

Abstract

 We present a parallel algorithm for performing
multipoint linkage analysis of genetic marker data on
large family pedigrees. The algorithm effectively
distributes both the computation and memory
requirements of the analysis. We discuss an
implementation of the algorithm in the Genehunter
linkage analysis package (version 2.1), enabling
Genehunter to be run on distributed memory platforms
for the first time. Our preliminary benchmarks indicate
reasonable scalability of the algorithm for even small
fixed-size problems, with parallel efficiencies of 75% or
more on up to a few dozen processors.

1. Introduction

 Linkage analysis uses the positions of known genetic
loci to locate unknown genes on a chromosome. One of
the primary applications of the technique is the
identification of loci associated with diseases. The
technique works by using the number of recombination
events between two loci on the same chromosome as a
distance measure (1, 2). Linkage analysis in humans is
complicated by high degrees of homozygosity. Fisher,
Haldane and Smith, and Morton proposed using
maximum likelihood to infer genetic maps from
imperfect data (3-5).

The data studied in linkage analysis are generally
pedigrees of families affected by some disease. Two
algorithms are commonly used for this problem. The
algorithm described by Elston and Stewart scales
linearly with the number of individuals in the pedigrees,
but exponentially with the number of genetic loci, or
markers (6). In 1987, Lander and Green proposed a
complementary algorithm with linear scaling in the
number of markers but exponential scaling in both time
and memory in the number of individuals in the pedigree
(7). Lander and Green’s algorithm is widely used for
multipoint linkage analysis: i.e. problems where many

markers (6). In 1987, Lander and Green proposed
a complementary algorithm with linear scaling in
the number of markers but exponential scaling in
both time and memory in the number of individuals
in the pedigree (7). Lander and Green’s algorithm
is widely used for multipoint linkage analysis: i.e.
problems where many markers are considered
simultaneously. Unfortunately, many researchers are
interested in analyzing datasets which are too large for
current implementations of the algorithm. Dwarkadas et.
al. have previously presented a shared memory
parallelization of a linkage analysis code; however, it
was not designed to scale to more than a few processors
(8). We present here a parallel Lander and Green
algorithm that has been implemented in the Genehunter
program (9); to our knowledge it is the first distributed-
memory implementation of the Lander and Green
algorithm.

The Lander and Green algorithm is based on a novel
representation of inheritance data. These authors point
out that the inheritance of a genetic locus in a pedigree
can be completely described by identifying from which
parental chromosome each child derives its alleles at that
locus. Figure 1 presents a simple example of this
principle. Two parents (who are termed founders
because their parents are not present in the pedigree)
have a single offspring. Each parent has two copies of
the locus in question. The father (top square) has
different alleles at this locus—an A from his father and
an a from his mother. The mother (circle) is
homozygous: she received an A’ from both parents.
When considering the offspring (bottom square), we can
describe the offspring’s two alleles at this locus simply
by indicating in binary coding whether he received the
allele from his grandfather or his grandmother. In this
case, we can unambiguously state that he received an A
from his paternal grandfather and designate his parental
chromosome with a 0. On the maternal chromosome we
cannot unambiguously determine whether the offspring
received his allele from his maternal grandmother or
grandfather. We therefore must consider both

Parallel Genehunter: Implementation of a Linkage Analysis Package for
Distributed-Memory Architectures

Gavin Conant*, Steve Plimpton†, William Old‡, Andreas Wagner*, Pam Fain‡, and Grant
Heffelfinger†
*Department of Biology, The University of New Mexico, †Computation, Computers, and Mathematics Center, Sandia National Laboratories, and
‡Health Sciences Center, The University of Colorado

Address for correspondence: Gavin Conant
Department of Biology
167 Castetter Hall
The University of New Mexico
Albuquerque, NM 87131-1091
Email: gconant@unm.edu

possibilities throughout the analysis, leaving this
chromosome coded as 0/1.

This example is artificial because we assume that
the phase of the two parents is known: i.e. that we can
distinguish paternal from maternal chromosomes. In
fact, this is generally not the case; instead, common
algorithms assign definitions of maternal and paternal to
founders. Since this assignment is arbitrary, it is often
referred to as founder-phase symmetry.

