
Protein Structure Prediction by Applying an Evolutionary Algorithm

Richard O. Day, Gary B. Lamont
Dept of Electrical Engineering

Graduate School of Engineering & Management
Air Force Institute of Technology

WPAFB (Dayton) OH, 45433, USA
(Richard.Day,Gary.Lamont)@afit.edu

Ruth Pachter
Air Force Research Laboratory

Materials & Manufacturing Directorate
WPAFB (Dayton) OH, 45433-7702, USA

Ruth.Pachter@wpafb.af.mil

Abstract

Interest in protein structure prediction is wide-spread,
and has been previously addressed using evolutionary al-
gorithms, such as the Simple genetic algorithm (GA), messy
GA (mga), fast messy GA (fmGA), and Linkage Learning
GA (LLGA). However, past research used off the shelf soft-
ware such as GENOCOP, GENESIS, and mGA. In this study
we report results of a modified fmGA, which is found to be
“good” at finding semi-optimal solutions in a reasonable
time. Our study focuses on tuning this fmGA in an attempt
to improve the effectiveness and efficiency of the algorithm
in solving a protein structure and in finding better ways to
identify secondary structures. Problem definition, protein
model representation, mapping to algorithm domain, tool
selection modifications and conducted experiments are dis-
cussed1.

1. Introduction

Protein structure prediction is a Grand Challenge prob-
lem [4, 16]. Solving this problem involves finding a
methodology that can consistently and correctly determine
the configuration of a folded proteinwithout regard to the
folding process. The problem is simply stated; however,
solving is intractable [15]. Thus, a variety of algorith-
mic approaches have been proposed [18][20], ranging from
GAs, SA, to hybrids between deterministic and stochas-
tic methodologies using nonlinear optimization techniques
and maximum likelihood approaches [10], recently re-
viewed [3]. In this paper we focus on modifications to
the fmGA, such as multiobjective implementation of the
fmGA (MOfmGA), integrated per residue Ramachandran

1The views expressed in this article are those of the authors and do
not reflect the official policy or position of the United States Air Force,
Department of Defense, or the U.S. Government.

plots, and a farming model for the parallel fmGA (pfmGA)
to improve on previous GA applications for protein struc-
ture determination.

All GAs discussed in this investigation utilize the
same CHARMm (version C22) energy model as a fitness
function[17]. The protein structure is determined by mini-
mizing the energy fitness function. A choice between real
and binary values is required. In the past both of these en-
codings yielded similar results. Thus, a binary encoding
was chosen, and the angles discretetized into 1024 (1 MB
or 210) sections for every360◦.

2 Genetic Algorithms

The first step in adapting a model to be solved using a
GA (complexity estimates are give in Table 1) is to trans-
form the problem domain solution variable structure into a
fixed length binary string – a so called, chromosome. In-
dividual elements of a chromosome are features that corre-
spond to the genes of a chromosome. Feature values are the
values that one feature may take on - these represent alleles
of a gene. The set of every allele is the genetic alphabet
[12]. After a discretized encoding scheme is applied to the
problem, the fitness function is evaluated in order to give an
indicator if one chromosome is better than another.

2.1 fast messy GA

Following our previous sGA and mGA work, the fmGA
(Figure 1) was to be named our GA of choice ([8], [7], [6]
and [9]), having lower complexity.

The mGA’s advantage over the sGA is in its ability to
explicitly create tightly linked building blocks for defeat-
ing deception by insuring that there is a good solution in
the population of building blocks created in the initializa-
tion phase. However, it is extremely expensive to build ev-
ery combination of a particular building block size to put

Table 1. Complexity Estimates for serial GAs
Phase sGAa ssGAb mGA fmGA

Initialization O(ln) O(ln) O(lk) O(l)
Recombination O(g ∗ n ∗ q) O(g)

Primordial O(0) O(0) O(l2)c

Juxtapositional O(l log l) O(l log l)
Overall mGA O(ln) O(ln) O(lk) O(l2)

al is the length of chromosome,n is the size of population,q is group size for tournament selection,g is the number of generations.
bl is the length of chromosome,n is the size of population ,g is the number of generations of reproduction.
cBuilding Block Filtering

curr_bs <= max_bs

epoch = 4

Quit

Start

For epoch =
1 to 3

For curr_bs
= min_bs to

max_bs

epock < 4

–Randomly Generate a
Population in which the
expected number of copies
of each building block
(BB) is sufficient to
overcome sampling noise
–Size of Population is
determined by variables k,
l, n_a and n_g.
–Sizes of initial population
members are l-k where l is
string length and k is
building block size (almost
fully specified)

