
TCS: Estimating Gene Genealogies

Mark Clement, Quinn Snell, Peter Walker

Department of Computer Science, Brigham Young University
David Posada, Keith Crandall

Department of Zoology, Brigham Young University

Abstract

Phylogentic analysis is becoming an increasingly
important tool for customized drug treatments,
epidemiological studies, and evolutionary analysis. The
TCS method provides an important tool for dealing with
genes at a population level. Existing software for TCS
analysis takes an unreasonable amount of time for the
analysis of significant numbers of Taxa. This paper
presents the TCS algorithms and describes initial
attempts at parallelization. Performance results are
also presented for the algorithm on several data sets.

1 Introduction
Phylogenies are extremely useful tools, not only for

establishing genealogical relationships among a group of
organisms or their parts (e.g. genes), but also for a
variety of research once the phylogenies are estimated.
In a recent review, Pagel (1999) eloquently outlined a
number of uses for phylogenetic information. These
uses include the analysis of drug resistance and the study
of evolutionary relationships between species.
Phylogenies have also been used to predict future trends
in infectious disease (Bush et al. 1999). Yet phylogenies
are only as useful as they are accurate.

Estimating genealogical relationships among genes
at the population level presents a number of difficulties
when compared to traditional methods of phylogeny
reconstruction. These traditional methods such as
parsimony, neighbor-joining, and maximum likelihood
make assumptions that are invalid at the population
level.

For example, these methods assume ancestral
haplotypes are no longer in the population, yet
coalescent theory predicts that ancestral haplotypes will
be the most frequent sequences sampled in a population
level study (Watterson & Guess 1977; Donnelly &
Tavaré 1986; Crandall & Templeton1993). Figure 1
shows a traditional parsimony or maximum likelihood
tree. Note that all of the haplotypes occur at the leaves
of the tree. With population studies, many of the
individuals sampled will be internal nodes or ancestors
of other individuals sampled as shown in Figure 2.
Cycles can also occur along with recombination in trees
derived from population studies.

Traditional methods assume that recombination will
not occur. The failure to incorporate the possibility of

recombination in phylogeny reconstruction can lead to
grave errors in the resulting estimated phylogeny.

The combination of these effects can lead parsimony
methods to infer a cumbersome amount of most
parsimonious trees at the population level with no
resolution among the set (e.g. over one billion trees for a
set of human mitochondrial DNA (mtDNA), Excoffier &
Smouse 1994). These effects can also lead neighbor-
joining and traditional maximum-likelihood methods to be
over confident in the resulting relationships (Bandelt et al.
1995). Therefore, an alternative approach is needed to
provide accurate estimates of gene genealogies at the
population level that take into account these population
level phenomena not addressed by traditional methods.

Multiple groups have looked to network
representations for population level genealogical
information (Bandelt & Dress 1992; Templeton et al.
1992; Excoffier & Smouse 1994; Fitch 1997). Networks

Figure 1: Traditional Parsimony or Maximum
Likelihood Tree

GD12

NLSW35

NR202

AETl201

Figure 2: Taxa can exist as ancestors and cycles
can occur in a population study tree.

allow one to naturally incorporate the often-times non-
bifurcating genealogical information associated with
population level divergences. The method of Templeton,
Crandall and Sing.(1992) (TCS) has been used
extensively with restriction site and nucleotide sequence
data to infer population level genealogies when
divergences are low (Georgiadis et al. 1994; Routman et
al. 1994; Gerber & Templeton 1996; Hedin 1997;
Schaal et al. 1998; Vilá et al. 1999, Gómez-Zurita et al.
2000).

TCS has been used with traditional methods to
estimate relationships among organisms that span a wide
range of divergence (Crandall & Fitzpatrick 1996;
Benabib et al. 1997). The approach has also been used
extensively with a nested analysis procedure to partition
population structure from population history (Templeton
et al. 1995; Templeton 1998) and explore the
phylogeographic history of a diversity of organisms (e.g.
Johnson & Jordon 2000; Turner et al. 2000).