Lander and Green’s algorithm works by
representing each possible inheritance pattern for the
pedigree as a string of 2n bits, where n is the number of
non-founding individuals in the pedigree (a single
offspring in the example above). In fact, we can make
use of the founder symmetry described above, so that
instead of considering all 2n bits, by picking a definition
of maternal and paternal for each founder, we can reduce
the size of the representation to 2n-f, where f is the
number of founders in the pedigree. For details of this
modification, see (9).

Although any given inheritance pattern can be
represented in 2n-f bits, uncertainties about the actual
pattern of inheritance at each locus (as in the maternal
chromosome above) means that no single pattern will
represent the data exactly. Instead, a (possibly zero)
probability is assigned to each of the 22n-f possible
inheritance patterns (an inheritance vector of
probabilities) at each marker in the map. In multipoint
linkage analysis, it is assumed that one has a genetic
map containing the recombination distance between
each pair of markers. Using this map information, it is
conceptually straight-forward to use a Markov-chain
approach to calculate the probability of each marker,
conditional on all of the markers before or after it on the

map. Consider two markers m1 and m2 separated by a
UHFRPELQDWLRQ GLVWDQFH � �LQ RWKHU ZRUGV� WZR PDUNHUV

which undergo recombination between each other with
SUREDELOLW\ ���)RU HDFK RI WKH SRVVLEOH LQKHULWDQFH

patterns i in m2, define a distance d(i,j) between pattern
i and each possible pattern j in m1. Any bit position
where i and j differ implies a cross-over event. Thus we
compute d(i,j) as the Hamming distance between i and j.
The probability of the transition between pattern j at m1
and pattern i at m2 is given by

),(2),()1(jidfnjid −−−⋅ θθ (1)

Using this formula, one can create a transition
probability matrix M(i,j) where the i,jth entry gives the
probability of the transition from inheritance pattern i to
j, as calculated by (1). Given inheritance probability
vectors P1 and P2 (containing the probability of every
inheritance pattern at marker 1 and 2, respectively), we
can calculate P2|1 (vector of inheritance pattern
probabilities at marker 2 conditional on the probabilities
at marker 1) by:

 ()121|2 PMPP ⋅= � (2)

where o represents a component-wise vector product.
(2) can be then applied recursively to calculate any
required conditional probability vector. This Markov-

chain approach is an ()()222 fnO − time algorithm, but the

structure of matrix M allows the matrix-vector
multiplication to be performed as an FFT, reducing the
complexity of the Genehunter algorithm to

()()fnfnO −− ⋅ 222 2log2 (10). It is important to note that

although M is a convenient mathematical description of
the transition probabilities, its structure is such that there
are only 2n-f+1 distinct entries; no object of size 22n-

fx22n-f need ever be stored in the linkage analysis
computation.

2. Genehunter Computation:

The Genehunter 2.1 software (11) uses the above
algorithm to compute likelihood and non-parametric
scores for the occurrence of a disease gene at a number
of user-requested locations in a genetic map.
Genehunter’s computation proceeds in three distinct
stages:
1. Calculation of the probability of each possible 2n-f -

bit inheritance pattern for each marker and for the
disease gene. Calculation of a nonparametric
statistic for each inheritance pattern.

2. Calculation of the conditional inheritance
probabilities for each marker, conditioned on all
markers to the right of it in the map and on all
markers to the left. We refer to this operation as

A a A’ A’

A A’
Figure 1: A example pedigree illustrating
Lander and Green’s approach to representing
inheritance patterns as binary strings. Alleles
at this locus are represented by the letters A,
a, and A’.

“walking” up or down the map, using at each
marker the results of the last marker to calculate
conditional probabilities using equation 2.