ÿþýüûüúùúø÷úöõôýóòùñ÷ñõðïú÷úûùúîû÷úýïõÿíûøñ

CUTANDSPLICE
Randomly Pick Two BBs (a, b)
Do
{
if p(cut)

if p(cut twice)
cut both a and b
splice using crossover tech.

else
if p(a)

cut(a)
splice a1 + b

else
cut(b)
splice a + b1

else
splice a + b

}

SELECTION
While p2.size < p1.size
{

Threshold Select two from p1(a,b)
If f(a) < f(b) (minimization)

p2.add(a,f(a))
else

p2.add(b,f(b))
}

For I = 1 to
Primodial_gens

i <=primordialt gens

i =cut generation

i >primordial gens

–Randomly delete genes;
applied after several
generations of
tournament selection
–Ideal building block
sizes are dependent upon
secondary structure,
protein size, and string
length representation of
protein per dihedral.

��úù�úï�õ�ùýö�õ�úù÷ñþúï�õÿíûøñ

ÿþúóýþ�úûùõÿíûøñ

P1P2 �ý�þïûóñï÷õ�ñùñö÷úýï

For curr_gen =
1 to max_gens

���÷ûòýøú÷úýïûù ÿíûøñ

Curr_gen > max_gen

Curr_gen <= max_gen

SELECTION
While p2.size < p1.size
{

Threshold Select two from p1(a,b)
If f(a) < f(b) (minimization)

p2.add(a,f(a))
else

p2.add(b,f(b))
}

P2

P1

�ý�þïûóñï÷õ�ñùñö÷úýï

curr_bs > max_bs

Figure 1. Flow of fmGA.

into a population. The fmGA is designed to reduce this
complexity by replacing the initialization phase and primor-
dial phase with a probabilistic complete initialization (PCI)
and primordial phase, consisting of selection and building
block filtering (BBF). PCI and BBF are an alternate means

to providing the juxtaposition phase with highly fit building
blocks [13].

The PCI phase creates an initial pop-pool size of n as de-
scribed by Equation 1, which is probabilistically equivalent
to the pop-pool size at the end of the primordial phase of

2

mGAs.
The population size is the multiplication of three terms

from the equations of: the gene-wise probability, the allele-
wise combinatoric, and the building block evaluation noise
equation [13]. Furthermore, it can be shown that the prob-
ability gene-wise equation is the probability of selecting a
gene combination of size k in a string of lengthl′ having
the total number of genes,l, as given as Equation 2. If,
mg, is assigned to theinverseof Equation 2, it is suggested
that each subpopulation of sizeng have one needed string,
on average, gene combination of size k. Equation 3 defines
ng. If we expect to have one of our needed gene combina-
tions for one particular building block of size k, then we can
further claim that we require the needed gene combination
for each and every possible combination of k building block
size, which makes for2k allelic combinations or allele-wise
combinatoric population size multiplier. A second multi-
plier is then defined in Equation 4 (the building block evalu-
ation noise equation). This equation makes for a population
size calculation where the selection error between two com-
peting building blocks is no more thanα different. Finally,
we have a simple, more manageable, population sizing cal-
culation in Equation 5. [13]

2k

(
l
l′
)

(
l−k
l′−k

)2c(α)β2(m − 1) (1)

p(l′, k, l) =

(
l−k
l′−k

)

(
l
l′
) (2)

ng =
1

(l−k
l′−k)
(l

l′)

(3)

na = 2c(α)β2(m − 1) (4)

n = nang (5)

Once the population size is determined, the initial pop-
ulation is created and the algorithm begins. The length of
the strings,l′, is set tol−k. The primordial phase performs
several tournament selection generations to build up copies
of highly fit strings followed by BBF to reduce the string
length toward the building block size k. An example of the
population sizing calculation can be found in [5]. To con-
clude, instead of having a huge initialization cost as we do
with the mGA, the fmGA has allowed a more optimal initial
population mechanism that is statistically equivalent to that
of the mGA.

