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Abstract

Progressive sequence model refinement by means of it-
erative searches is an effective technique for high sensitiv-
ity database searches and is currently employed in popu-
lar tools such as PSI-BLAST and SAM. Recently, a novel
alignment algorithm has been proposed that offers fea-
tures expected to improve the sensitivity of such iterative
approaches, specifically a well-characterized theory of its
statistics even in the presence of position-specific gap costs.
Here, we demonstrate that the new hybrid alignment al-
gorithm is ready to be used as the alignment core of PSI-
BLAST. In addition, we evaluate the accuracy of two pro-
posed approaches to edge effect correction in short se-
quence alignment statistics that turns out to be one of the
crucial issues in developing a hybrid-alignment based ver-
sion of PSI-BLAST.

1 Introduction

The availability of large numbers of entire genomes re-
quires powerful bioinformatics tools to assign meaning to
the sequence data and to leap forward into areas like pro-
teomics. Perhaps the most fundamental and widely used
tool of genomic analysis is sequence alignment. Although
sequence alignment is a well-established technique, the
need to detect weaker and weaker sequence homologies re-
quires continuous improvements in the sensitivity of align-
ment algorithms.

The most commonly used sequence alignment tools like
BLAST [3] and FASTA [25] are based on the Smith-
Waterman algorithm [30]. Recently, a variation of the
Smith-Waterman algorithm called hybrid alignment has
been proposed [36]. The main advantage of hybrid align-
ment is that it is backed by a theory of its statistics that al-
lows to quickly assign reliable E-values for arbitrary scor-

ing systems. Handling of arbitrary scoring systems is partic-
ularly relevant in iterative algorithms like PSI-BLAST [3]
or SAM [16] that dynamically adapt their scoring system
to the query sequence. Such iterative approaches are re-
quired to detect more remote homologies than those found
by BLAST or FASTA.

Hybrid alignment has the same computational complex-
ity as the Smith-Waterman algorithm. However, it has also
been combined with the heuristic approaches of BLAST
to render it computationally efficient [35]. It has been
shown to be comparable to the Smith-Waterman algorithm
in its ability to detect sequence homologies in pairwise se-
quence alignments [35]. However, it has never been eval-
uated within the iterative framework that it is presumably
most useful for.

Here, we put the hybrid algorithm to test within an estab-
lished iterative search framework, namely PSI-BLAST. In
principle, the hybrid algorithm can offer crucial additional
features to PSI-BLAST such as position-specific gap costs.
However, the heuristics built into a high performance tool
like PSI-BLAST have been extensively optimized for its na-
tive, Smith-Waterman based, alignment algorithm over the
course of several years. Thus, it is not clear what would be
the effects of replacing the current algorithm for E-value
computation with the hybrid algorithm, even without adding
extra features such as position specific gap costs. For exam-
ple, we found that the edge effect correction of E-values
follows different laws between the two versions of PSI-
BLAST, pointing to at least one area in which the two al-
gorithms (and their underlying statistics) interact differently
with the rest of the code.

The purpose of this study is to answer the question of
the hybrid algorithm’s compatibility as an E-value compu-
tation engine in PSI-BLAST. Assessing this compatibility is
crucial in determining the extent to which the hybrid algo-
rithm can leverage the investments that went into building
the current crop of high performance bioinformatics tools.



This paper offers two main contributions. The first is
to show that the hybrid alignment algorithm is ready to be
used used as the alignment core of PSI-BLAST, and that
only minimal change is required to PSI-BLAST (the edge
effect correction formula). The second main contribution is
to evaluate the accuracy of two proposed approaches to edge
effect correction in short sequence alignment statistics.

The remainder of the manuscript is organized as follows.
Section 2 provides some background on sequence align-
ment statistics. Section 3 presents the steps necessary to
incorporate hybrid alignment as the alignment core of PSI-
BLAST. Then, Section 4 describes in detail how sequence
length effects are being taken into account since this differs
significantly from the original version of PSI-BLAST. The
direct comparison of the hybrid and the original version of
PSI-BLAST is presented in Section 5. Finally, Section 6
concludes the paper.