The TCS software opens nucleotide sequence files
in either nexus (Maddison et al. 1997) or phylip
(Felsenstein 1991) sequential format. The program
collapses identical sequences into haplotypes and
calculates the frequencies of the haplotypes in the
sample. These frequencies are used to estimate
haplotype outgroup probabilities, which correlate with
haplotype age (Donnelly & Tavaré 1986; Castelloe &
Templeton 1994).

An absolute distance matrix is then calculated for
all pairwise comparisons of haplotypes. The probability
of parsimony [as defined in Templeton et al. (1992),
equations 6, 7, and 8] is calculated for pairwise
differences until the probability exceeds 0.95. The
number of mutational differences associated with the
probability just before this 95% cut-off is then the
maximum number of mutational connections between
pairs of sequences justified by the ‘parsimony’ criterion.

These justified connections are then made resulting
in a 95% set of plausible solutions. The program outputs
the sequences, the pairwise absolute distance matrix,
probabilities of parsimony for mutational steps just
beyond the 95% cut-off, a test listing of connections
made and missing intermediates generated, and a graph
output file containing the resulting network. This graph
output file can be opened in the freeware VGJ 1.0.3
(McCreary 1998)(distributed under the terms of the
GNU General Public License, Version 2), which is
packaged with the TCS algorithm.

This paper describes the implementation of the TCS
algorithm and a parallel version recently completed.
Performance results are presented for several data sets
along with algorithm analysis results.

2 Algorithm Description
This section describes the overall architecture of the

TCS program. It focuses on sections of code that are

most computationally intensive and attempts to highlight
opportunities for parallelization.

After the sequence file is read in, the algorithm
calculates the distance between each taxa and every other
taxa. This calculation is performed by comparing the
characters for each sequence and recording the raw
number of changes between the sequences. Table 1 shows
sequence data and Table 2 shows the distance matrix for
the taxa shown in Figure 2.

Taxa Name Sequence Data

NLSW35 ACGCA
AETl201 ACGCC
NR202 ACGAC
GD12 TTGAA

Table 1: Sample Sequence data for the tree in Figure 2.

Distance NLSW35 AETl201 NR202 GD12
NLSW35 0 1 2 3
AETl201 1 0 1 4
NR202 2 1 0 3
GD12 3 4 3 0

Table 2 Distance Matrix for the tree in Figure 2.

Once the distance matrix has been computed, the TCS
algorithm proceeds to connect the taxa into a cladogram
using the following algorithm:
1) A cluster is created for each of the N taxa in the

sequence file.
2) The distance matrix is examined to determine which

two clusters have the minimum distance M. This
distance is computed by taking each taxa in one cluster
and finding the taxa in each of the other clusters that has
the smallest number of changes. In the worst case, there
are N-1 clusters that each have 1 taxa for a complexity
= O(N2) for this step.

3) All of the taxa in the two minimum distance clusters
that have distance M are then joined. For this discussion
we assume that taxa S in the source cluster and taxa D
in the destination cluster are two of these taxa that have
distance M. Connections that have a distance greater
than 1, will be made by adding intermediates in the
following way: (In the worst case N/2*N/2 connections
will be made)
a. The minimum number of intermediates should be

added to make the distance between the two taxa
correct while preserving other distances in the matrix.
Intermediates from another connection can be used in
joining a pair of taxa as long as the connection does
not form a connection that is shorter than the
minimum distance between any two taxa in the
source and destination clusters.

 This step is implemented using the following
algorithm
i. All of the possible connections between S, an

intermediate in the source cluster, an intermediate
in the destination cluster and D are evaluated.
There are at most (N/2)2 of these connections
possible (N/2 intermediates in the source cluster
and N/2 intermediates in the destination cluster).

ii. These connections are evaluated to determine
which connection has the maximum metric. In
the worst case, N2 distances will be compared for
each possible connection. The metric is
computed in the following way:

1. The distance between every pair of taxa in the
source and destination cluster is examined to
determine the global quality of a possible
connection. A distance metric is created by
comparing each of these possible distances with
the real distance computed from the sequence
file.

