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Abstract

Upon completion of the human and mouse genome se-
quences, world-wide sequencing capacity will turn to other
complex organisms. Current strategies call for many of
these genomes to be incompletely sequenced. That is, holes
will remain in the known sequence, and the relative order
and orientation of the known sequence fragments may not
be determined. Sequence comparison between two genomes
of this sort may allow some of the fragments to be oriented
and ordered relative to each other by computational means.
We formalize this as an optimization problem, show that the
problem is MAX-SNP hard, and develop a polynomial time
algorithm that is guaranteed to produce a solution whose
score is within a factor 3 of optimal.

1. Introduction

As international projects determine the genome se-
quences of the handful of official model species, attention
is turning to plans for sequencing many additional com-
plex organisms. In the shotgun assembly phase, common
to all sequencing approaches, several copies of a partic-
ular stretch of the genome are randomly partitioned into
small fragments. Approximately 500 basepairs of each
fragment are determined using variations of the Sanger
method [1]. Overlapping sets of these reads, can be as-
sembled into contigs, i.e., presumably contiguous sections
of the genomic sequence. Ideally, the contigs form non-
overlapping fragments that account for most of the target
genome sequence. But the order and orientation of the con-
tigs along the chromosome is unknown, or at least imper-
fectly known. In particular, for an arbitrary contig,

�
, it

may be unknown whether
�

or its reverse complement, de-
noted

���
, is present, where

���
is formed by reversing

�
,

interchanging A and T everywhere and interchanging C and
G everywhere.

Two approaches have been proposed for overcoming this
problem. The clone by clone approach [2] adopted by the

Human Genome Project(HGP) starts by finding a minimal
tiling set of clones that covers the target genome. These
clones are sequenced one at a time using the shotgun ap-
proach. Finally contigs of different clones are ordered, ori-
ented with respect to each other using the clone map. On
the other hand, the whole genome shotgun assembly ap-
proach [3] skips the physical mapping step and sequences
unmapped genomic clones. For further assembly it uses a
library of pairs of reads, called mates, from the ends of long
inserts randomly sampled from the genome. The presence
of these mates in different contigs serves to order the con-
tigs and give the approximate distance between them.

However, determining the complete sequence of a
genome is quite expensive with either approach. Because
researchers have been extracting biological information by
studying conserved regions ([4], [5]) genetic data banks
have rich contig information for many species. By com-
paring the conserved regions present in contigs of two or-
ganisms that are close in evolutionary terms, it might still
be possible to infer some order/orient relationships. This
process was manually performed in [6].

The figure below illustrates the sort of inference that is
possible. Contig

�
(say, of human) includes region � , which

aligns with region � in contig ��� (say, of mouse). Another
region of

�
, denoted 	 , aligns with 
 �

, the reverse comple-
ment of region 
 of mouse contig ��� . We infer that ���
precedes � �� , relative to the orientation in which

�
is given. �  �  �

� � � ���

�

���

�

���

�

��� � ��
� ���

We model the problem of determining order/orient rela-
tionships from alignments between contigs as follows. Data
consists of a set of “

�
-contigs” and a set of “ � -contigs”,

where each contig is simply an ordered list of conserved re-
gions having associated alignment scores. We use ��� ��!"	$#
to denote the score of the alignment between � and 	 ,
where � or � �

is a conserved region of an
�

-contig and 	
or 	 � is a conserved region of an � -contig. The sample



dataset shown in Fig. 1 consists of contigs
� ��� � ��!"	 !"��� ,� ��� � 
�� , ����� �	� !�
�� , � ��� �� !���� and the alignment scores

��� ��! � #���� , ��� ��!�
 #���� , ��� 	 !�
 � #���� , ��� � !  #���� ,
��� 
�!�
 #�� ��� 
�!�� � #���� .

� �

� �

� �

� �

 � �

� �  
!

�

Figure 1. Sample set of data

Alignments involving conserved regions in contig
� �

may serve to orient and order several � -contigs relative
to each other. Some of these � -contigs may in turn ori-
ent and order

� � relative to additional
�

-contigs, and so on.
This leads to an “island” of contigs that are oriented and
ordered relative to one another. With ideal data, this pro-
cess would partition the set of contigs into islands, such that
inter-island order/orient relationships cannot be determined
from the alignments.