2.2 Parallel fast messy GA

The pfmGA is an extension of the fmGA [13] and is a
binary, population based, stochastic approach that exploits

Building Blocks (BB)s within the population to find solu-
tions to optimization problems. Our pfmGA may be exe-
cuted in a single program single data (SPSD) or a single
program multiple data (SPMD) mode. The parallelization
of this algorithm is based on the Message Passing Interface
(MPI) constructs. The pfmGA consists of three phases of
operation: the Initialization, Building Block Filtering, and
Juxtapositional Phases, all using synchronous MPI based
communications. The pfmGA operates independently on
each of the processors with communications occurring dur-
ing the Initialization and Juxtapositional phases (Indepen-
dent mode).

In the Initialization phase, a population of individuals is
randomly generated on each processor. Subsequently, the
population members are evaluated. A CT is also generated
on each processora priori. The CT is a locally optimized
and used for calculating the fitness value of partial strings
in the later phases of the algorithm.

The BBF Phase follows and extracts BBs from the pop-
ulation for the generation of solutions. This process occurs
through a random deletion of bits from each of the pop-
ulation members alternated with tournament selection. A
BBF schedule is provideda priori to specify the generations
for the deletion to occur, the number of bits to be deleted
from each population member and the generations to com-
plete tournament selection. This phase completes once the
length of the population members’ chromosomes have been
reduced to a predetermined BB size. In order to evaluate
these BBs (“under-specified” strings), throughout the phase
a competitive template is utilized to fill in the missing al-
lele values. These population members are referred to as
“under-specified” since each locus position does not have
an associated allele value. The BBF process is alternated
with tournament selection to keep only the strings with the
best building blocks found, or those with the best fitness
value around for later processing.

The Juxtapositional phase follows and uses the build-
ing blocks found through the BBF phase and recombination
operators to create population members that become fully
specified (all loci values have corresponding allele values)
by the end of the phase. Again the competitive template is
used anytime a population member is missing a locus and
in the case of “over-specification”, where a specific locus
is assigned an allelic value multiple times, the first value
encountered is the one recorded. At the end of the Juxta-
positional phase, the best population member found across
all of the processors becomes the new competitive template
on each processor. At this point the BB size is incremented
and each of the three phases are executed again. After all of
the specified BB sizes are executed, the best solution found
is recorded and presented to the user.

3

2.3 Multiobjective fmGA (MOfmGA)

A modified Multiobjective fmGA (MOfmGA) executes
using the same basic algorithm structure as the fmGA. The
differences include the use of a multiple competitive tem-
plate design where each objective function isassigneda
competitive template. This competitive template evolves to
”optimize” that particular objective function. Each popu-
lation member is overlayed onto this competitive template
before evaluation of the objective function. As the Juxtapo-
sitional Phase completes, population members (after over-
laying onto a competitive template if necessary) are written
to a file for processing and extraction of pareto front points.
Finally, after storing the overall best chromosome into the
next competitive template, a PDB file is generated.

3 Design of Computational Experiments

The fmGA is programmed to run in serial and parallel on
the following computer systems: Pile of PCs (PPCs), Clus-
ter of Workstations (COWs) and Networks of Workstations
(NOWs). The clusters of computers used in this investiga-
tion are defined in [5]. The algorithm’s generic performance
metric is two fold -goodnessof the structure (effectiveness)
and the time to converge (efficiency).

Next we discuss the study of both effectiveness and ef-
ficiency for the fmGA when used to determine a protein
structure. Specific studies include competitive template
generation, a building block size experiment, a Ramachan-
dran constraint experiment and a multiobjective experiment.
Efficiency is tested using a Farming Model. Finally, the
“goodness” of solutions are evaluated using RMS differ-
ences. In this preliminary study we chosepolyalanine14

(POLY) as a test peptide.

3.1 Competitive Template Generation

The fmGA explicitly manipulates BBs in search of the
global optimum and uses the idea of speciation through suc-
cessive phases of the algorithm. The fmGA uses a competi-
tive template, which is a fully specified population member,
to evaluate these partially defined strings or building blocks.
By focusing on modifying the process that the fmGA uses
to create and update the competitive template during the ex-
ecution of the algorithm the algorithm’s effectiveness is in-
creased.