3. Calculation of likelihood and non-parametric scores
for the requested disease location(s). In
Genehunter, scores are calculated for placing the
disease gene at each marker, and at a default of five
evenly-spaced points between every pair of
markers.
In addition to the FFT mentioned above,

Genehunter 2.1 introduced an important improvement,
based on the insight that some of the 22n-f possible
inheritance patterns will be precluded by the data and
can be ignored. Recall in the example above that the
offspring’s allele on the paternal chromosome could not
have been inherited from the paternal grandmother.
Therefore inheritance patterns of the form 1* can be
ignored. Clearly, each restriction of this kind reduces
the number of possible inheritance patterns by half,
since each restriction excludes one of the two settings at
a bit position. Thus, for many pedigrees, these
restrictions substantially reduce the problem size. (For
the full details of this improvement, see (11)). This
improvement reduces the size of the vectors used to
store inheritance probabilities from)2(2 fnO − to

)2(2 kfnO −− , where k is the number of inheritance bits

that can be unambiguously determined, or fixed. There
is also a similar effect on running time.

3. Memory requirements in Genehunter:

 On many computers, linkage analysis problems are
limited by the amount of available physical memory,
rather than running time (unpublished data). The
memory requirements for Genehunter consist of two
distinct parts: the memory needed to store the
inheritance probability vectors for the markers and the
memory required to store the inheritance probability
vectors for the disease phenotypes. This second vector
stores the probability of seeing the observed disease
phenotypes in the pedigree for each inheritance pattern.
Because of the non-deterministic mapping of genotype
to disease phenotype, it is impossible to definitively
exclude any inheritance patterns. As a result, the vector
of inheritance probabilities for the disease always
requires O(22n-f) memory. (It is possible to perform
non-parametric linkage analysis which does not always
require storing a vector of this size; but the computation
has an identical form and we will not discuss this here).
In the worst case, the amount of memory required for
all the marker probability vectors could be as high as
O(m22n-f), where m is the number of markers. However,
the presence of fixed bits in the dataset will almost

always mean that the actual memory requirements for a
given dataset are significantly lower.

4. Parallelization Approach:

 In order to allow larger problems to be solved, a
scalable parallelization scheme for Genehunter must
partition both the computations and memory. We
discuss the parallelization of each of the 3 steps of the
previous section separately. The input and output files
for Genehunter are typically quite small (no more than a
few hundred lines of text and postscript), meaning that
parallel I/O is not a significant bottleneck.

4.1: Step 1:

 Step 1 is the most straight-forwardly parallelizable
part of Genehunter. The purpose of step 1 is to
calculate, for each inheritance pattern, the probability of
that pattern at each marker, the probability of that
pattern given the disease phenotype data, and the non-
parametric score for that pattern. The non-parametric
scores and disease probabilities are independent; thus
they can simply be divided evenly across processors, so
that each processor owns and operates on inheritance
probability sub-vectors of length Pfn−22 , where P is

the number of processors.
The distribution of the marker vectors is slightly

more tricky: each marker has a vector of size 22n-f-k,
where k is the number of fixed bits for that particular
marker. One possible approach would be to store entire
inheritance probability vectors on each processor, i.e.
each processor would be assigned a fraction m/P of the
m marker vectors. However, the size of each vector
varies considerably from marker to marker depending on
k (the number of fixed bits), making load-balancing with
this approach problematic. Our strategy of having each
processor store a fraction P2 k-f-2n of every marker

vector is better balanced.

4.2: Step 2:

 Step 2 consists of calculating, for each marker i, the
vector of inheritance probabilities Pi|i-1..0 (probability of
each inheritance pattern at marker i conditioned on
markers 1 through i-1) and the vector Pi|i+1..m (inheritance
pattern probabilities conditioned on markers i+1 through
m). This calculation is performed using FFTs in the
conceptual manner of equation 2.

For the moment, assume that each processor has all
the elements of the conditional probability vector at
marker i-1 needed to compute the conditional
probabilities at i. (Since the vectors at markers i-1 and i

are not typically the same length this is not a valid
assumption; we deal with this additional data movement
complexity below.) The calculation itself consists of
first using an FFT to compute a matrix-vector product
similar to that seen in (2). The presence of k fixed bits at
a marker means that the size of the probability vector is
22n-f-k and the matrix has effective dimension 22n-f-kx22n-f-k