2 Review of sequence alignment statistics

Pairwise sequence alignment algorithms assign an align-
ment score to each pair of sequences. The score is the larger
the more similar the two sequences are. Iterative sequence
alignment tools like PSI-BLAST or SAM build up on these
pairwise sequence alignment algorithms. In each iteration
the pairwise sequence alignment algorithm is used to search
a large sequence database which leads to a list of hits or-
dered by their score. From this list of hits a multiple align-
ment is created that in turn determines the scoring system
of the next iteration. The crucial step from one iteration to
the other is the decision which of the hits to keep as pu-
tative members of the family (and include in the multiple
alignment) and which of the hits to reject as non-relevant.
A reliable quantitative criterion for which sequences to keep
as putative members and which to discard as random hits is
a cutoff in the E- or p-value of the sequences.

The statistical significance expressed by the E-value
judges the quality of an alignment relative to all align-
ments that one would obtain by aligning randomly cho-
sen (and thus unrelated) sequences. Thus, it can only be
calculated if it is known how the alignment scores of ran-
domly chosen sequences are distributed. For alignment al-
gorithms that do not allow gaps, i.e., insertions or deletions,
in their alignments this alignment score distribution of ran-
dom sequences is known. It has been rigorously proven
[14, 15, 12] that the expected number of gapless local align-
ments of two sequences of length M and N with a score
larger that Σ, i.e., the E-value, follows in the limit of in-
finitely long sequences the universal form

E(Σ) = KMNe−λΣ. (1)

This form neither depends on the scoring parameters nor on
the sequence model, i.e., the frequencies with which each

amino acid appears in the random sequences, as long as the
parameters are chosen such that the alignments are really
local. However, the two parameters λ and K do depend on
the scoring parameters. The Karlin-Altschul theory also de-
scribes this dependence. Thus, an E-value can be assigned
to a gapless alignment without any further need for compu-
tation which made the original version of BLAST so suc-
cessful.

However, in order to detect weak sequence homologies,
it is crucial to allow gaps in an alignment [24]. In the pres-
ence of gaps the E-values follow according to numerical
studies still the universal form Eq. (1) [31, 10, 19, 33, 34, 2,
23] However, the numerical values of the two parameters λ
and K are not known.

There are various approaches to solve this dilemma: for
large gap costs there are approximate analytical formulas
for λ [21, 20, 29] For a small sub-class of scoring systems
there is even an analytical formula for λ that is valid for
all gap costs [6]. The current version of PSI-BLAST uses a
heuristic method to estimate λ for different scoring matrices
but at fixed gap cost [3, 28, 27] and there are numerical
approaches [7, 8] as well to rapidly determine λ.

However, all of these approaches are either heuristic or
restricted to certain regimes of the alignment parameters.
A possible escape route from this dilemma is an alternative
alignment algorithm that has been proposed by Yu and Hwa
[36]. The algorithm is called hybrid alignment since it is a
combination of the Smith-Waterman algorithm and prob-
abilistic schemes like hidden Markov models. In hybrid
alignment the Smith-Waterman algorithm is modified such
that its E-values are still calculated according to Eq. (1) but
with the parameter λ taking the universal value λ = 1 com-
pletely independently of the scoring system. This simplifi-
cation of the statistics does not decrease the sensitivity of
the algorithm compared to the traditional Smith-Waterman
algorithm [35]. The basic computational complexity of the
alternative algorithm is the same as for Smith-Waterman
and it can be combined with heuristic schemes similar to
the ones used in BLAST to reduce the computational effort.
Most importantly, the theoretical prediction of the universal
form Eq. (1) with λ = 1 holds even for position-dependent
gap costs. This prediction has also been numerically veri-
fied [35] for a large range of scoring systems with position
dependent gap costs taken from the PFAM [4] database.
The inability to calculate E-values for position-specific gap
costs is precisely the reason why PSI-BLAST does not in-
corporate a position-specific gap cost in spite of the ex-
pectation that such a position-specific gap cost would in-
crease sensitivity significantly if it were possible to imple-
ment it. Thus, using hybrid alignment in PSI-BLAST would
not only provide a theoretical basis for the calculation of E-
values with the current fixed gap cost scoring systems but
also open up the possibility to the future incorporation of



more sensitive position-specific gap costs.