3.2 Building Block Experiment

The BB analysis is performed in an attempt to identify
the building block sizes that result in finding better solu-
tions. A BB is a partial string representing bits from one,
some, or all of the dihedral angles that each chromosome

represents. The BBs are not restricted to be contiguous bits
from the chromosomes but instead can be non-contiguous
bits from the chromosome.

The BB analysis conducted covers a variety of BB sizes
and compares the results to determine which size produces
the best statistical results. One expects a BB size of 35 bits
to yield the best due to the alpha helical [3] structure of
POLY, known to have 3.5 residues per turn [2].

3.3 Constraints Based on Ramachandran Maps

Search algorithms having constrains on search space by
a feasibility function statistically, overtime, must find better
solutions. This premise also applies to this experiment, by
constraining the search space to have only feasible solutions
it is expected that better solutions are found.

3.4 Multobjective Experiment

In the single objective implementation of the fmGA, the
CHARMm energy function was utilized and consists of a
summation of several terms. In the multiobjective approach,
the objectives are drawn from each of the terms within the
CHARMm energy function, defined in terms of bonded and
non-bonded interactions.

3.5 Farming Model Experiment

Alternate efficiency models, such as the island model,
have been previously applied in parallelizing GAs. Due
to our energy fitness function calculation, the addition of
a farming model is proposed as discussed.

The Component Under Test for efficiency is the fitness
function calculation. The farming out of a computationally
expensive fitness evaluation should realize speed up in effi-
ciency without affecting the effectiveness. Wall clock time
is measured by system clock time to complete (seconds).

4 Results and Discussion

4.1 Multiple Competitive Templates

The multiple CT experiment is our first design modifi-
cation to the fmGA. This modification requires the fmGA
to have the ability to compute a panmetic competitive tem-
plate4 in addition to having multiple competitive templates
present during computational search. Statistical techniques
used are the Kruskal-Wallis (KW) [21] and t-test for paired
and unpaired observations (PO) [14].

4A panmetic competitive template is derived from the existing multiple
competitive templates.

4

(P
olyaniline

14
--

ALA-ALA
-…

-ALA
)

B
uilding

B
lock

T
estvs

F
itness

-160

-155

-150

-145

-140

-135

-130

-125

-120

-115

-110

B
uilding

B
lock

T
est

Fitness (kcal/mol)

A
lpha

C
T

R
andom

C
T

B
eta

C
T

A
lpha,

R
andom

&
B

eta
A

lpha,
R

andom
&

B
eta

(P
anm

etic)

F
igure

2.B
uilding

B
lock

Testvs.
F

itness
plot

of
results

for
an

experim
ent

using
m

ultiple
m

ethods
of

com
petitive

tem
plate

generation
on

the
protein

P
O

LY.

G
eneration

of
the

alpha-helix
produces

good
results;

how
ever,

the
m

ultiple
and

panm
etic

com
petitive

tem
plate

m
ethods

also
perform

ed
w

ell.
B

oth
the

beta-sheet
and

random
ly

generated
com

petitive
tem

plate
generation

ap-
proaches

perform
ed

w
orst.

T
his

is
illustrated

in
F

igure
2.

T
here

is
a

clear
difference

betw
een

the
random

,beta-sheet,
and

allalpha-helix
related

tem
plates

(alpha-helix,m
ultiple,

and
panm

etic
com

petitive
tem

plate).
S

im
ilar

results
are

re-
ported

w
ith

the
P

O
test.

A
ccordingly,the

P
O

testconcluded
that

the
order

from
best

to
w

orst
is:

panm
etic,

m
ultiple,

alpha-helix,
beta-sheet,

and
random

ly
generated

com
peti-

tive
tem

plate
m

ethod.
F

inally,
the

K
W

test
also

confirm
ed

that
the

alpha-helix
related,

beta-sheet,
and

random
ly

gen-
erated

com
petitive

tem
plate

m
ethods

are
different.

It
con-

cluded
conceptually

that
it

w
as

84%
confident

that
these

are
different

(C
hi-squared

distribution
w

ith
2

degrees
of

freedom
and

3.65
quantile)

and
com

putationally
itis

100%
confident

that
these

are
different

(C
hi-squared

distribution
w

ith
2

degrees
of

freedom
and

924
quantile).