In reality, the set of given alignments is frequently in-
consistent with any proposed orientation and ordering of
the contigs. Simple examples are shown in Fig. 2. In the
first example, the ��" � alignment supports the current ori-
entation, while the 	#" 
 �

alignment calls for reversal of � .
The second example violates our requirement that aligning
regions be in the same order in the two sequences. More
complex examples arise in practice when regions have been
shuffled by evolutionary processes, when incorrect align-
ments are computed, and when contigs are incorrectly as-
sembled from the shorter segments.

� �

� �

 � �

� �� �

Figure 2. Inconsistent alignment sets

Our goal is to determine orientations and an order for
each of the two sets of contigs that, possibly together with
deletions of some of the conserved regions, gives two equal-
length and consistently ordered lists of conserved regions
showing high overall similarity. Ideally, this would mean
maximizing the sum of the scores � . For a simple example,
consider the dataset given several paragraphs above. We
can delete (i.e., ignore) 	 and 
 , reverse

� � and place it af-
ter

� � (giving
� ��! ��! 
 � � ), then place ��� before � � in their

given orientation (giving
�	� !  !��$� ), which yields the score

��� ��! � #&% ��� � !  #&% ��� 
 � !�� # = �'%(�'%)� = 11. See Fig. 3
for a picture of the solution.

� �
� � � �

 � �

� �  !

��� � ��

Figure 3. Solution to the data set of Fig. 1.

Note that once orientations and an order of the contigs
are chosen, it is easy to decide how sites should be deleted
to maximize the score — this is simply the classic problem
of aligning two lists of symbols.

One of our results indicates that no polynomial-time al-
gorithm can be guaranteed to orient and order the contigs so
as to always maximize the resulting score. Indeed, even if
we make a number of simplifying assumptions, such as (1)
each conserved region is involved in precisely one align-
ment (e.g., for each � , ��� ��!"	 #+*�, for just one 	 ), (2) there
is only one � -contig and (3) each

�
-contig has only two

conserved regions, the problem of computing an optimal set
of orient/order operations is MAX-SNP hard (Theorem 1).

We develop a ���-%�.�# approximation algorithm (Theo-
rem 5) for the order/orient problem. The formal develop-
ments presented in this paper, including results showing
how algorithms for certain simpler problems can be com-
bined to solve a more general problem, provide a conceptual
framework for designing effective algorithms for computing
high-scoring orient/order operations.

This paper is an extended abstract. The full version is
available online at http://bio.cse.psu.edu.

2. Problem statement with variations

2.1. Consensus Sequence Reconstruction — CSR

Assume that we have two sets of DNA fragments, one
for each species. Let us call these sets / and 0 . We view
each fragment as a sequence of regions. An occurrence of
a region in a sequence can be normal or reversed.

Formally, we view each region as a symbol of a dupli-
cated alphabet 12 � 24352 �

, and each fragment as a word
from 1276 . To clarify the meaning of the reversal operation,
we list its properties:

8 2:9;2 � � ∅;8 for �=< 2 , � � < 2 �
, and for �=< 2 �

, � � < 2 ;8 for
 !���< 1276 , �  � # � �>� �  � ;

8 for
 < 12 6 , �  � # � �  ;

8 for ��!"	?< 12 , ��� ��!"	$#+� ��� � � !"	 � # , where � is a func-
tion �5� 12�@ 12BADC

.
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� < Conj � / #

� < Conj �	0 #

� � � � ���
� � � �


 � 
 �

� ⊥ 	 � 
 �

� 
 ⊥
 �

Figure 4. The conjecture pair representing the
solution shown in Fig. 3.

We introduce an extra padding symbol ⊥ such that ⊥
� � ⊥

and we extend the score function � by setting

��� ��! ⊥ #�� ��� ⊥ !"� #���, !�� ��< 12

For
� < 1276 we define the set of padded sequences � �

as the set of sequences obtained from
�

by inserting the
padding symbol ⊥ an arbitrary number of times.