3 Incorporation of hybrid alignment into
PSI-BLAST

As part of a previous work, a non-position-specific ver-
sion of the hybrid alignment algorithm was incorporated
into version 2.0 of the freely available NCBI BLAST source
code [35]. The hybrid version of BLAST (HYBLAST) re-
tains the familiar user interface and many of the features
of the original NCBI BLAST. It uses the same heuristics
for deciding which database sequence is a potential hit that
gives the original BLAST its huge speed advantage over
full Smith-Waterman. However, by replacing the alignment
core of BLAST by hybrid alignment the modified version
is capable to deal with any scoring system and gap cost the
user wishes to provide. Due to the more involved statis-
tics of the Smith-Waterman algorithm the original BLAST
forces the user to choose a combination of a substitution
matrix and gap costs from a preselected set for which the
statistics has been pre-calculated in time-consuming com-
puter simulations.

Since PSI-BLAST is an extension of BLAST we took
the HYBLAST program as our starting point for the imple-
mentation of the hybrid algorithm in PSI-BLAST. Due to
the similarity of their user interfaces, only minimal changes
were required to adapt the core components of PSI-BLAST
to work with HYBLAST instead of BLAST as described be-
low. Therefore the results of our comparative measurements
can be attributed purely to the differences in the statistics
underlying the two algorithms and the way they interact
with PSI-BLAST heuristics, and not to code dissimilarities,
as required to fulfill the objectives of our study.

First, the alignment routines themselves had to be
changed such that they use the position-specific weight ma-
trix instead of the uniform scoring matrix used in BLAST
and HYBLAST. The new routines implement the recursion
equations for position-specific hybrid alignments given by
Yu, Bundschuh, and Hwa [35].

Second, the position-specific weight matrix has to be
filled during the model building phase of PSI-BLAST. The
original PSI-BLAST code calculates for each position i
of the query sequence the 20 probabilities pi,a to observe
amino acid a at this position. These probabilities are de-
rived from the actually observed amino acids at this position
and from prior expectations determined by the amino acid
in the query sequence in case that there are only very few
sequences in the multiple alignment. The position-specific
scoring matrix si,a of PSI-BLAST at position i for amino
acid a is then assigned a score of si,a = log(pi,a/pa) where
pa is the background probability to observe the amino acid
a. Afterwards these scores are rescaled in some particu-
lar way [3]. Since the position-specific alignment weight

used by the hybrid algorithm is simply pi,a/pa itself, the
position-specific alignment weight matrix can easily be
filled together with the usual position-specific score matrix
of PSI-BLAST. In contrast to the scoring matrix the weight
matrix does not require any rescaling.

We did not implement position specific gap costs for our
experiments. While highly desirable, the implementation
of such feature would require non trivial changes to the ex-
isting PSI-BLAST code, and it is beyond the scope of this
paper.

After creating a version of PSI-BLAST incorporating
the hybrid sequence alignment algorithm (in the following
called Hybrid PSI-BLAST), we performed a series of mea-
surements to compare its performance to that of the unmod-
ified version of PSI-BLAST 2.0 (called NCBI PSI-BLAST
in the following). In the course of these comparisons we
realized that the performance of Hybrid PSI-BLAST was
influenced by the edge effect correction formula being em-
ployed. The next section describes the approach we used
to determine the correct formula to implement, selected
among those found in the literature. In the ensuing section
we report the results of the Hybrid vs. NCBI comparison,
with the Hybrid incorporating the formula so determined.

4 Edge-effect correction

Eq. (1) is only valid in the limit of infinitely long se-
quences. Since sequences in database searches can be rather
short, it is important to correct E-values for the finite se-
quence length. For this purpose two different correction for-
mulas have been suggested. Both involve in addition to the
parameters K and λ of Eq. (1) the relative entropy H and
the offset β of the scoring system. These quantities depend
on the specific scoring system and have to be determined
numerically.

Altschul and Gish [2] proposed a formula that has later
been extended by Altschul, Bundschuh, Olsen, and Hwa [1]
to read for a sequence pair of length N and M , respectively:

E(Σ)=K

[

N−

(

λΣ

H
+β

)][

M−

(

λΣ

H
+β

)]

e−λΣ (2)

The alternative formula used by Yu and Hwa [36] is

E(Σ) = K(N−β)(M−β)× (3)

× exp

[

−λ

{

1+
1

(M−β)H
+

1

(N−β)H

}

Σ

]

.