A
further

K
W

test
w

as
conducted

on
the

three
alpha-helix

related
com

petitive
tem

plate
m

ethods.
C

onceptually,
w

e
conclude

that
there

w
as

no
difference

betw
een

the
three

(94%
confi-

dent
using

df=
2

and
0.12

quantile
of

the
C

hi-squared
dis-

tribution).
M

oreover,
com

putationally
the

K
W

test
show

s
w

ith
45%

confidence
that

these
are

the
sam

e.
T

he
K

W
is

m
ore

strict
regarding

differences;
therefore,

w
e

conclude
the

three
com

petitive
tem

plate
m

ethods
are

the
sam

e
sta-

tistically.

(P
olyaniline

14
--

ALA-ALA-…
-ALA)

B
uilding

B
lock

T
estvs.

T
im

e
(sec)

0

1000

2000

3000

4000

5000

6000

Building
Block

T
e

st

Wall Clock Time (sec)

A
lpha

C
T

R
andom

C
T

B
eta

C
T

A
lpha,

R
andom

&
B

eta

A
lpha,

R
andom

&
B

eta
(P

anm
etic)

F
igure

3.B
uilding

B
lock

Testvs.
T

im
e

to
run

experim
ent

using
m

ultiple
m

ethods
of

com
-

petitive
tem

plate
generation

on
the

protein
P

O
LY.

4.2
F

arm
ing

M
odelE

xperim
ent

T
he

pfm
G

A
utilizes

an
island

m
odel

paradigm
to

con-
ductparallelcom

m
unications

betw
een

processors.
A

teach
stage

ofthe
com

m
unications,allofthe

processors
com

m
u-

nicate
their

best
found

population
m

em
ber

to
processor

0.
P

rocessor
0

then
determ

ines
w

hich
is

the
“best”

and
com

-
m

unicates
thatpopulation

m
em

berback
to

allofthe
proces-

sors
w

ho
then

update
their

C
T.

A
fter

the
update,

allof
the

processors
continue

to
execute

the
algorithm

independently
w

ith
independentpopulation

m
em

bers
untilthe

nextupdate
com

m
unication

is
necessary.

D
ue

to
the

com
plexities

associated
w

ith
the

energy
fit-

ness
function

calculation,
the

addition
of

a
farm

ing
m

odel
in

co
m

b
in

a
tio

n
w

ith
th

e
isla

n
d

m
o

d
e

l
is

proposed.
F

arm
ing

outthe
fitness

calculations
to

anothersetofslave
processors

allow
s

for
a

decrease
in

the
overallprocessing

tim
e

as
long

as
the

com
putation

tim
e

is
greater

than
the

com
m

unications
tim

e
required.

A
s

the
slave

processors
calculate

fitness
val-

ues
the

m
asters

can
do

the
sam

e
or

conductother
com

puta-
tions.

In
addition

to
speedup

gained
for

the
peptide

selected
in

this
investigation,

the
addition

of
these

slave
processors

allow
s

for
the

M
O

fm
G

A
to

handle
larger

proteins.
W

ith
the

addition
of

farm
s,

the
program

becom
es

m
ul-

tiple
program

m
ultiple

data
(M

P
M

D
).

In
the

single
data

m
odel,the

G
A

s
execute

in
paralleland

generate
populations

separately
from

one
another,

w
ith

interactions
only

w
hen

a
m

igration
ofa

good
population

m
em

bers
occurs

w
ith

som
e

probability.
W

hile
in

shared
m

em
ory

m
achine,

a
G

lobal
population

m
odelm

ay
be

m
ore

appropriate
since

com
m

u-
nication

cost
m

ay
not

be
as

m
uch

of
a

concern.
In

such

5

(B
uilding

B
lock

T
e

stvs.T
im

e
)

1
A

lg
&

M
ultiple

F
arm

s

0

1000

2000

3000

4000

5000

6000

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

B
uilding

B
lock

T
est

Avg Time (sec)

1A
lg0F

arm
s

1A
lg2F

arm
s

1A
lg4F

arm
s

1A
lg8F

arm
s

F
igure

4.O
ne

A
lgorithm

node
experim

ent.

a
shared

m
em

ory
M

P
M

D
setup,

data
does

not
need

to
be

transferred
am

ong
processors

and
data

pipelining
can

be
uti-

lized
m

ore
readily.