2. If a possible connection creates a distance that
is correct, the metric is incremented by 20
points.

3. If the distance is shorter than the correct
distance, but longer then the minimum distance
for the taxa, then the metric is decremented by
10 points.

4. If the distance is less than the minimum for the
taxa, then the metric is set to negative infinity
(to indicate that this connection is undesirable).

5. If the distance is longer than the correct value,
then the metric is decremented by 5 points.

iii. The connection with the best metric is made in
the tree data structure.

b. Combine the two clusters into one, reducing the
number of clusters by one.

4) If there is more than one cluster, go to step 2.

2.1 Example
Figure 1 provides an example data set for the TCS

algorithm. Initially, there are N clusters, one for each
taxa. The minimum distance is between NLSW35 and
AET1201 (the distance between NR202 and AET1201 is
also minimal, and will be dealt with next. Taxa
NLSW35 and AET1201 are connected with this minim
distance (1) and are joined into a cluster. Figure 4
shows the first connection made in the algorithm.

At this point the minimum distance between clusters

must be computed. The minimum distance between
GD12 and any of the taxa in Cluster 0 is 3. Since the
distance between NR202 and AET1201 is one, this is the
minimum distance between any two clusters and a
connection will be made in the next step between Cluster
0 and Cluster 3. During the next iteration of step 2 in the
algorithm Taxa GD12 with be joined to the cluster
consisting of NLSW35, AET1201 and NR202. The
minimum distance is 3 between the two clusters and the
algorithm makes all of the connections at that minimum
distance. The first connection is made between GD12 and
NLSW35 by adding two intermediates as shown in Figure
5.

The next minimum distance connection between Taxa

GD12 and Cluster 0 is to Taxa NR202. Several possible
connections exist. Two new intermediates could be added
between GD12 and NR202. The distances for this tree
would all still be correct. By reusing intermediates I1 and
I2, the metric will be higher and this connection will be
used. If the minimum distance for Taxa NLSW35 or
NR202 was greater than 2, then reusing these
intermediates would have caused the distance between
NLSW35 and NR202 to be less than the minimum
distance and this connection would not be used.

3 Complexity and Performance
Analysis

In analyzing the complexity of the TCS algorithm, the
loop starting with step 2 will occur N times. There can be
as many as N2 possible connections to perform metric
evaluation for at each of these steps for a total of O(N3)
computations. For each of these connections, a worst case
of N2 distance comparisons must be made to calculate the
metric. The total complexity of the algorithm is O(N5).

Figure 4: Configuration after the first two clusters
have been collapsed.

GD12

NLSW35

NR202

AETl201 Cluster 0

Cluster 2

Cluster 3

GD12

NLSW35

NR202

AETl201 Cluster 0

Cluster 2

Figure 3: Configuration after the first connection
has been made between Taxa GD12 and Cluster 0
(Taxa NLSW35). Possible connections are shown
with different line patterns for the next connection to
Taxa NR202.

Although the complexity of the TCS algorithm
grows rapidly as the number of taxa increases, the
problem is not nearly as difficult as total exploration of
the tree space. Table 3 shows the number of
computations for each problem. Execution time for TCS
varies significantly depending on the data set. If the
sequence data is organized so that a single additional
taxa is added to a growing large single cluster, then the
computation will proceed more quickly. If there is a
step where two large clusters are joined, the computation
will take much longer. Many data sets exist with more
than 10,000 taxa and even the most efficient traditional
algorithms do not examine a significant percentage of
the total trees. Table 4 shows run times for several data
sets with different number of taxa.

Table 3: Number of trees for the Parsimony
computation, compared to the number of
computations for TCS.