In Genehunter, the matrix-vector multiply is
replaced by an FFT-based convolution, with 2 forward
1d FFTs on vectors of length (N=)22n-f-k, followed by an
element by element multiplication and an inverse FFT.
Note that for large n, these 1d FFTs are still quite
computationally intensive. Note also that the elements
of each N-length vector are distributed across the P
processors in contiguous chunks. Conceptually this data
layout can be viewed as a 2d matrix of values with P
rows and N/P elements in each row, and each processor
owning a row of the matrix. The FFT operation can then
be parallelized the same way that a 2d FFT is performed
on a distributed memory parallel machine. N/P-length
1d FFTs are first performed within each row (an on-
processor computation), then a matrix transpose is
performed which requires all-to-all communication
between the processors, followed by a series of P-length
1d FFTs on data that is now local to each processor. The
inverse FFT simply reverses this process.

The result of the FFT calculation is a new
conditional probability vector of the same size as the
original, still distributed evenly among the processors.
The remaining calculation is a component-wise vector
product between every element of the probability vector
at marker i and the corresponding element in this new
conditional probability vector, yielding a vector of the

size of the original vector at marker i. This calculation
can be done very efficiently in parallel with each
processor calculating a component-wise product with its
particular portion of the probability vector.

4.3: Step 3:

 Conceptually, step 3 is very similar to step 2. The
major difference is that in step 2, we calculated the
conditional probability of all of the inheritance patterns
at a marker given the markers to the left or right, while
in step 3 we are calculating the probability of the
disease gene being at position x in the map, given the
markers to the left and right of x. This probability can
be written as

mixixD PPPp ..1|..1| +⋅⋅= (3)

where PD is the disease vector and Px|1..i and Px|i+1..m are
calculated in the manner of equation 2. Non-
parametric scores are calculated in a similar manner
using the non-parametric scores rather than PD. An FFT
is used with the conditional probabilities calculated in
step 2 to calculate the conditional probability of each
inheritance pattern at the point x from the marker at left
and at right. In this case� � LV JLYHQ E\ WKH GLVWDQFH

between the marker and x. Once again, the calculation
of this dot-product can be done efficiently in parallel
once each processor has the data needed for its part of
the calculation.

4.4: Redistribution of marker vectors for
computations of vector products:

 In the above discussion we ignored one very
important complication. If all marker vectors were of
size 22n-f, the computation of dot and component-wise
vector products between markers could be trivially
distributed among processors, because element i in one
marker could be mapped directly to the same element i
in any other marker. However, the introduction of k
fixed bits at a particular marker location means that a
particular marker vector is actually of length 22n-f-k.
Since the values of k for adjacent markers are often
different, the data layout of the 2 marker vectors is also
different and that redefines the mapping between
inheritance probability vectors. Fixed bits are generally
represented as bit masks of length 2n-f with 1s at
positions where fixed bits occur. Figure 2 gives a
possible configuration of the fixed bit masks for two
adjacent markers m1 and m2. It is important to note that
each fixed bit has an associated value (also shown in
figure 2).

Only non-fixed bits are stored in inheritance
probability vectors. Thus, in figure 2, marker m1

Marker m1:

Mask

1000010001

Division on 8 processors

000 0000{
Id

en
tif

y
pr

oc
es

so
rs {

B
its

 s
to

re
d

on

pr
oc

es
so

r

Marker m2: 0011001001 000 000

{ {

1****0***1Fixed bit values:

101**0Fixed bit values:

Mapping i2 to i1: i2=010110 011001110 011001110

Remove 2 fixed bits

1100110=i1

Insert 3 fixed bits

Figure 2: Examples of fixed bits for two
markers, m1 and m2. Masks for the fixed bits
are shown, with the corresponding fixed bit
values shown underneath. The lower half of
the figure shows the mapping of an index in m2
representation to m1 representation.

would have a size of 27 and marker m2, 2
6. Suppose we

are mapping inheritance pattern i (represented as a
binary sequence of 2n-f digits) from m2 to m1. We first
remove any fixed bits k1 that are common to both
markers (such as the last bit in figure 2). We now have
two indexes i1 and i2 each of length 2n-f-k1. We now
define two new operations for the mapping of indices
between markers: (1) If m2 has k2 fixed bits not present
in m1, (shown as bold in figure 2) we look up the value
of those fixed bits and insert them in the appropriate
locations of i1. Thus index i1 now has length 2n-f-
k1+k2. (2) If m1 (the target) has fixed bits not present in
m2 (shown as italics in figure 2), we drop those k3 bits.
The final size of i1 is therefore 2n-f-k1+k2-k3.