T
he

system
s

used
in

these
experim

ents
are

not
currently

shared
m

em
ory

system
s

but
the

com
m

u-
nication

costis
later

show
n

to
be

insignificantcom
pared

to
the

costofthe
energy

fitness
function

evaluations.
T

he
follow

ing
pfm

G
A

param
eters

are
keptconstant(set

at
standard

values)
throughout

all
of

the
testing:

string
length

=
560

bits,
cut

probability
=

0.02,
splice

probability
=

1.00,prim
ordialgenerations

=
200,juxtapositionalgener-

ations
=

100,
totalgenerations

=
300.

A
n

inputschedule
is

also
used

to
specify

during
w

hich
generations

B
B

F
occurs.

C
om

puter
system

s
used

in
this

experim
entare

listed
in

[5].
A

goalofthis
testing

is
to

determ
ine

the
speedup

associ-
ated

w
ith

increasing
the

num
ber

of
farm

ing
processors

per
A

lgorithm
node

in
the

pfm
G

A
.

F
igure

4
illustrates

a
plot

of
one

A
lgorithm

node
w

ith
a

num
ber

of
different

farm
-

ing
nodes.

E
ach

B
B

testpointrepresents
the

average
value

for
a

specific
B

B
size

(in
increasing

order)
executed

by
the

pfm
G

A
.

A
s

the
B

B
size

increases,
the

average
execution

tim
e

also
increases.

A
dditionally,

F
igure

4
and

F
igure

5
show

that
as

the
num

ber
of

farm
ing

processors
increases,

the
average

execution
tim

e
decreases

for
any

given
B

B
test.

In
this

test
there

exists
a

significant
im

provem
ent

in
m

od-
ifying

the
num

ber
of

farm
ing

nodes
from

0
to

2
and

from
2

to
4.

A
n

increase
in

the
farm

ing
nodes

from
4

to
8

pro-
vides

a
sm

allim
provem

ent.
T

he
bestspeedup

obtained
w

as
w

ith
8

farm
ing

nodes
w

here
the

serialtim
e

w
as

5080
sec-

onds
w

hile
the

parallel
tim

e
w

as
1684

seconds
yielding

a
speedup

of
3

tim
es.

T
his

validates
our

m
odeland

w
e

can
draw

a
conclusion

that
this

m
odel

increases
the

efficiency
ofthe

fm
G

A
.

F
igure

5
presents

the
results

for
tw

o
A

lgorithm
nodes

(B
uilding

B
lock

T
estvs.T

im
e)2

A
lg

&
M

ultiple
F

arm
s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

B
uilding

B
lock

T
est

Time (sec)

2A
lg0F

arm
s

2A
lg2F

arm
s

2A
lg4F

arm
s

2A
lg8F

arm
s

2A
lg16F

arm
s

F
igure

5.Tw
o

A
lgorithm

node
experim

ent.

tested
w

ith
a

num
berofdifferentfarm

ing
nodes.

In
this

test-
ing,

the
overallpopulation

size
across

allof
the

algorithm
nodes

is
equivalentto

the
population

size
used

in
the

testof
a

single
algorithm

node.
T

he
serialtim

e
w

as
4140

seconds
and

the
paralleltim

e
w

ith
4

com
pute

nodes
per

farm
took

887
seconds

yielding
a

speedup
of4.7.

4.3
B

uilding
B

lock
S

ize
A

nalysis

T
he

B
B

analysis
is

perform
ed

in
an

attem
pt

to
identify

the
building

block
sizes

that
result

in
finding

better
solu-

tions
for

P
O

LY.
A

B
B

is
a

partial
string

representing
bits

from
one,som

e,or
allofthe

dihedralangles
thateach

chro-
m

osom
e

represents
[19].

T
he

B
B

s
are

not
restricted

to
be

contiguous
bits

from
the

chrom
osom

es
but

instead
can

be
non-contiguous

bits
from

the
chrom

osom
e.

T
his

analysis
covers

a
variety

ofB
B

sizes
and

com
pares

the
results

to
de-

term
ine

w
hich

size
produces

the
beststatisticalresults.