Data Set Number of
Taxa

Execution Time

LTRA Sequences 30 4 seconds
LTRA Sequences 40 17 seconds
LTRA Sequences 72 40 seconds
HIV 100 720 seconds
Simulated
Sequences

200 23 seconds

HIV 200 27,120 seconds

Table 4: Execution time for TCS with different
sequence data.

3.1 Parallelization
For thousands of taxa, the run time of TCS is still

excessive. A parallel implementation of the algorithm
has been completed in order to increase the problem
sizes that can be effectively dealt with. There are
several opportunities for parallelization in the TCS
algorithm.

One possibility for parallelization would be to have
each processor independently combine clusters
(iterations of step 2). There are data dependencies
between iterations as each cluster is collapsed that
makes this level of parallelization impossible.

Parallelizing the loop that begins at step 3 is also
difficult since intermediates inserted by one connection
can be used by other connections between clusters. If this
problem could be solved, then there would be
approximately O(N4) computations possible without
communications and the algorithm would be much more
efficient.

The initial parallel implementation chose to assign the
evaluation of the metric for each connection (step 3.a.ii) to
a different processor (O(N2) computations for each
processor). This approach results in more inter-processor
communication and results in load imbalance since the
evaluation of some metrics will require much more time
than others.

3.2 Parallel Implementation
 The parallelization has been completed and the initial

results appear promising. Since TCS is written in Java,
multiple threads were spawned and these threads were
mapped to different processors on a shared memory
machine.

 Before optimization was done, profiling
information showed that the most time consuming
operation was java Vector lookups. Java Vectors were
used significantly in nested for loops that recalculated
distances. Java Vectors are synchronized, causing an
object lock to be requested for any method call. In a
multithreaded environment, this could mean unacceptably
long waiting times for object locks to do read-only
operations. Further, java Vectors do not allow direct
access, as do arrays, meaning that each element retrieved
from a Vector incurs the overhead of a method call.

Due to these factors, the code was changed so that
Vectors were copied on demand into Arrays local to each
thread. The relatively small amount of overhead caused by
the array copy was more than compensated for by the
speed gained in using arrays. While not eliminating the
possibility of thread blocking, the probability was reduced
dramatically. This change doubled the performance of
both serial and parallel code.

After finishing the optimization of the code, attention
was turned to improving the load balancing of the parallel
code. Initially, load balancing was static. Domain
partitioning gave each thread an exact number of taxa in
the source cluster. A thread would then iterate through
these taxa for each taxa in the destination cluster.

Timing of the initial parallel code showed that some
threads ran as much as ten times longer than other threads
under this partitioning method. This caused an enormous
bottleneck and limited parallel performance, since the
longest running thread determined the actual run-time.
The exact cause of such wide variances in run-times is
unknown, however, thread synchronization seems to be a
likely cause

 To empirically argue that this was the case, a
simple experiment was performed. The program was run

Number of
Taxa (N)

Number of
Trees

Worst Case TCS
Computations

10 2 x 106 105

22 3 x 1023 5x106

50 3 x 1074 3x108

100 2 x 10182 1010

1,000 2 x 102,860 1015

10,000 8 x 1038,658 1020

100,000 1 x 10486,663 1025

on the same set of data several times, noting each time
which thread was slowest. Results showed that the
longest running thread always took from eight to ten
times the amount of time for the fastest thread.
However, the slowest thread changed each time the
program was run. This eliminated the possibility that
the data caused the discrepancy in run-times (since data
partitioning was static), and argued for the cause being a
synchronization issue (such as waiting for object locks).

Due to the dynamic impact of the above issues, the
second attempt at parallelization used finer grained,
dynamic partitioning, assigning each thread a pair of
source and destination taxa, whenever the thread was
available. This finer grained approach resulted in near
identical run-times in each thread. Moreover, it
decreased the impact of a thread getting “stuck” while
waiting for an object lock.