Analytical approaches to the edge correction prob-
lem [18, 32] are confined to alignment without gaps. Even
in the absence of gaps, they only give corrections of Eq. (1)
to first order in λΣ/[(N − β)H]. Both correction formulas
Eqs. (2) and (3) coincide up to first order in λΣ/[(N−β)H].
Thus, the analytical results are not suited to distinguish one



correction formula from the other even in the absence of
gaps.

The equivalence of the two correction formulas up to
terms of order λΣ/[(N − β)H] is also the reason why the
existence of different formulas was not an issue for the con-
ventional PSI-BLAST. For the default scoring system of
PSI-BLAST, i.e., the BLOSUM62 scoring matrix [13] with
cost of 11 + k for a gap of length k and the amino acid
frequencies of Robinson and Robinson [26], the parameters
are estimated to be λ ≈ 0.2670, K ≈ 0.042, H ≈ 0.14,
and β ≈ −30 [1]. At a database size of M = 106 amino
acids and a query size of N = 100 amino acids an E-value
of one corresponds to a score of λΣ ≈ 15. Thus, the first or-
der correction is λΣ/[(N − β)H] ≈ 0.77 which is sizeable
but still smaller than one (i.e., the correction is smaller than
the leading term and higher order corrections are expected
to become even smaller.)

The situation in hybrid alignment is different. For the
same scoring system, the parameters are estimated as λ =
1, K ≈ 0.3, H ≈ 0.07, and β ≈ −50. The larger value
of K implies that an E-value of one now corresponds to a
score of λΣ ≈ 17. More importantly, due to the smaller
value of the relative entropy H , the first order correction is
λΣ/[(N − β)H] ≈ 1.6 > 1. Thus, the second order cor-
rection contributes significantly to the E-value. Therefore,
it has to be determined for hybrid alignment which of the
two formulas more appropriately describes the length de-
pendence of the E-values or if yet another formula has to
be worked out.

We address this point empirically by aligning sequences
from a database derived from SCOP [22, 11] by the astral
compendium [17, 9] (http://astral.stanford.edu/, release AS-
TRAL SCOP 1.59). We use a database that contains only
sequences with less than 40% pairwise sequence identity.
We use every sequence from the database as a query for a
hybrid alignment search of the whole database. This yields
a list of hits for each query and their respective E-values cal-
culated by formula Eq. (2) or (3). Following the approach
of BLAST and PSI-BLAST instead of evaluating Eqs. (2)
and (3) for each hit, we use

E(Σ) = KAeffe−λΣ (4)

where Aeff is the effective search space. It is determined
once for each query as

Aeff ≡

eλΣ∗

K
(5)

with Σ∗ given by E(Σ∗) =1 according to Eq. (2) or (3).
In this framework the difference between Eqs. (2) and (3)
translates into a different value of Σ∗, i.e., in a different
value of the effective search space Aeff .

Since the database is derived from the structural SCOP
database, hits can be identified as true homologs if they be-
long to the same superfamily in SCOP and as non-homologs

(a)

(b)

Figure 1. Comparison of two formulas for
edge effect correction. Both graphs show
the dependence between the E-value cutoff
and the number of errors per query, i.e., the
number of non-homologous sequence pairs
with an E-value lower than the cutoff di-
vided by the total number of sequences in
the database. The dotted line corresponds
to hybrid alignment with E-values calculated
according to Eq. (2) while the solid line cor-
responds to hybrid alignment with E-values
calculated according to Eq. (3). The dash-
dotted line is the result of BLAST 2.0 and the
dashed line is the identity corresponding to
an ideal algorithm. Both graphs show data for
the ASTRAL40 database and the BLOSUM62
scoring matrix. In (a) the cost of a gap of
length k is 11+k while in (b) it is 9+2k. In both
cases BLAST 2.0 and Eq. (3) yield good esti-
mates of the E-value while Eq. (2) is clearly
inferior for hybrid alignment.

if not. Thus, for each E-value cutoff the number of errors
per query can be calculated as the number of non-homologs



with an E-value lower than the given cutoff divided by the
total number of queries in the dataset, which is 4,383 in this
case. If the calculation of E-values is correct, the number
of errors per query is identical to the E-value cutoff.