Consider the example index i2=010110. We can use
the masks in figure 2 to create the corresponding
element i1 in m1. The fixed bit in the ones position has
already been removed from m2, and can be ignored.
First, we insert three fixed bits into i1 at the locations
specified in the mask. This gives us 011001110 (figure
2 shows the inserted bits in bold). We now drop the
two fixed bits present at m1 but not m2 (shown in italics
in figure 2). The result is i1=1100110.

Unfortunately, the above process of adding and
removing bits may result in the need to access indices
(and the associated data) that are owned by other
processors. We can visualize the processor distribution
of each marker by writing a bit-string of the length of
each marker and drawing a line through it after log2(P)
bits (assuming we have 2P processors for some integer
P). This operation is shown in figure 2 for an eight-
processor (3-bit) distribution. For our example index
above, we see that i2=010|110, meaning that i2 is located
on processor 010 (4). However, we find that
i1=110|0110, meaning i1 is located on processor 110 (7).
Clearly, we may need to redistribute probability vectors
when we compute the dot or component-wise products
between markers.

This redistribution may at first appear to be costly,
but the bit patterns in the data allow the construction of
reasonably efficient communication routines. It is first
convenient to represent the source and target masks in
their partner’s variable bit space. Thus, the target mask
in the source representation shows all the locations in
the target (m2) where there are fixed bits not present in
the source (m1). The symmetric situation applies for the
target mask represented in the source configuration.
Figure 3 gives examples for the masks in figure 2.

We can now use these two new masks and apply the
same procedure of considering only the highest
log2(2

p)-order (processor-order) bits in each mask. For
eight processors, m1 in m2’s representation is 100|100
and m2 in m1’s representation is 011|0100. The first
thing to note is that cases where the processor-order bits
are all zeros require no communication. This case is
actually fairly common when the number of processors
is small relative to 2n-f. There are, however, two other
cases to consider.

First, there may be fixed processor-order bits in the
target not in the source. As described in operation (1)
above, these cases require looking up indices in the
source that match the values of the fixed bits in the
target. In processor-order bits, this implies that
processors whose value at that position do not match
the fixed bits will be idled. For instance, in figure 3,
only processors with ranks of the form *10 will
contribute to the computations in the source. The
communication algorithm based on this observation is
straight-forward: the subset of vectors contained on
non-idled processors are evenly redistributed on all
processors using a logarithmic time scatter-type
operation. For the example in figure 3, processors 010
and 110 would each split their data with their three
neighbors: 010 with 000-010 and 110 with 011-111. In
doing this communication, we can use any non-
processor-order fixed bits to realize a time-savings.
Note that each non-processor-order fixed bit reduces the
size of the vector that must eventually be split among
processors by ½, so instead of distributing the complete
source vector on a processor, we need only distribute a
compacted version where the elements that match the
fixed values are included.

The second case is when there are processor-order
fixed bits in the source not in the target. As noted in
operation 2 above, this situation results in reuse of
elements in the source vector. In this case the
processor-order fixed bits create equivalence classes of
processors which all need identical data. Every such
fixed bit doubles the size of the resulting data vectors
and halves the number of equivalence classes. For
instance, in figure 3, each processor is paired with the
processor that differs from it only at the highest order

Marker m1:

Mask in target representation

100100

1**0**Fixed bit values:

Marker m2:

Mask in source representation

0110100

*10*1**Fixed bit values:

Figure 3: Example showing the representation
of the masks in figure 2 in each other’s
representation.

bit position. Thus, 000 and 100 will have identical data,
as will 001 and 101 and so forth. We refer to these
equivalence classes as “blocks”. We can also calculate
the “original” block for each processor (which is just its
rank divided by the number of blocks) and its “original
block rank” (which is the modulus of its rank with the
number of blocks). When we have this information, we
can create block ranks for each processor. This is done
in the following way:

• If the processor’s original block and correct block
are the same (as for processor 0 in figure 4), then
that processor’s block rank is set to its original
block rank

• The remaining block ranks are assigned sequentially
in rank order.