T
he

B
B

ranges
chosen

fortesting
included:

16-18,18-20,20-22,
...,and

38-40.
T

he
results

ofthe
B

B
size

experim
entshow

thatB
B

sizes
of

30-32
yielded

the
best

results
for

P
O

LY.
A

lthough,
this

B
B

size
is

specific
for

P
O

LY,
it

should
apply

to
other

pro-
teins

having
an

alpha
helical

structure.
A

dditionally,
B

B
size

30-32
yielded

the
best

overallfitness
value

found
dur-

ing
allofthe

B
B

testing
of-140

kcal,w
hich

is
in

the
neigh-

borhood
ofthe

accepted
C

H
A

R
M

m
fitness

for
this

protein.

4.4
P

rotein
3D

F
ile

G
eneration

A
good

conform
ation

for
P

O
LY

w
as

found
during

the
M

O
fm

G
A

experim
ent

(-170
kcal/m

ol),
w

hich
is

in
good

agreem
entw

ith
an

alpha-helix
(F

igure
7).

6

Figure 6. Found POLY structure with -169
kcal/mol energy value.

Figure 7. Conformation from a PDB file
representing the accepted conformation for
Polyalanine 16

4.5 Ramachandran Experiment

The Ramachandran experiment is conducted to take ad-
vantage of problem domain information in restricting the
search space (not size) for the algorithm. In the prelim-
inary results the MOfmGA was executed three times for
each of the methods to provide statistical results. All results
presented here are averaged over three runs. The follow-
ing MOfmGA parameters are kept constant; cut probability
= 0.02, splice probability = 1.00, primordial generations =
200, juxtapositional generations = 200, total generations =
400. An input schedule was used to specify sizes of the
building blocks the algorithm uses and during which gener-
ations BBF occurs. Tests were conducted using only POLY,
with 560 bit length strings and BB sizes 20-24. Further-
more, the na variable is set at 100 and, for efficiency of
getting results, only a single objective and a single randomly
generated competitive template is employed. Figure 8 illus-
trates the results of the Ramachandran experiment. Clearly,
we note that both Ramachandran constraints achieve bet-
ter results. The mapping cost of using Ramachandran plots
is three times that of a non Ramachandran implementation.
This is presented in Figure 9. Notice that the mapping for
both the Optimistic and Pessimistic implementation takes
exactly the same cost in time; therefore, in order to use these
constraints, the Pessimistic values are to be utilized because
it is statistically more effective and costs the same in time.

(Polyaniline 14 -- ALA-ALA-…-ALA)
Generation vs Fitness

-160

-155

-150

-145

-140

-135

-130

-125

-120

-115

-110

0 2 4 6 8 10 12 14 16

Bulding Block Test

F
itn

es
s

(k
ca

l/m
ol

)

No Ramachandran

Optimistic

Pessimistic

Figure 8. Building Block Test vs. Fit-
ness/Time plots of results for an experi-
ment using no, pesimistic and optimistic Ra-
machandran plots on the protein POLY. See
[5] for the restrictions applied to the land-
scape for each different method.

(Polyaniline 14 -- ALA-ALA-…-ALA)
Generation vs. Time (sec)

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12 14 16

Building Block Test

W
al

lC
lo

ck
T

im
e

(s
ec

)

No Ramachandran

Optimistic

Pessimistic

Figure 9. Efficiency results of the Ramachan-
dran experiment.

7

5 Conclusions

This investigation summarizes our progress of using
MOfmGA, modified to scale its efficiency to 4.7 times a se-
rial run time. Algorithm development required a major re-
write to prepare for the implementation of the multiobjec-
tive approach. The new algorithm has the capabilities to be
single and multiple objective and run with single and mul-
tiple competitive templates all configurable. The algorithm
now provides for optimistic and pessimistic Ramachandran
(per residue) constraints and calculation of RMS dihedral
and Cartesian coordinate differences from accepted struc-
tures. Computational results support our hypothesis that
the MO version provides more acceptable results. Overall
preliminary results for a poly(alanine) model are encourag-
ing. Future studies will involve beta structures and the villin
headpiece [22, 11] as well as participation in CASP [1].

References

[1] www.predictioncenter.unl.gov, 1998-2003.
[2] C. Branden and J. Tooze. Introduction to protein structure.

1991.
[3] J. D. Bryngelson, E. M. Billings, O. G. Mouritsen, J. Hertz,

M. H. Jensen, K. Sneppen, and H. Flyvbjerg.From Inter-
atomic Interactions to Protein Structure, volume 480, chap-
ter Physics of Biological Systems : From Molecules to
Species, pages 80–116. Springer-Verlag New York, 1997.