Figure 1 shows the relationship between the errors per
query and the E-value cutoff for the PSI-BLAST default
scoring system and for the BLOSUM62 scoring matrix with
a cost of 9 + 2k for a gap of length k. The latter has a
relative entropy of H ≈ 0.15 and thus the contribution of
the higher order terms should be less dramatic than for the
PSI-BLAST default scoring system. Each of the two graphs
shows the plots of the E-value versus the errors per query
for hybrid alignments with both length correction formu-
las and of the original BLAST 2.0. The (ideal) identity is
shown as the dashed line. In both cases it can be seen that
the E-values obtained by Eq. (3) are very close to ideal.
The E-values of BLAST 2.0 are similarly good while the
E-values for the hybrid algorithm calculated according to
Eq. (2) are too small. As expected based on the differ-
ences in the relative entropies the effect is much stronger
for the BLOSUM62/11/1 scoring system than for the BLO-
SUM62/9/2 scoring system. We conclude that for the hy-
brid alignment algorithm Eq. (3) provides good estimates
of the E-value while Eq. (2) should not be used.

5 Hybrid versus NCBI comparison

For the Hybrid version of PSI-BLAST the way of calcu-
lating effective query length, effective database length and
effective search space was modified as described in the pre-
vious section to be able to deal with small values of the
relative entropy H . In the NCBI version of PSI-BLAST,
the value H is looked up from a table and is not very small,
but in the hybrid version H is calculated and takes on small
values for some queries and/or scoring matrices.

In order to study the performance of our prototype Hy-
brid PSI-BLAST we applied the alignment sensitivity as-
sessment of Brenner, Chothia and Hubbard [5]. The same
SCOP derived dataset as described in the last section was
used [17, 9] (http://astral.stanford.edu/, release ASTRAL
SCOP 1.59). However, since we suspected a possible true
relationship not reflected in the SCOP classification we re-
moved a single sequence that was consistently misclassi-
fied by all versions (Hybrid and NCBI) of the algorithm for
nearly all parameter choices, namely the representative of
the superfamily c.11.1.

Using this database as a “gold standard” we performed
two different sensitivity assessments. First, we used each of
the sequences in the gold standard database as queries. For
each query we searched the gold standard database with the
Hybrid and the NCBI version of PSI-BLAST. We ran both
PSI-BLAST versions for several iterations until they con-
verged. From the resulting lists of hits with their E-values

Figure 2. Comparison of Hybrid PSI-BLAST
performance for different gap costs. The
curves show the trade-off between the errors
per query and the coverage for Hybrid PSI-
BLAST on a “gold standard” database using
different gap costs. While all curves are rel-
atively close together, a cost of 11 + 1 · k for
a gap of length k seems to lead to the best
performance.

we calculated for each E-value cutoff in addition to the er-
rors per query described in the last section the coverage, i.e.,
the number of true hits with an E-value smaller than the cut-
off divided by the total number of true hits in the database
which is 88,171 in our study. The plot of errors per query
versus coverage as the E-value cutoff is varied represents
the relationship between the sensitivity and selectivity of a
program.

In this test we observed a large increase in computational
effort when using the HYBRID algorithm. The total com-
puter time required for the assessment of the HYBRID algo-
rithm was about ten times higher than for the original PSI-
BLAST. However, this is an artefact of the unrealistically
small database size in this test. The HYBRID algorithm
requires some query-dependent parameters like the relative
entropy H to be calculated during the startup phase. For
a short database this startup phase dominates the computa-
tional effort. For longer databases, the computational effort
for the startup phase is not important any more and the com-
putational effort of the HYBRID algorithm and PSI-BLAST
become comparable (see below.)