Once block ranks are assigned, we use a unit time
exchange operation to put the block pieces on the
processor with the corresponding block rank. The above
assignment of block ranks avoids unnecessary
communication when processors already have a piece of
the block they will eventually need. Once this exchange
has taken place, the communication is simply a
logarithmic time all-gather operation for that block using
block ranks.
 In step 3, the target is the disease probability vector,
which has no fixed bits, meaning that we only need to
consider fixed bits in the source (the second case above).
In step 2, there can be arbitrary combinations of target
and source fixed bits. Thus, the two communication
schemes described above must be slightly modified.
Instead of the blocks being originally distributed on all
processors, they are only distributed on the non-idled
ones (where the processor ranks match the fixed bit

values). This means that one processor may hold more
than one block piece (or indeed more than one block).
Thus, in the first algorithm above, instead of every
processor sending its block piece to another processor,
only the live (non-idled) processors send data. If more
than one block is present on each live processor, the
communication loops over the number of blocks per
processor, at each step sending a block to a processor
that will need it. Otherwise, the communication takes
place in a single step, with each live processor that has a
block piece it will not need sending it to a processor that
will. One of several situations may result from this first
communication step:
• If only the target processor-order bits were non-

zero, communication is complete.
• If there were more target processor-order bits than

in the source, then each block is currently
completely stored on a single processor with block
rank 0.

• If there were more source processor-order fixed bits
than in the target, then each block is either partially
or completely distributed on the processors that will
need it.
The second case above (target processor-order bits

> source processor-order bits) can be simply handled
with a logarithmic broadcast operation. The last case is
more complicated. First, all processors that have some
piece of the block perform a logarithmic all-gather to
obtain the complete block. However, there may be some
processors with no part of the block. The full block is
then broadcast to these processors, using all available
processors that have the block.

4.5: Founder symmetry lookups:

 There is one final wrinkle to the communication
routines above involving the founder-phase symmetry
state space reduction. Founder symmetry occurs in
sibships, or groups of siblings. Essentially, in a sibship
of s siblings where one parent is a founder, one of the s
bits in that sibship for the founder’s chromosome can be
eliminated. However, if some of the other s-1 bits for
the sibship are fixed, we must also consider the
complementary assignment of the founder-phase. Thus,
if there is one sibship with a fixed bit, for each
inheritance pattern calculation, we will need to look up
two indices: one with the original founder-phase
assignment and one with the complementary assignment.
This operation corresponds to “flipping” all of the
variable bits in that sibship. When we distribute this
calculation, we must check to see if any of these founder
sibling “flips” intrude into the processor-order bits.
When this occurs, it means that each processor will
require another block in addition to the one it already

000

Source Mask: 100|0000

001 010 011 100 101 110 111

Block: 00 01 10 11 00 01 10 11

0 0 0 0 1 1 1 1Block Rank:

00 00 01 01 10 10 11 11Original Block:

0 1 0 1 0 1 0 1Original Block
Rank:

Processors:

Figure 4: Example showing the distribution of
a marker with mask 1000000 onto a target
with mask 0000000. Processor ranks are
shown in standard binary representation. The
following two lines indicate the block which
that processor will need and the its rank in
that block. The remaining lines show how the
blocks are initially distributed on processors.

has. We handle this by looping over the above
communication routines for each founder-symmetry case
required. It is important to note that these flips may
change the values of the fixed bits, but this is handled
transparently by the above algorithm.