For
� !�
?< � 12�3	�

⊥ 
 # 6 where
� � � � � ������ ��� and 
 �

	 ��	�� ���� 	 ��� , we define

Score � � !�
 #��
� , if ��������� � � � � ��� � � !"	 � # otherwise

Our general goal is to find an optimal conjecture for a
consensus sequence for / and 0 . More formally,

Definition 1 For a set of fragments, � � ��� � ! ���� ! � � 
 , we
define Conj �!� # the set of valid conjecture sequences. A
conjecture " < Conj �!� # is formed in three stages

1. For each fragment
� �

we select some padded sequence� � <#� � �
2. Some of

� �
’s are replaced by their reversals

3. " � �%$'& �)( ���� �%$*& � ( , for some permutation + of , � !.-�/
A conjecture pair is � � ! � # < Conj � / # @ Conj �	0 # . Our

goal is to maximize Score � � ! � # .

2.2. Consistent match sets

Our algorithm will build conjecture pairs from smaller
parts called matches, which pair together intervals selected
from fragments of / and 0 .

Given a fragment
� � � � ���� �*0 , the site

� �!1 !32 # repre-
sents the contiguous subfragment � � ��� �54 . A match is a
pair of sites from fragments of different species.

Definition 2 A conjecture pair � � ! � # with a positive score
produces a set of matches as follows:

1. Suppose
�

is formed as
� � � ������ � � and � is formed as


 � 
 ������ 
6� in Step 3 of Definition 1. We view this pair
as a single word 7 where letters are columns of two
symbols of 12 38�

⊥ 
 .

�
�9 � 9 � 9;: 9�< 9;=border border border inner border

border borderfull full full� � � � � : � <

� � � �

Figure 5. A conjecture pair � � ! � # divided into
matches and the sites classified by Def. 3.

� � �>�?�@ �BA� ! A� # � � �>�?�@ �BA� ! A� � #A�
A�

A� �
A�

or

Figure 6. Match score for a full match

2. As shown in Fig. 4, we split 7 at ends of
� �

’s and 
 � ’s.
The resulting pieces can be called padded matches.

3. Given a padded match, we obtain a match (pair of
sites) by splitting it into two rows and deleting all ⊥s
from both the rows.

A set of matches is consistent if it is produced from some
conjecture pair. The set of matches consistent with the
pair shown in Fig. 4 is � �:� � � � � � ! � #$! ��� � � ! � # # , � � �
� � � �	� !�� #�! � � � � ! � # # and � � � � ���� � � ! � #$! � � �	� ! � # # .
Definition 3 If

� � � � � !BC # then the sites in
�

can be clas-
sified as:

full:
� � � !BC # or, equivalently,

�
border:

� � � !B1 # or
� �!1 !BC #

inner: none of the above

A match that involves a full site is called a full match, a
match that involves a border site is called a border match.
In Fig. 5 � ��! �ED ! ��F are full matches, and � � ! � � are border
matches. One can see that we need to consider these two
kinds of matches only.

Definition 4 Given a site A� in some fragment of / and a
site A� in some fragment of 0 , we formulate the definition
for match score MS � A� ! A� # in several steps.

8 For A� ! A� < 1276 ,
�HGIKJ LNM � A� ! A��#��POHQ R TS U�V� OHQ;R!%S U V� Score �  !�� #

8 If one of the sites A� , A� is full then the match score of A�
and A� (also described by Fig. 6) is

MS �)A� ! A��#��WOHQ;R �X�HGI.J;LKM �BA� ! A� #$!)�HGI.J;LNM �BA� ! A� � # #
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� � �>�?�@ � A� ! A� #

� � � >�?;@ � A� ! A� � #

A�
A�
A�
A�

A�
A�
A� �
A�

�

�

Figure 7. Matches formed from border sites.

8 If neither A� nor A� is a full site, then the match score ofA� and A� is defined according to the method described
by Fig. 7.

Our algorithm does not depend on the way MS �KA� ! A� # is
defined. However, this definition provides a correct model
for our sequence reconstruction problem.

