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Abstract

Interest in protein structure prediction is wide-spread,
and has been previously addressed using evolutionary al-
gorithms, such as the Simple genetic algorithm (GA), messy
GA (mga), fast messy GA (fmGA), and Linkage Learning
GA (LLGA). However, past research used off the shelf soft-
ware such as GENOCOP, GENESIS, and mGA. In this study
we report results of a modified fmGA, which is found to be
“good” at finding semi-optimal solutions in a reasonable
time. Our study focuses on tuning this fmGA in an attempt
to improve the effectiveness and efficiency of the algorithm
in solving a protein structure and in finding better ways to
identify secondary structures. Problem definition, protein
model representation, mapping to algorithm domain, tool
selection modifications and conducted experiments are dis-
cussed1.

1. Introduction

Protein structure prediction is a Grand Challenge prob-
lem [4, 16]. Solving this problem involves finding a
methodology that can consistently and correctly determine
the configuration of a folded proteinwithout regard to the
folding process. The problem is simply stated; however,
solving is intractable [15]. Thus, a variety of algorith-
mic approaches have been proposed [18][20], ranging from
GAs, SA, to hybrids between deterministic and stochas-
tic methodologies using nonlinear optimization techniques
and maximum likelihood approaches [10], recently re-
viewed [3]. In this paper we focus on modifications to
the fmGA, such as multiobjective implementation of the
fmGA (MOfmGA), integrated per residue Ramachandran

1The views expressed in this article are those of the authors and do
not reflect the official policy or position of the United States Air Force,
Department of Defense, or the U.S. Government.

plots, and a farming model for the parallel fmGA (pfmGA)
to improve on previous GA applications for protein struc-
ture determination.

All GAs discussed in this investigation utilize the
same CHARMm (version C22) energy model as a fitness
function[17]. The protein structure is determined by mini-
mizing the energy fitness function. A choice between real
and binary values is required. In the past both of these en-
codings yielded similar results. Thus, a binary encoding
was chosen, and the angles discretetized into 1024 (1 MB
or 210) sections for every360◦.

2 Genetic Algorithms

The first step in adapting a model to be solved using a
GA (complexity estimates are give in Table 1) is to trans-
form the problem domain solution variable structure into a
fixed length binary string – a so called, chromosome. In-
dividual elements of a chromosome are features that corre-
spond to the genes of a chromosome. Feature values are the
values that one feature may take on - these represent alleles
of a gene. The set of every allele is the genetic alphabet
[12]. After a discretized encoding scheme is applied to the
problem, the fitness function is evaluated in order to give an
indicator if one chromosome is better than another.

2.1 fast messy GA

Following our previous sGA and mGA work, the fmGA
(Figure 1) was to be named our GA of choice ([8], [7], [6]
and [9]), having lower complexity.

The mGA’s advantage over the sGA is in its ability to
explicitly create tightly linked building blocks for defeat-
ing deception by insuring that there is a good solution in
the population of building blocks created in the initializa-
tion phase. However, it is extremely expensive to build ev-
ery combination of a particular building block size to put



Table 1. Complexity Estimates for serial GAs
Phase sGAa ssGAb mGA fmGA

Initialization O(ln) O(ln) O(lk) O(l)
Recombination O(g ∗ n ∗ q) O(g)

Primordial O(0) O(0) O(l2)c

Juxtapositional O(l log l) O(l log l)
Overall mGA O(ln) O(ln) O(lk) O(l2)

al is the length of chromosome,n is the size of population,q is group size for tournament selection,g is the number of generations.
bl is the length of chromosome,n is the size of population ,g is the number of generations of reproduction.
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Figure 1. Flow of fmGA.

into a population. The fmGA is designed to reduce this
complexity by replacing the initialization phase and primor-
dial phase with a probabilistic complete initialization (PCI)
and primordial phase, consisting of selection and building
block filtering (BBF). PCI and BBF are an alternate means

to providing the juxtaposition phase with highly fit building
blocks [13].