Since the hybrid algorithm treats gaps differently from
the Smith-Waterman algorithm underlying the NCBI PSI-
BLAST, it is not a priori clear if the cost of 11 + 1 · k
for a gap of length k that has been determined to be op-
timal for the original PSI-BLAST is also good for the hy-
brid version. Thus, we first compared different values of
the gap initiation and extension cost for the hybrid version
of PSI-BLAST given as command line parameters. Modi-



Figure 3. Comparison of the NCBI and the Hy-
brid version of PSI-BLAST. The curves show
the trade-off between the errors per query and
the coverage for NCBI and Hybrid PSI-BLAST
on a “gold standard” database. For small
coverages Hybrid PSI-BLAST is slightly su-
perior while for high coverages the NCBI PSI-
BLAST performs better.

fying the gap costs affects the gap distribution in the model
built in the first iteration, and therefore exposes potential
differences in the gap bias of the two algorithms over the
following iterations. The measurements result in a family of
curves shown in Figure 2. Comparing these curves shows
mainly that the Hybrid version of PSI-BLAST is relatively
robust with respect to the gap costs. However, among all
these rather similar curves, the default value of 11/1 for
NCBI PSI-BLAST seems also optimal for the Hybrid ver-
sion, suggesting no differences in gap bias.

The final result of this direct comparison between the
Hybrid and NCBI version of PSI-BLAST using the gap cost
11/1 is shown in Figure 3. The curves show that the sensi-
tivity versus selectivity tradeoff of the two versions is quite
comparable. Hybrid PSI-BLAST is slightly better than the
NCBI PSI-BLAST up to a level of coverage of about 15%,
and then incurs slightly more errors than the NCBI PSI-
BLAST. The two curves are qualitatively similar, which
suggests that their differences reflect the untuned perfor-
mance of Hybrid PSI-BLAST.

In the second sensitivity assessment we aimed at com-
paring the two algorithms in a more realistic setting. In-
stead of searching the very small gold standard database
alone, we augmented the gold standard database with
the non-redundant protein database from NCBI. Search-
ing this much larger database allows better sequence mod-
els to be built and is closer to a typical applications of a
tool like PSI-BLAST. The sequences from the gold stan-
dard database were marked so that they could be identi-
fied from the program output. Sequences in the nonre-

Figure 4. Comparison of the NCBI and the
Hybrid version of PSI-BLAST on a large
database PDB40NRtrim. The curves show the
trade-off between the errors per query and the
coverage for NCBI and Hybrid PSI-BLAST for
those sequence pairs the homology of which
is known from structural considerations. For
small coverages Hybrid PSI-BLAST is slightly
inferior while for high coverages the two algo-
rithms perform nearly identically.

dundant database longer than 10 kilobases were trimmed
to 10 kilobases because the protein sequence formatting
program ’formatdb’ associated with PSI-BLAST 2.0 can-
not handle such long sequences. The newly combined
dataset was called PDB40NRtrim. Since an exhaustive
test using all sequences from the gold standard database
as queries would be too time consuming, we randomly se-
lected 100 queries from the gold standard database and
searched against PDB40NRtrim. The list of queries is avail-
able upon request from the authors. By selecting very high
E-value thresholds for output of sequences we ensured that
enough of the sequences from the gold standard databases
were included in the hit lists. In typical applications of PSI-
BLAST, the number of iterations is restricted to a relatively
small number since a failure to converge fast is usually a
sign of the model being infested by foreign sequences in
which case more iterations actually worsen the quality of
the model. In order to get an idea of the influence of the
maximal number of parameters we chose a limit of 5 and 6
for both algorithms and compared the results. For all other
parameters their respective default values were used.

Running the two programs on the PDB40NRtrim dataset
took a total of about 64 hours for the NCBI PSI-BLAST, and
54 hours for HYBRID PSI-BLAST. We ran each program
on four nodes of a Linux cluster of 1GHz Pentium III, 1GB
RAM machines by manually partitioning the list of query
sequences equally among the nodes. The use of a cluster
reduced the duration of the experiments to a more manage-



able 13-17 hours. Coincidentally, this approach points to
an easy way of parallelizing the PSI-BLAST code; along
these lines, in a seperate experiment we have written a sim-
ple MPI wrapper that enables us to run NCBI tools in par-
allel on a cluster. As expected, the computational effort of
the two algorithms applied to this database of realistic size
is comparable, with the HYBRID algorithm taking roughly
25% longer than the original PSI-BLAST. This result con-
firms that the large difference in computational effort be-
tween the HYBRID algorithm and the original PSI-BLAST
seen in the short database test is attributable to the startup
phase of the HYBRID algorithm.