The score of a match and the padded sequences that sup-
port that score, represent the optimum alignment of the
participating sites. We are interested in finding a con-
sistent set of matches � with the maximum Score ��� # �� 9�S�� MS � � # .
Remark 1

8 Instead of using padded sequences as building blocks
of conjecture sequences, we can just as easily use
subsequences formed by deleting arbitrary characters
from a sequence. The score function for matches and
the discussion of consistent match sets remains un-
changed under this formulation.

8 Given a conjecture pair � � ! � # , if � is the set
of matches derived from � � ! � # then Score ��� # �
Score � � ! � # .

8 Given a consistent set of matches � we can easily com-
pute a conjecture pair � � ! � # , such that Score ��� # �
Score � � ! � # .

According to the last remark, we can formulate an equiv-
alent version of the CSR problem: find a consistent set of
matches with maximum total score.

3. Simpler versions of the problem

3.1. Consistent Subsets of Integer Pairs — CSoP

We will now show that a very restricted version of CSR
is MAX-SNP hard. In particular, we impose the following
restrictions:

1. the alphabet is of the form
2 � � � � ! ���� ! � �K0 
 and

0 � � � �$� � ��� � �N0 
 ;

2. / � � � � & �B( � 4 & �)( ! ���� ! � � & 0 ( � 4 & 0 ( 
 , where the pairs� 1��3- #�! 2��3- #.
 form a partition of , � ! �;C / and 1���- #�� 2��3- #
for - < , � !BC / ;

3. ��� � � ! � 4 #�� � if 1&� 2 and 0 otherwise.

In those terms the task is to find a set 	�
 � � ! � ! ���� ! � C 

such that if

� 1��3- #�! 2��3- #.
�
	 and 1 �3- #�� ��� 2��3- # then� �<�	 and such that � 	�� is maximal. We call this problem
Consistent Subsets of Pairs, CSoP. We will show that

Theorem 1 CSoP is MAX-SNP hard

Proof. Consider a solution 	 to an CSoP instance. We
say that 	 is normal if it contains at least one element in
each pair

� 1 �3- #�! 2���- # 
 . Suppose that 	 is disjoint with an
input pair

� 1��3- #�! 2��3- #.
 and we try to insert 1���- # to 	 , this
insertion can create an invalid solution only if for some - �
we have 1���- � # <�	 , 2��3-'� # <�	 and 1���- � #�� 1���- #�� 2���-'� # . In
this case we can replace 	 with 	 � ��	 " � 1 �3-'� # 
 3 � 1��3- #.
 ,� 	 ������� 	�� the number of pairs disjoint with 	 � is lower.
We may conclude that for every solution 	 there exists a
solution 	 � such that � 	 ��� ��� 	�� and 	 � intersect every one
of the given pairs. We say that 	 � is a normal solution.

To prove our claim, we will reduce 3-MIS to CSoP.
The input to 3-MIS is a 3-regular graph ��� !�� # , with � C

nodes, a feasible solution is an independent set of nodes,
and the goal is to maximize the size of this independent set.
Berman and Karpinski have formally shown in [7] that 3-
MIS is MAX-SNP hard. We choose the following represen-
tation of the input graph: an �;C @ � matrix � such that

� 1 ! 2 

is an edge iff 2�< � � , 1 !�� / !�� , 1 ! ��/ !�� , 1 !�� /�
 . We also require
that the consecutive nodes are never adjacent, i.e., there are
no edges of the form

� 1 !B1 % � 
 (for C *�� we can order the
nodes in such a manner using Dirac’s theorem [8]).

In our approximation preserving reduction, the instance
translation is as follows: 0 � � � � ���� � ���K0 
 ; / �
/! #"%$'&)( 3 /!&)$#*+&)( , where

/  '"%$#&)( � � � � F �-, D � F � 
 � �/. 10. C 
 and

/ &)$#*+&)( � � � � F �-, � � F 4 , � 
 � 11� 2 !2� , 1 !"	K/ �	2 and

� , 2 ! �./ �W1 
 �
Consider a normal solution 	 . One can show that 	

contains exactly one element in each edge pair
� � 1 " 	 ! ��2&"

��
 , otherwise there exists node - such that 10� -3� 2 , hence
�;1 " 	�� �5-;">�4� �5-5� �2 " � , hence the node pair� �T- " � ! �5- 
 is disjoint with 	 and 	 is not normal.