The PCI phase creates an initial pop-pool size of n as de-
scribed by Equation 1, which is probabilistically equivalent
to the pop-pool size at the end of the primordial phase of
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mGAs.
The population size is the multiplication of three terms

from the equations of: the gene-wise probability, the allele-
wise combinatoric, and the building block evaluation noise
equation [13]. Furthermore, it can be shown that the prob-
ability gene-wise equation is the probability of selecting a
gene combination of size k in a string of lengthl′ having
the total number of genes,l, as given as Equation 2. If,
mg, is assigned to theinverseof Equation 2, it is suggested
that each subpopulation of sizeng have one needed string,
on average, gene combination of size k. Equation 3 defines
ng. If we expect to have one of our needed gene combina-
tions for one particular building block of size k, then we can
further claim that we require the needed gene combination
for each and every possible combination of k building block
size, which makes for2k allelic combinations or allele-wise
combinatoric population size multiplier. A second multi-
plier is then defined in Equation 4 (the building block evalu-
ation noise equation). This equation makes for a population
size calculation where the selection error between two com-
peting building blocks is no more thanα different. Finally,
we have a simple, more manageable, population sizing cal-
culation in Equation 5. [13]

2k

(
l
l′
)

(
l−k
l′−k

)2c(α)β2(m − 1) (1)

p(l′, k, l) =

(
l−k
l′−k

)

(
l
l′
) (2)

ng =
1

( l−k
l′−k)
( l

l′)

(3)

na = 2c(α)β2(m − 1) (4)

n = nang (5)

Once the population size is determined, the initial pop-
ulation is created and the algorithm begins. The length of
the strings,l′, is set tol−k. The primordial phase performs
several tournament selection generations to build up copies
of highly fit strings followed by BBF to reduce the string
length toward the building block size k. An example of the
population sizing calculation can be found in [5]. To con-
clude, instead of having a huge initialization cost as we do
with the mGA, the fmGA has allowed a more optimal initial
population mechanism that is statistically equivalent to that
of the mGA.

2.2 Parallel fast messy GA

The pfmGA is an extension of the fmGA [13] and is a
binary, population based, stochastic approach that exploits

Building Blocks (BB)s within the population to find solu-
tions to optimization problems. Our pfmGA may be exe-
cuted in a single program single data (SPSD) or a single
program multiple data (SPMD) mode. The parallelization
of this algorithm is based on the Message Passing Interface
(MPI) constructs. The pfmGA consists of three phases of
operation: the Initialization, Building Block Filtering, and
Juxtapositional Phases, all using synchronous MPI based
communications. The pfmGA operates independently on
each of the processors with communications occurring dur-
ing the Initialization and Juxtapositional phases (Indepen-
dent mode).

In the Initialization phase, a population of individuals is
randomly generated on each processor. Subsequently, the
population members are evaluated. A CT is also generated
on each processora priori. The CT is a locally optimized
and used for calculating the fitness value of partial strings
in the later phases of the algorithm.

The BBF Phase follows and extracts BBs from the pop-
ulation for the generation of solutions. This process occurs
through a random deletion of bits from each of the pop-
ulation members alternated with tournament selection. A
BBF schedule is provideda priori to specify the generations
for the deletion to occur, the number of bits to be deleted
from each population member and the generations to com-
plete tournament selection. This phase completes once the
length of the population members’ chromosomes have been
reduced to a predetermined BB size. In order to evaluate
these BBs (“under-specified” strings), throughout the phase
a competitive template is utilized to fill in the missing al-
lele values. These population members are referred to as
“under-specified” since each locus position does not have
an associated allele value. The BBF process is alternated
with tournament selection to keep only the strings with the
best building blocks found, or those with the best fitness
value around for later processing.

The Juxtapositional phase follows and uses the build-
ing blocks found through the BBF phase and recombination
operators to create population members that become fully
specified (all loci values have corresponding allele values)
by the end of the phase. Again the competitive template is
used anytime a population member is missing a locus and
in the case of “over-specification”, where a specific locus
is assigned an allelic value multiple times, the first value
encountered is the one recorded. At the end of the Juxta-
positional phase, the best population member found across
all of the processors becomes the new competitive template
on each processor. At this point the BB size is incremented
and each of the three phases are executed again. After all of
the specified BB sizes are executed, the best solution found
is recorded and presented to the user.
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2.3 Multiobjective fmGA (MOfmGA)

A modified Multiobjective fmGA (MOfmGA) executes
using the same basic algorithm structure as the fmGA. The
differences include the use of a multiple competitive tem-
plate design where each objective function isassigneda
competitive template. This competitive template evolves to
”optimize” that particular objective function. Each popu-
lation member is overlayed onto this competitive template
before evaluation of the objective function. As the Juxtapo-
sitional Phase completes, population members (after over-
laying onto a competitive template if necessary) are written
to a file for processing and extraction of pareto front points.
Finally, after storing the overall best chromosome into the
next competitive template, a PDB file is generated.