[4] M. Committee on Physical and E. Sciences.Grand Chal-
lenges 1993: High Performance Computing and Communi-
cations. Office of Science and Technology Policy, 1982.

[5] R. O. Day. A multiobjective approach applied to the protein
structure prediction problem. Ms thesis, Air Force Institute
of Technology, March 2002. Sponsor: AFRL/Material Di-
rectorate.

[6] R. O. Day, J. B. Zydallis, and G. B. Lamont. Competitive
template analysis of the fast messy genetic algorithm when
applied to the protein structure prediction problem.ICCN,
page 4, December 22 2001.

[7] R. O. Day, J. B. Zydallis, and G. B. Lamont. Solving the
protein structure prediction problem through a multiobjec-
tive genetic algorithm.ICCN, page 4, December 22 2001.

[8] R. O. Day, J. B. Zydallis, G. B. Lamont, and R. Pachter.
Genetic algorithm approach to protein structure prediction
with secondary structures.EUROGEN, page 6, September
2000.

[9] R. O. Day, J. B. Zydallis, G. B. Lamont, and R. Pachter.
Analysis of fine granularity in parallelization and building
block sizes of the parallel fast messy ga used on the protein
structure prediction problem.World Congress on Computa-
tional Intelligence, page 6, December 2001. Special Biolog-
ical area.

[10] J. Ecker, M. Kupferschmid, C. Lawrence, A. Reilly, and
A. Scott. An application of nonlinear optimization in molec-
ular biology. European Journal Of Operational Research,
138(2):452–458, April 2002. Department of Mathematical

Sciences, Rensselaer Polytechnic Institute, 110 8th Street,
Troy, NY 12180-3590, USA.

[11] A. Fernandez, M. yi Shen, A. Colubri, T. R. Sosnick, S. R.
Berry, and K. F. Freed. Large-scale context in protein fold-
ing:villin headpiece. Biochemistry, 42(3):664–671, 2003.
CODEN: BICHAW ISSN: 0006-2960.

[12] D. E. Goldberg.Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing Com-
pany, Reading MA, 1989.

[13] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid,
accurate optimization of difficult problems using fast messy
genetic algorithms. pages 56–64, July 1993.

[14] R. Jain.The Art of Computer Systems Performance Analysis.
Wiley, 1991.

[15] M. M. L. Khimasia. Np complete problems.
http://www.tcm.phy.cam.ac.uk/∼mmlk2/report13/node31.html,
1996.

[16] N. Krasnogor, D. Pelta, P. Mocciola, P. E. M. Lopex, and
E. de la Canal. Enhanced evolutionary search of folding
using parsed proteins.Operational Research Symposium,
1997. Bs. As. Argentina.

[17] G. B. Lamont and L. D. Merkle. Introduction to bioinfor-
matics for computer scientists. Chapter in W. Corne’s book,
August 2002.

[18] K. Lipkowitz and D. Boyd. Reviews in Computational
Chemistry, volume 10. VCH Publishers, Inc, 333 7th Av-
enue, New York, New York, 1997.

[19] S. R. Michaud, J. B. Zydallis, G. Lamont, and R. Pachter.
Scaling a genetic algorithm to medium-sized peptides by
detecting secondary structures with an analysis of building
blocks. In M. Laudon and B. Romanowicz, editors,Proceed-
ings of the First International Conference on Computational
Nanoscience, pages 29–32, Hilton Head, SC, March 2001.

[20] S. Schulze-Kremer. Genetic algorithms and protein folding.
Methods in Molecular Bilogy, 143:175–222, 2000. Protein
Structure Prediction: Methods and Protocols.

[21] M. R. Spiegel and L. J. Stephens.Theory and Problems of
Statistics, volume 1 of3rd. McGraw-Hill, 1999.

[22] B. Zagrovic, C. D. Snow, M. R. Shirts, and V. S. Pande. Sim-
ulation of folding of a small alpha-helical protein in atom-
istic detail using worldwide-distributed computing.Jour-
nal of Molecular Biology, 323(5):927–937, 2002. CODEN:
JMOBAK ISSN: 0022-2836.

8

