated, and overly frequent pruning 
must be avoided.  We are currently experimenting with 
a number of pruning factors, including subtree size 
estimates, elapsed time since the last pruning operation 
was performed, search tree depth, processor 
availability and other variables.  We believe it will be a 
challenging but rewarding task to determine a near-
optimal pruning strategy as we ramp up to bigger and 
bigger instances of the clique problem and many of its 
variants. 
 
5. Application to the Lipogenic Gene System 
 
We applied the Motif Discovery Toolkit to a collection 
of 12 lipogenic mouse genes and their human 
orthologs. For each of the orthologous pairs, we 
extracted the genomic sequence consisting of the entire 
upstream region,� the transcribed region,§ and 5K bp 
downstream. An initial filtering, designed to retain 
only conserved regions, was performed by comparison 
                                                 
� The �upstream region� of a gene is that region from the beginning 
of transcription up to the next known gene or pseudo gene.  In those 
instances where this distance is significantly that 100K bp, the 
upstream region is limited to 100K bp. 
§ When there are multiple transcripts of a gene, the �transcribed 
region� is that region from the 5' end of the exon farthest upstream in 
any transcript to the 3' end of the exon farthest downstream in any 
transcript. 

between orthologous mouse and human upstream 
regions. We first found all (50,25) matches between the 
corresponding mouse and human sequences, and then 
produced the set of maximal subsequences by merging 
matches that were adjacent, overlapping, or separated 
by a fixed gap of size 30 or smaller. These parameters 
were chosen with the goal of discovering relatively 
large regions with at least 50% similarity. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Original Subtree Splitting Mechanism 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4: New Subtree Splitting Mechanism 
 

The highest scoring subsequence within each 
maximal subsequence was identified using a scoring 
function based on subsequence length, number of 
matches, and nucleotide base frequencies. 
Subsequences with a score of 20.0 or greater were 
considered to be conserved and were retained.**   

Two observations are relevant at this point: 1) It is 
not necessary to identify all conserved regions of the 
sequences. If we begin with sufficiently many 
sequences and identify a sufficiently large percentage 
of the conserved regions, it is probable that the motif 
corresponding to the binding sites of a TF will be 
present often enough to be discovered. Additional 
putative binding sites for this TF may then be found 
                                                 
** A score of 20.0 is comparable in probability to 34 consecutive 
matches between two sequences or 70% similarity between two 
sequences of length 100, assuming, in both cases, equal distribution 
of all four bases. 
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using other tools. 2) High scoring subsequences may 
be useful in aligning two sequences. We have explored 
the use of a greedy algorithm that examines the 
subsequences in order from highest to lowest score, 
accepting new subsequences into the alignment only if 
they are consistent with the set of subsequences already 
accepted. The resulting alignments compare very 
favorably with those produced by Avid [9].  However, 
in identifying conserved regions, we do not depend on 
global alignment of sequences, in order to bypass the 
possibility that small genomic arrangements (insertions 
or deletions) over time might have disrupted the 
sequential organization of these regions. 
The collection of mouse sequences, filtered to retain 
only conserved regions, was then analyzed. (15,7) 
sequences between and within strings were found and 
merged into maximal subsequences using a fixed-
length gap of 5 or smaller. Edges were extracted from 
the maximal subsequences, and the resulting graphs 
were searched for interesting structures. Motif length 
and minimum edge weight parameters were adjusted to 
produce graphs in which the largest connected 
components were not so large as to preclude 
examination by hand. The application of state-of-the-
art graph algorithms to the problem of identifying 
biologically relevant structures in the motif graphs will 
enable us to efficiently search the parameter space, 
resulting in significant improvements to the detection 
of subtle motifs. 
 
6. Results 
 
Eight motif clusters were used to create position 
specific log-odds weight matrix models, and each 
model was used to search the entire collection of 
mouse sequences filtered to remove only exons. Some 
of these clusters correspond to binding sites for 
transcription factors known to the TransFac database, 
such as AP-1 (activator protein 1), Gfi-1 (growth factor 
independence1), Oct-1 (octamer factor 1), and 
C/EBPbeta (CCAAT / enhancer binding protein beta). 
Other clusters appear to correspond to novel TF 
binding sites.  Some motifs from the search can be 
grouped into modules, such as those upstream from 
Lep and Thrsp, as illustrated in Figure 5. We expect to 
improve greatly our ability to detect motif modules 
through the use of co-occurrence matrices, bipartite 
graphs, and fast graph algorithms. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Putative regulatory modules. The lines 
correspond to 150 bp segments upstream from 
the start of transcription in the lipogenic genes.  
Three promoters for Acac are known.  The 
symbols represent putative motifs found using 
weight matrix models. Observe the similar motif 
groupings upstream from Lep and Thrsp. 
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