3 Design of Computational Experiments

The fmGA is programmed to run in serial and parallel on
the following computer systems: Pile of PCs (PPCs), Clus-
ter of Workstations (COWs) and Networks of Workstations
(NOWs). The clusters of computers used in this investiga-
tion are defined in [5]. The algorithm’s generic performance
metric is two fold -goodnessof the structure (effectiveness)
and the time to converge (efficiency).

Next we discuss the study of both effectiveness and ef-
ficiency for the fmGA when used to determine a protein
structure. Specific studies include competitive template
generation, a building block size experiment, a Ramachan-
dran constraint experiment and a multiobjective experiment.
Efficiency is tested using a Farming Model. Finally, the
“goodness” of solutions are evaluated using RMS differ-
ences. In this preliminary study we chosepolyalanine14

(POLY) as a test peptide.

3.1 Competitive Template Generation

The fmGA explicitly manipulates BBs in search of the
global optimum and uses the idea of speciation through suc-
cessive phases of the algorithm. The fmGA uses a competi-
tive template, which is a fully specified population member,
to evaluate these partially defined strings or building blocks.
By focusing on modifying the process that the fmGA uses
to create and update the competitive template during the ex-
ecution of the algorithm the algorithm’s effectiveness is in-
creased.

3.2 Building Block Experiment

The BB analysis is performed in an attempt to identify
the building block sizes that result in finding better solu-
tions. A BB is a partial string representing bits from one,
some, or all of the dihedral angles that each chromosome

represents. The BBs are not restricted to be contiguous bits
from the chromosomes but instead can be non-contiguous
bits from the chromosome.

The BB analysis conducted covers a variety of BB sizes
and compares the results to determine which size produces
the best statistical results. One expects a BB size of 35 bits
to yield the best due to the alpha helical [3] structure of
POLY, known to have 3.5 residues per turn [2].

3.3 Constraints Based on Ramachandran Maps

Search algorithms having constrains on search space by
a feasibility function statistically, overtime, must find better
solutions. This premise also applies to this experiment, by
constraining the search space to have only feasible solutions
it is expected that better solutions are found.

3.4 Multobjective Experiment

In the single objective implementation of the fmGA, the
CHARMm energy function was utilized and consists of a
summation of several terms. In the multiobjective approach,
the objectives are drawn from each of the terms within the
CHARMm energy function, defined in terms of bonded and
non-bonded interactions.

3.5 Farming Model Experiment

Alternate efficiency models, such as the island model,
have been previously applied in parallelizing GAs. Due
to our energy fitness function calculation, the addition of
a farming model is proposed as discussed.

The Component Under Test for efficiency is the fitness
function calculation. The farming out of a computationally
expensive fitness evaluation should realize speed up in effi-
ciency without affecting the effectiveness. Wall clock time
is measured by system clock time to complete (seconds).

4 Results and Discussion

4.1 Multiple Competitive Templates

The multiple CT experiment is our first design modifi-
cation to the fmGA. This modification requires the fmGA
to have the ability to compute a panmetic competitive tem-
plate4 in addition to having multiple competitive templates
present during computational search. Statistical techniques
used are the Kruskal-Wallis (KW) [21] and t-test for paired
and unpaired observations (PO) [14].

4A panmetic competitive template is derived from the existing multiple
competitive templates.
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2A
lg16F
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s

F
igure

5.Tw
o

A
lgorithm

node
experim

ent.

tested
w

ith
a

num
berofdifferentfarm

ing
nodes.

In
this

test-
ing,

the
overallpopulation

size
across

allof
the

algorithm
nodes

is
equivalentto

the
population

size
used

in
the

testof
a

single
algorithm

node.
T

he
serialtim

e
w

as
4140

seconds
and

the
paralleltim

e
w

ith
4

com
pute

nodes
per

farm
took

887
seconds

yielding
a

speedup
of4.7.