Consider now two node pairs that are contained in 	 ,� � 1�"(� ! �;1K
 and
� �2�"(��! �2 
 . One can see that no edge

connects 1 and 2 , otherwise the respective edge pair would
be disjoint with 	 . Define 6 � � 1'� � �;1&" � ! �;1K
!
7	 
 .
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As we observed, 6 is an independent set. Moreover, the
size of 	 equals �;C�%�� 6 � .

Consider now an idependent set 6 . For every edge @
there exists an endpoint of @ , say 1�� @ # such that 1�� @ # < 6 ,
we can assume that @ � � 1���@ #$!�� , 1�� @ #$!"	 ��@ #6/�
 . We can form
a normal solution with �;C�% 6 elements as follows� �;1 � 1�< � 
 3 � � 1 ��@ # " 	�� @ # � @ <�� 
 3 � �;1 " �?� 1�<�6 
 �
Therefore this reduction preserves approximability. ❑

3.2. Reducing CSR to 1-CSR

We now consider 1-CSR, i.e., the CSR problem with
the following restriction: set 0 consists of exactly one se-
quence. We will show the following theorem.

Theorem 2 If there exists an approximation algorithm
�

that solves 1-CSR with approximation ratio ? , then there
exists an approximation algorithm

� � that solves CSR with
approximation ratio �;? .

Proof. For � � �  � ! ���� !  0 
 we define � � � �  � ����  0 
 ,
a set containing only the concatenation of all words from� , in some arbitrary order. The algorithm

� � processes the
input instance of CSR, � / ! 0 ! � # , as follows: it runs

�
twice, on � / ! 0 � ! � # and on ��0 ! / � ! � # , and selects the
better of the two solutions.

Let Opt( � ) be the score of the optimum solution for in-
stance � . The proof can be completed by showing that
Opt � / !�0 � ! � # % Opt ��0 !�/#� ! � #�� Opt � / ! 0 ! � # ❑

3.3. 1-CSR and Interval Selection Problem – ISP

A 1-CSR problem instance has the form � / ! � !"� # . Be-
cause each fragment of / is involved in at most one match,
we can assume that in each match the site from / is full.
Thus each match in a solution can be described as �3- !�, 1 !325/ # ,
which denotes pair � � � ! � �!1 !32 # # . Selecting such a match
yields profit MS � � � ! � �!1 !32 # # .

We can reduce 1-CSR to a more abstract Interval Se-
lection Problem, ISP for short, where we are given set� of integer intervals and a non-negative profit function� � , � !K-�/ @ � A�� �

. The task is to select at most one inter-
val of � for each 1 < , � !.-�/ , so that the selected intervals are
disjoint and the sum of profits is maximal. ISP was studied
in the context of scheduling by Bar-Noy et al. [9], who de-
scribed an algorithm with ratio 2. Later in [10] Berman and
DasGupta described a Two Phase Algorithm that obtains ra-
tio � and runs in time � � C
	��� C # , where C � - � � � .

Our reduction defines as � the set of all subintervals of, � ! � � � / and for each fragment
� � < / sets � � 1"!%, 
�!N@�/ # �

MS � � � ! � � 
�!N@ # # . Clearly an approximation algorithm for
ISP yields an algorithm for 1-CSR with exactly the same
approximation ratio.

Corollary 1 There exists a polynomial time algorithm for
the CSR problem with approximation factor 4.