3.3 Results and Analysis

Performance of the final version of the parallel code

was evaluated on a quad-processor Windows 2000
machine. Four data sets, one small, two medium, and
one large, were run using one to four threads. The small
data set, called Snails.nex, had thirty taxa with 359
characters each. The medium data set LTRA.nex had 72
taxa, each with 725 characters. The other medium data
set LTRB00.nex had 143 taxa with 518 characters each.
The big file, LTRB01-4.nex, had 217 taxa with 521
characters each. The characters provide a way to
calculate distances between taxa, but have no direct
impact on the run-time of the parallel code. The number
of Taxa and the distance between taxa are the
determining factors in run time.

Although the parallelized version of the code
offered performance improvements with larger data sets,
the results from smaller data sets also proved interesting.
Figure 6 shows that the application runs slower with
four processors than two or three threads. Because this
is a small data set, there is a high probability that several
processors will request locks on the data structure.
When this occurs, performance is diminished in several
ways. First, an expensive context switch must occur
since one of threads will not obtain the object lock and
must go into a sleep state until the lock is available.
There is also more barrier overhead when there are more
threads. Finally, more threads create contention for
memory, bus, and other computer resources.

Figure 7 shows that four threads run twice as fast as
one thread. Though far from a linear speedup, the
results show promise for larger data sets. Current
research is being performed to allow threads on other
shared memory nodes to communicate through network
connections. This will allow several shared memory
machines to participate in the computation. Increased
problem sizes will be used on these larger systems.

The experimental results show that four threads are
only 5% - 15% faster than three threads. Part of the
problem lies in the sequential component of the
computation. Although metric evaluation can be
performed in parallel, cluster joining is a sequential
computation. The next step in parallelization will be to
eliminate sequential components when possible.

4 Acknowledgements
This work was supported in part by the Alfred P.

Sloan Foundation, a Shannon Award from the National
Institutes of Health, and NIH R01-HD34350.

5 Conclusions
Prior to this research, TCS calculations were all

performed by hand and the corresponding tree was also
drawn by hand. The TCS software has allowed systematic
researchers to deal with much larger problems in
population genetics. The run times for TCS analysis are
much smaller than exhaustive search of the tree space and
several options are possible for parallelization. The TCS
software package has proved to be a valuable tool in DNA
analysis.

Future work will include several projects to increase

the utility and performance of TCS. The first project will
include a benchmarking experiment with sequences from
known trees to compare the trees generated with TCS to
the original tree. The parallel code will be profiled and
tested on larger data sets. The next step in population
analysis is to determine the nesting values that help to
separate the ingroup and the outgroup. Most of this code
has been written and should be tested and benchmarked.
Efforts are also underway to assign sequence data to the
intermediate taxa that are inserted in the process.

The TCS software has been included in several NSF
grant proposals and will continue to be enhanced to
provide better solutions for systematic problems.

Figure 6: Small data set run times

Figure 7: Medium data set run times.

Times For Snails.nex

0

50

100

150

200

250

300

350

400

1 2 3 4

Number Threads

T
im

e
(m

s)

snails.nex

Times For Medium Size Files

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4

Number Threads

T
im

e
(m

s)

LTRA.nex
LTRB.nex

6 References
Bandelt H-J, Dress AWM (1992) Split decomposition: a new

and useful approach to phylogenetic analysis of distance
data. Molecular Phylogenetics and Evolution,1, 242–252.

Bandelt H-J, Forster P, Sykes BC, Richards MB (1995)
Mitochondrial portraits of human populations using
median networks. Genetics,141, 743–753.

Benabib M, Kjer KM, Sites JW Jr (1997) Mitochondrial DNA
sequence-based phylogeny and the evolution of viviparity
in the Sceloporus scalaris group (Reptilia, Squamata).
Evolution,51,1262–1275.

Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM (1999)
Predicting the evolution of human influenza A.
Science,286,1921–1925.

Castelloe J, Templeton AR (1994) Root probabilities for
intraspecific gene trees under neutral coalescent theory.
Molecular Phylogenetics and Evolution,3, 102–113.