4.3
B

uilding
B

lock
S

ize
A

nalysis

T
he

B
B

analysis
is

perform
ed

in
an

attem
pt

to
identify

the
building

block
sizes

that
result

in
finding

better
solu-

tions
for

P
O

LY.
A

B
B

is
a

partial
string

representing
bits

from
one,som

e,or
allofthe

dihedralangles
thateach

chro-
m

osom
e

represents
[19].

T
he

B
B

s
are

not
restricted

to
be

contiguous
bits

from
the

chrom
osom

es
but

instead
can

be
non-contiguous

bits
from

the
chrom

osom
e.

T
his

analysis
covers

a
variety

ofB
B

sizes
and

com
pares

the
results

to
de-

term
ine

w
hich

size
produces

the
beststatisticalresults.

T
he

B
B

ranges
chosen

fortesting
included:

16-18,18-20,20-22,
...,and

38-40.
T

he
results

ofthe
B

B
size

experim
entshow

thatB
B

sizes
of

30-32
yielded

the
best

results
for

P
O

LY.
A

lthough,
this

B
B

size
is

specific
for

P
O

LY,
it

should
apply

to
other

pro-
teins

having
an

alpha
helical

structure.
A

dditionally,
B

B
size

30-32
yielded

the
best

overallfitness
value

found
dur-

ing
allofthe

B
B

testing
of-140

kcal,w
hich

is
in

the
neigh-

borhood
ofthe

accepted
C

H
A

R
M

m
fitness

for
this

protein.

4.4
P

rotein
3D

F
ile

G
eneration

A
good

conform
ation

for
P

O
LY

w
as

found
during

the
M

O
fm

G
A

experim
ent

(-170
kcal/m

ol),
w

hich
is

in
good

agreem
entw

ith
an

alpha-helix
(F

igure
7).
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Figure 6. Found POLY structure with -169
kcal/mol energy value.

Figure 7. Conformation from a PDB file
representing the accepted conformation for
Polyalanine 16

4.5 Ramachandran Experiment

The Ramachandran experiment is conducted to take ad-
vantage of problem domain information in restricting the
search space (not size) for the algorithm. In the prelim-
inary results the MOfmGA was executed three times for
each of the methods to provide statistical results. All results
presented here are averaged over three runs. The follow-
ing MOfmGA parameters are kept constant; cut probability
= 0.02, splice probability = 1.00, primordial generations =
200, juxtapositional generations = 200, total generations =
400. An input schedule was used to specify sizes of the
building blocks the algorithm uses and during which gener-
ations BBF occurs. Tests were conducted using only POLY,
with 560 bit length strings and BB sizes 20-24. Further-
more, the na variable is set at 100 and, for efficiency of
getting results, only a single objective and a single randomly
generated competitive template is employed. Figure 8 illus-
trates the results of the Ramachandran experiment. Clearly,
we note that both Ramachandran constraints achieve bet-
ter results. The mapping cost of using Ramachandran plots
is three times that of a non Ramachandran implementation.
This is presented in Figure 9. Notice that the mapping for
both the Optimistic and Pessimistic implementation takes
exactly the same cost in time; therefore, in order to use these
constraints, the Pessimistic values are to be utilized because
it is statistically more effective and costs the same in time.

(Polyaniline 14 -- ALA-ALA-…-ALA)
Generation vs Fitness
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Figure 8. Building Block Test vs. Fit-
ness/Time plots of results for an experi-
ment using no, pesimistic and optimistic Ra-
machandran plots on the protein POLY. See
[5] for the restrictions applied to the land-
scape for each different method.
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Figure 9. Efficiency results of the Ramachan-
dran experiment.
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5 Conclusions

This investigation summarizes our progress of using
MOfmGA, modified to scale its efficiency to 4.7 times a se-
rial run time. Algorithm development required a major re-
write to prepare for the implementation of the multiobjec-
tive approach. The new algorithm has the capabilities to be
single and multiple objective and run with single and mul-
tiple competitive templates all configurable. The algorithm
now provides for optimistic and pessimistic Ramachandran
(per residue) constraints and calculation of RMS dihedral
and Cartesian coordinate differences from accepted struc-
tures. Computational results support our hypothesis that
the MO version provides more acceptable results. Overall
preliminary results for a poly(alanine) model are encourag-
ing. Future studies will involve beta structures and the villin
headpiece [22, 11] as well as participation in CASP [1].
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