4. Approximation algorithms for CSR

4.1. Iterative improvements

We will maintain the solution to a CSR problem instance
as a consistent set of matches. To form tools for solving
the general problem, we will first describe how to search
for one type of matches only i.e. only border matches or
only full matches. The algorithms we use there are selected
in such a way that later we will be able to combine them
into an algorithm that searches for both types of matches.
We tackle different versions of the problem in the following
manner:

8 We define an iterative improvement algorithm

– The algorithm is defined by set � of improve-
ment methods, i.e. a finite set of routines that
have a constant number of parameters of the form� �!1 !32 # where

�
is a fragment. For � <�� ,

and a parameter vector � , an improvement at-
tempt � ��� � � # changes the current solution by
discarding some matches and making some new
matches.

– gain ��� # , the gain of an improvement attempt � , is
the increase in total score after the improvement
attempt � ; if a given � is not applicable to the
current legal set then gain ��� # �>, .

– The algorithm starts with an empty set of
matches and makes improvement attempts with
positive gain until none exists.

8 To ensure that our algorithm runs in polynomial time,
we use the scaling method described in [11]. This
approach increases the approximation ratio by a factor
��-�% � #�� - , where - is an upper bound on the number
of matches. Thus, when we prove an approximation
ratio � , the ratio actually proven has the form � ��- %
� #�� - or � %). . However, in practice, alignment scores
should have few precision bits and this step should not
be necessary.

8 In the analysis, we use the optimum solution, � � 
 , and
the set of matches generated by our algorithm, � , to
define a collection of improvement attempts, � . �
is constructed such that each attempt �:<�� removes
matches � ��� #���� and creates matches  ��� #!�"� � 
 .
Since the algorithm has terminated, no improvement
has a positive gain which leads to the inequality

#
$ S�% Score �& ��� # # . #

$ S�% Score �'� ��� # #
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By showing that the score of each match of � � 
 ap-
pears in the term on the left exactly C � times and that
the score of each match of � appears on the right at
most C � times, we have C � @ Score �'� � 
 #�. C � @
Score ��� # . In this manner we prove that the algorithm
defined by the set of improvement methods has ap-
proximation ratio 0 �0 � % . .

In defining the improvement methods and in the subse-
quent analysis we use the following notions:

8 The solution graph of a set of matches � is the bipartite
graph � / 3 0 !�� # , where

� � ! � 
 <�� iff � contains a
match with sites in

�
and � .8 The connected components of this graph are called is-

lands.8 In an island that consists of one fragment only, the
fragment is simple.8 In an island that consists of two fragments only, one of
the fragments is simple and the other multiple.8 In other islands, fragments that participate in a sin-
gle match are simple and fragments that participate in
more than one match are multiple.

Definition 5 In the following definitions
�

is a fragment,A� !
��

are sites in
�

, � a consistent set of matches and � a set
of fragments

8 Mult ��� # is the set of all multiple fragments of � .8 Simp ��� # is the set of all simple fragments of � .8 Site
� �!1 !32 # is contained in

� �!1)� ! 2�� # if 16� . 11. 2�. 2�� .
8����� is the set if all sites of fragments of / that par-

ticipate in matches of � . ��
	 is defined similarly.
�� � ���� 3 ��
	 .8 � �!1 !32 # is hidden by

� �!1 � !32 � # if 1 � � 1 . 2 � 2 � , if� �!1 � ! 2 � # < �� , then we also say that
� � 1 !32 # is hidden by� .

4.2. Full CSR

In Full CSR problem we are limiting the legal solutions
to a given CSR instance to those that contain full matches
only.

Consider the solution graph of a solution to a Full CSR
problem instance. Because each match in this solution con-
tains a full site, for each edge in our graph one of the ends
has one neighbor only. Consequently, in each island, at
most one node is a multiple fragment.

Our improvement methods create new full matches using
Two Phase Algorithm, TPA( � !+� ), where

8 � is a union of sites of 0 and defines
Sites ��� #�� � A� � A� , viewed as an interval, is con-
tained in � 
 ;

8 � is the current solution and is used to define the profit
function� � � ! A� #�� MS � � ! A� #&" Cb � � !+� # .

We run TPA( � ! � ) with index set / , interval set Sites �� #
and profit function � . In our algorithms TPA( � ) is a short-
hand for TPA( � !+� ) where � is the current solution.