Crandall KA, Fitzpatrick JF Jr (1996) Crayfish molecular
systematics: Using a combination of procedures to
estimate phylogeny. Systematic Biology, 45, 1–26.

Crandall KA, Templeton AR (1993) Empirical tests of some
predictions from coalescent theory with applications to
intraspecific phylogeny reconstruction. Genetics,134,
959–969.

Donnelly P, Tavaré S (1986) The ages of alleles and a
coalescent. Advances in Applied Probability,18, 1–19.

Excoffier L, Smouse PE (1994) Using allele frequencies and
geographic subdivision to reconstruct gene trees within a
species: Molecular variance parsimony. Genetics,136,
343–359.

Felsenstein J (1991) PHYLIP: Phylogenetic Inference
Package. University of Washington, Seattle, WA.

Fitch WM (1997) Networks and viral evolution. Journal of
Molecular Evolution, 44, S65–S75.

Georgiadis N, Bischof L, Templeton A et al. (1994) Structure
and history of African elephant populations: I. Eastern
and Southern Africa. Journal of Heredity,85, 100–104.

Gerber AS, Templeton AR (1996) Population sizes and within-
deme movement of Trimerotropis saxatilis (Acrididae), a
grasshopper with a fragmented distribution. Oecologia,
105, 343–350.

Gómez-Zurita J, Petitpierre E, Juan C (2000) Nested cladistic
analysis, phylogeography and speciation in the Timarcha
goettingensis complex (Coleoptera, Chrysomelidae).
Molecular Ecology, 9, 557–570.

Hedin MC (1997) Speciational history in a diverse clade of
habitat-specialized spiders (Araneae: Nesticidae:
Nesticus): Inferences from geographic-based sampling.
Evolution, 51, 1929–1945.

Johnson JB, Jordon S (2000) Phylogenetic divergence in
leatherside chub (Gila copei) inferred from mitochondrial
cytochrome b sequences. Molecular Ecology, 9, 1029–
1035.

Maddison DR, Swofford DL, Maddison WP (1997) nexus: an
extensible file format for systematic information.
Systematic Biology, 46, 590–621.

Pagel M (1999) Inferring the historical patterns of biological
evolution. Nature (London), 401, 877–884.

Routman E, Wu R, Templeton AR (1994) Parsimony,
molecular evolution, and biogeography: The case of the

North American Giant Salamander. Evolution, 48, 1799–
1809.

Schaal BA, Hayworth DA, Olsen KM, Rouscher JT, Smith WA
(1998) Phylogeographic studies in plants: problems and
prospects. Molecular Ecology, 7, 465–474.

Templeton AR (1998) Nested clade analyses of phylogeographic
data: testing hypotheses about gene flow and population
history. Molecular Ecology, 7, 381–397.

Templeton AR, Crandall KA, Sing CF (1992) A cladistic
analysis of phenotypic associations with haplotypes inferred
from restriction endonuclease mapping and DNA sequence
data. III. Cladogram estimation. Genetics, 132, 619–633.

Templeton AR, Routman E, Phillips CA (1995) Separating
population structure from population history: a cladistic
analysis of geographical distribution of mitochondrial DNA
haplotypes in the tiger salamander, Ambystoma tigrinum.
Genetics, 140, 767–782.

Turner TF, Trexler JC, Harris JL, Haynes JL (2000) Nested
cladisitic analysis indicates population fragmentation
shapes genetic diversity in a freshwater mussel. Genetics,
154, 777–785.

Vilá C, Amorim IR, Leonard JA et al. (1999) Mitochondrial
DNA phylogeography and population history of the Gray
Wolf Canis lupus. Molecular Ecology, 8, 2089–2103.

Watterson GA, Guess HA (1977) Is the most frequent allele the
oldest? Theoretical Population Biology , 11, 141–160.

McCreary C, Barowski L (1998), The VGJ Graph Drawing Tool,
http://www.eng.auburn.edu/department/cse/research/graph_
drawing/graph_drawing.html, February 18, 1998.