5. Performance:

 We have analyzed the performance of our algorithm
on Sandia National Laboratories’ Cplant cluster. Cplant
consists of several hundred DEC Alpha EV6 processors
connected via Myrinet. We ran three problem sizes, (2n-
f =)19 and 21 bits of one dataset and a 24 bit problem
from second dataset. A 24-bit problem means that the
largest vectors Genehunter operates on are of length 224.
The 19 and 21 bit datasets are from a 10cM chromosome
1 genotype screen of a 51 member family with a genetic
skin disease, vitiligo. Family members were genotyped
using the Prism Linkage Mapping Set Version 2
(LMSv2-MD10) panel of microsatellite markers from
Applied Biosystems. The 24 bit dataset is a 5cM
chromosome 1 genotype screen from the same family,
with genotype data from one additional family member.
Figure 5 shows the overall runtime performance of these
problems on different number of processors and the
efficiency of each problem size on different numbers of
processors. We note that the 24-bit problem, which runs
in 11 minutes on 32 processors, would require roughly
five hours to run on an equivalent single processor
system. A line of perfect scaling for each problem size

is included for reference in figure 5a, which would
correspond to 100% efficiency in figure 5b. Although
scaling eventually drops off in each case, there are
ranges of processor counts which scale well for each
problem size. This observation is of importance when
we consider the possibility of scaling to larger problems
and processor counts, since it implies that for most
problems we can hope to find a range of processor
numbers where efficient use of computational resources
is made.
 There are several factors limiting scalability. One
is the disparate sizes of the different marker vectors. For
our datasets, markers sizes may range from less than 210
up to full size (22n-f). To avoid dividing a marker onto
more processors than it has bits, we have set a limit
L(=29 for figure 5), such that any markers with fewer
than L bits are analyzed in serial. At some point, these
serial markers make begin to have an impact on running
time. Of course, although the communication routines
described above are fairly efficient, they also impose an
overhead cost that may limit scalability.

6. Future Directions:

 Genehunter 2.1 as implemented has a built-in limit
of 2n≤32 bits, because it uses 32-bit integers as masks.
We currently in the process of increasing this limit to
2n≤64 by replacing the integer masks with the c datatype
long long int. This modification is required because the
current limit may impede on problems as small as 2n-f

Runtimes for 19,21, and 24 bit problems

10000

100000

1000000

10000000

1 2 4 8 16 32 64

Number of processors

Ti
m

e
(m

s)

19 bit total

19 bit linear

21 bit Total

21 bit Linear

24 bit Total

24 bit linear

 Efficiency Comparision for 19, 21 and 24 bit problems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 4 8 16 32 64

Number of Processors

Ef
fic

ie
nc

y 19 efficiency

21 efficiency

24 efficiency

Figure 5: Example algorithm scaling for 19, 21 and 24 problems. A: Running times for different
problem sizes by processor counts. (Linear scaling curves are shown for reference.) B: Efficiency
for different problem sizes.

=26 bits, if f>6, not an unreasonable value. By
increasing the limit, we will allow the analysis of larger
problems on clusters and will be able to test the
scalability of our algorithmic approach on larger
numbers of processors.

7. Acknowledgments:

 G. Conant is supported by the Department of
Energy’s Computational Sciences Graduate Fellowship
and this project was part of his practicum program for
this fellowship. Sandia National Laboratories received
additional support for this project from the Department
of Energy’s Office of Biological and Environmental
Research.

8. References:

1. Morgan, T. H. (1911) Journal of Experimental Zoology 11,

365-413.

2. Sturtevant, A. H. (1913) Journal of Experimental Zoology
13, 43-59.

3. Fisher, R. A. (1935) Annals of Eugenics 6, 187-201.
4. Haldane, J. B. S. & Smith, C. A. B. (1947) Annals of

Eugenics 14, 10-31.
5. Morton, N. (1955) American Journal of Human Genetics 7,

277-318.
6. Elston, R. C. & Stewart, J. (1971) Human Heredity 21, 523-

542.
7. Lander, E. S. & Green, P. (1987) Proceedings of the

National Academy of Sciences, U.S.A. 84, 2363-2367.
8. Dwarkadas, S., Schäffer, A. A., Cottingham, R. W., Cox, A.

L., Keleher, P. & Zwaenpoel, W. (1994) Human Heredity
44, 127-141.

9. Kruglyak, L., Daly, M. J., Reeve-Daly, M. P. & Lander, E.
S. (1996) American Journal of Human Genetics 58, 1347-
1363.

10.Kruglyak, L. & Lander, E. S. (1998) Journal of
Computational Biology 5, 1-7.

11. Markianos, K., Daly, M. J. & Kruglyak, L. (2001)
American Journal of Human Genetics 68, 963-977.