Let � be the current set of matches. In the improvement
methods described below, a site A� may need to be prepared
for a match. The manner of preparation of the site depends
on the classification of

�
:

8 � < Simp ��� # : detach
�

from its match (if any).8 � < Mult ��� # : if the site is hidden by � it cannot be
prepared (and the improvement that specifies a match
of A� cannot proceed). Otherwise, restrict any match of
the form ��� !

�� # to ��� !
�� " A� # . Note that if

��
is contained

in A� , � becomes completely detached.

Our iterative algorithm Full Improve has one improvement
method.

� � � � ! A��! �� #
If
�� contains A� and is not hidden by � ,
1. Prepare the sites

�
and

�� .
2. Match

�
with A� (we plug in

�
to site A� ).

3. Run TPA(
��?" A� ).

4. If � is detached from some site A� � during
preparation of

�� in Step 1, run TPA( A� � # .
We say that A� is the target of this improvement attempt.

Execution of attempt � � � � ! A��! �� # is shown in Fig. 8.
Preparation of

�� detaches � from
� � . Sites on which TPA is

run are filled with slanted lines

Theorem 3 Algorithm Full Improve solves the Full CSR
problem with approximation factor � %�. .
Proof. Omitted due to space constraints. ❑

4.3. Border CSR

In Border CSR problem we consider problem instances
where the optimum solution contains border matches only.

There is a simple maximum weight matching based algo-
rithm with approximation ratio 2 for the Border CSR prob-
lem. However, we prefer an alternate algorithm, Border Im-
prove, with approximation ration 3 since it can later be com-
bined with the algorithm of the previous section to solve the
general problem.

The algorithm for the Full CSR problem creates full
matches only. Therefore, each island of the solution con-
tains at most one multiple fragment. We call such islands
1-islands. The algorithm for the Border CSR problem al-
lows each multiple fragment to participate in at most one

6
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Figure 8. Execution of improvement attempt � ��� � ! A��! �� #

border match. So the solution may also contain 2-islands —
islands with two multiple fragments sharing a border match.

Since all sites chosen by the Border Improve algorithm
are border sites, we will occasionally refer to them simply as
sites in this section. The algorithm repeatedly prepares cho-
sen sites on pairs of fragments and forms border matches.
A site is prepared as described in the previous section. In
addition, if the site belongs to the multiple fragment of a
2-island, we first break the 2-island by removing the match
between the two multiple fragments. This ensures that our
solution consists of 1-islands and 2-islands only. We have
two improvement methods.

�$� � A� ! A� # . Prepare the sites A� ! A� and match them.

� � � A� � ! A� � ! A� � ! A� � # . Applicable if
� � ! � � are multiple frag-

ments of the same 2-island. Prepare all four sites.
Make the matches � A� � ! A� � # and � A� � ! A� � # .

Let � be the solution generated by Border Improve. With
the knowledge of the the optimum solution, � � 
 , we will
construct a multi-set of improvement attempts � . Each im-
provement attempt in � removes some matches of � and
creates matches of � � 
 . � will have the property that if all
the improvement attempts in it are carried out

8 each match of � will be removed 12 times8 each match of � � 
 will be attempted 4 times

When the algorithm terminates because all attempts fail,
adding the inequalities representing the failure of attempts
of � gives us

� � @ Score ����# �)� @ Score �'� � 
 # (1)

which is the required result.
All the improvement attempts in � try to form matches

present in � � 
 . Thus, in the description of � an attempt
of method � � is described as � � � A� # , the other site being im-
plicit. Similarly, an attempt of method � � is specified as
� � � A� ! A� # , where

�
, � are the multiple fragments of the same

2-island.
We call the sites that are specified in an attempt the ex-

plicit parameters and the sites that are implied the implicit
parameters. We construct � as follows:

8 Let
�

be any simple fragment or multiple fragment in
a 1-island of � . Let

� � ! � � be the border sites of
�

in � � 
 . Then � contains two improvement attempts
�$� � � � # , two improvement attempts � � � � � # .