The sensistivity was assessed by the same curves for the
tradeoff between errors per query and coverage as before.
In calculating the errors per query and the coverage all hits
from the non redundant database were ignored since their
homologies are not known. Only hits from the gold stan-
dard database were evaluated. The results for the two al-
gorithms for the different limits on the number of iterations
are shown in Figure 4. We find, that the HYBRID algorithm
seems to depend stronger on the limit on the number of it-
erations than the original PSI-BLAST. In general the HY-
BRID algorithm is inferior at small coverages. Note, how-
ever, that the region of coverages and errors per query in
which the HYBRID algorithm was found to be superior on
the smaller database cannot be probed in this test due to the
smaller number of queries which limit the errors per query
to a minimum of 0.01. At higher coverages the sensitivity
of the two algorithms becomes nearly indistinguishable at
least if the number of iterations is limited to five.

6 Conclusion

In this study we have established that the hybrid align-
ment algorithm can be successfully used within PSI-
BLAST with only modest changes to the original code.
In studying how to best match the algorithm to the PSI-
BLAST code, we have resolved the question of sequence
length correction. Through direct comparison, and in op-
timizing one parameter for the hybrid algorithm within the
whole framework of PSI-BLAST, namely the gap costs, we
found that the Hybrid version of PSI-BLAST and the orig-
inal version of PSI-BLAST are very similar in their perfor-
mance.

By incorporating the hybrid alignment directly into the
existing PSI-BLAST code, we demonstrate the suitability
of the algorithm to the iterative search method where its
features can be the most advantageous. We do so in a way
that effectively leverages all the efforts that went into the
development of the current PSI-BLAST and the tools that
build upon it.

This finding will provide a basis for future exploita-
tion of features of the hybrid algorithm that the Smith-

Waterman algorithm does not provide. Most notably, it
opens the possibility of including position-specific gap
costs in PSI-BLAST. Position-specific gap costs represent
different propensities for alignment gaps in different regions
of the sequences. The propensity for gaps, i.e., for the inser-
tion or deletion of amino acids, is higher in loop regions of
a protein family than in its core regions. Thus, it is expected
that taking this information into account would greatly im-
prove the sensitivity of PSI-BLAST. Currently, PSI-BLAST
is prevented from taking advantage of this additional infor-
mation due to a fundamental limitation of the underlying
theory of the alignment score statistics for Smith-Waterman
alignment. This limitation is overcome by the hybrid al-
gorithm, and the results presented here lay the ground for
developing a hybrid based version of PSI-BLAST with
position-specific gap costs.
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[19] R. Mott. Maximum likelihood estimation of the statisti-
cal distribution of smith-waterman local sequence similarity
scores. Bull. Math. Biol., 54(1):59–75, January 1992.

[20] R. Mott. Accurate formula for p-values of gapped local se-
quence and profile alignments. J. Mol. Biol., 300(3):649–
659, July 2000.

[21] R. Mott and R. Tribe. Approximate statistics of gapped
alignments. J. Comp. Biol., 6(1):91–112, April 1999.

[22] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol.,
247(4):536–540, April 1995.

[23] R. Olsen, R. Bundschuh, and T. Hwa. Rapid assessment
of extremal statistics for gapped local alignment. In T.
Lengauer et al, editor, Proceedings of the Seventh Interna-
tional Conference on Intelligent Systems for Molecular Bi-
ology, pages 211–222, Menlo Park, California, 1999. AAAI
press.

[24] W. R. Pearson. Searching protein sequence libraries: com-
parison of the sensitivity and selectivity of the smith-
waterman and fasta algorithms. Genomics, 11(3):635–650,
November 1991.

[25] W. R. Pearson and D. J. Lipman. Improved tools for bio-
logical sequence comparison. Proc. Natl. Acad. Sci. U.S.A.,
85(8):2444–2448, April 1988.

[26] A. B. Robinson and L. R. Robinson. Distribution of glu-
tamine and asparagine residues and their near neighbors
in peptides and proteins. Proc. Natl. Acad. Sci. USA,
88(20):8880–8884, October 1991.
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