8 Let
� ! � be the two multiple fragments of a 2-island

in � . Let
� � ! � � be the border sites of

�
and let

� � ! � � be the border sites of � . Then � contains the
four improvement attempts – � � � � � ! � � # , � � � � � ! � � # ,
� � � � � ! � � # and � � � � � ! � � # .

Lemma 1 The score of each (border) match of � � 
 is
added exactly 4 times in gain �'� # .

Proof. From the construction of � described above, it is
easy to see that each border site of � � 
 is the explicit pa-
rameter of an � � or � � improvement attempt exactly twice.
Because this applies to both sites of a border match, each
match of � � 
 is attempted 4 times. ❑

Lemma 2 The score each border match of � is lost at most
12 times in gain ��� # .

Proof. Consider the border match formed by the two mul-
tiple fragments,

� ! � , in a 2-island. Let
� � ! � � be the border

sites of
�

and let � � ! � � be the border sites of � in � � 
 .
8 The match between

�
and � is broken 4 times because

of the improvement attempts � � � � � ! � � # , � � � � � ! � � # ,
� � � � � ! � � # , � � � � � ! � � # . These are the only attempts of
� in which

� � ! � � ! � � ! � � are explicit parameters.

8 Each of the sites
� � ! � � ! � � ! � � is an implicit parameter

of two improvement attempts in � . These 8 improve-
ment attempts break the 2-island during the prepara-
tion of the concerned site.

Thus, the score of the match is lost 12 times overall. ❑

Lemma 3 The score each full match of � is lost at most 12
times in gain ��� # .

Proof. Consider any full match � � ! A� # < � . Let
� � ! � � be

the border sites of
�

and let � � ! � � be the border sites of � in
� � 
 .
8 The sites

� � ! � � participate in 4 attempts each. These
attempts detach

�
from � during preparation.
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8 As indicated by the figure below the 4 attempts in
which � � participates restrict the portion of the match
represented by site

� �
. Similarly, the 4 attempts in

which � � participates restrict the the portion of the
match represented by site

� D
. Overall these restrictions

subtract the score of the match exactly 4 times.

� � � �

� � � � �

� ��� � � ��� �� � � D

Thus, the match loses its score at most 12 times overall. ❑

Theorem 4 Algorithm Border Improve solves the Border
CSR problem with approximation factor �+%). .
Proof. The proof follows from inequality 1, Lemma 1,
Lemma 2 and Lemma 3. ❑

4.4. General CSR

We now consider the general CSR problem. A site is pre-
pared in exactly the same manner as in Section 4.3. Thus,
the solution generated by the algorithm consists of 1-islands
and 2-islands only.

The iterative improvement algorithm, CSR Improve, con-
sists of method � � from Section 4.2 and methods � � !�� � from
Section 4.3. � � , � � are modified by treating the border sites
as targets of � � attempts. Thus, for each border site an addi-
tional site that contains the border site needs to be specified.
Since the modifications are similar for both methods, only
�$� is explained in detail.

�$� � � � ! � � ! � � ! � � #
Applicable if

� � ! � � are border sites within
� � ! � �

1. Prepare
� � ! � � .

2. Match the border sites
� � ! � � .

3. If
�

was detached from some site A� � in Step 1,
run TPA(

� A� � ! � � " � � 
 ) else run TPA( � � " � � ).
4. If � was detached from some site A� � in Step 1,

run TPA(
� A� � ! � � " � � 
 ) else run TPA(

� � " � � ).
Fig. 9 shows a sample � � improvement attempt.

Also, if an � � or � � attempt breaks a 2-island during
preparation, the attempt can be combined with an � � attempt
that targets the newly exposed border site (or part of it).

Theorem 5 Algorithm CSR Improve solves the CSR prob-
lem with approximation ratio � % . .
Proof. Omitted due to space constraints. ❑

� ��� �

� ��� �

�
�

�
�

�
�

�
�

�
�

� ��� �

� ��� �

� �

� �

� �

� �

� �

���

Figure 9. In � � � � � ! � � ! � � ! � � # improvement at-
tempt,

�
is detached from � � when the site� � is prepared. After the shaded border sites

are matched, TPA is run on the sites filled with
slanted lines.
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