
1

DIPARTIMENTO DI ELETTRONICA,
INFORMAZIONE E BIOINGEGNERIA

GPU accelerated partial order multiple sequence
alignment for long reads self-correction

Francesco Peverelli: francesco1.peverelli@mail.polimi.it
Lorenzo Di Tucci: lorenzo.ditucci@polimi.it
Marco Domenico Santambrogio: marco.santambrogio@polimi.it
Nan Ding: nanding@lbl.gov

19th IEEE International Workshop on High Performance Computational Biology,
May 18, 2020,

New Orleans, Louisiana USA

Steven Hofmeyr: shofmeyr@lbl.gov
Aydın Buluç: abuluc@lbl.gov
Leonid Oliker: loliker@lbl.gov
Katherine Yelick: kayelick@lbl.gov

mailto:francesco1.peverelli@mail.polimi.it
mailto:lorenzo.ditucci@polimi.it
mailto:marco.santambrogio@polimi.it
mailto:nanding@lbl.gov
mailto:shofmeyr@lbl.gov
mailto:abuluc@lbl.gov
mailto:loliker@lbl.gov
mailto:shofmeyr@lbl.gov

2

Third generation sequencing

• provides much longer reads allowing more precise contig and
haplotype assembly and structural variant calling

• the error rate of these sequences is significantly higher (10-20%)
compared to their second generation counterparts (0.2%)

• therefore, error correction is included as a preliminary step in
genome analysis

• many self-correction tools (e.g. RACON, CONSENT) rely on Partial
Order (PO) Multiple Sequence Alignment (MSA) to identify the
consensus sequences

3

Contributions

• A GPU implementation of the PO alignment algorithm that
achieves up to 6.5x speedup compared to the software version run
on two 2.3 GHz 16-core Intel Xeon Processors E5-2698 v3 with 64
CPU threads

• An extension of the Roofline model analysis for GPUs presented in
[1], to evaluate the performance of our implementation on the
NVIDIA Tesla V100

• The integration of our kernel with CONSENT, a state of the art long
read self-correction tool obtaining up to 8.5x speedup of the error
correction module

[1] N. Ding and S. Williams, “An instruction roofline model for gpus,” 2019 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), 2019.

4

Partial order graph alignment

P

K M

I

V R

P Q K

N E T

V

T H L I M

T H K M L V R N E T I M

P K M I V R P Q K N E T V

PO Alignment

5

Partial Order Alignment

0 -5 -10 -15 -20 -25 -30 -35

-5

-10

-15

-20

-25

-30

-35

Similarly to sequence alignment, a scoring matrix is used to indentify the optimal alignment
Between the PO graphs

6

Partial Order Alignment

0 -5 -10 -15 -20 -25 -30 -35

-5

-10

-15

-20

-25

-30

-35

Cell to score at current iteration

Scoring dependencies

Dependency arc

7

Partial Order Alignment

0 -5 -10 -15 -20 -25 -30 -35

-5

-10

-15

-20

-25

-30

-35

Cell to score at current iteration

Scoring dependencies

Dependency arc

8

Partial Order Alignment

0 -5 -10 -15 -20 -25 -30 -35

-5

-10

-15

-20

-25

-30

-35

Cell to score at current iteration

Scoring dependencies

Dependency arc

9

Partial Order Alignment

0 -5 -10 -15 -20 -25 -30 -35

-5

-10

-15

-20

-25

-30

-35

Cell to score at current iteration

Scoring dependencies

Dependency arc

All the white cells are possible
scoring dependencies for the current
cell for a generic PO pair

10

PO alignment implementation

0 -5 -10 -15 -20 -25

-5

-10

-15

-20

-25

t2t0 t1 t3
• The PO graph is represented as and

edge list stored in shared memory,
plus a sequence of characters

• Each thread computes a cell of the
current antidiagonal by looping over
all the predecessors

• The scoring matrix is stored by
antidiagonals for coalesced memory
access

CHALLENGES

1. The dependencies of each cell change for different PO graphs, either
pre-compute them or store the entire alignment matrix in memory (we
chose the latter option)

2. The memory space required changes during the iterative alignment
procedure -> allocate enough memory statically for each alignment

11

PO Multiple Sequence alignment

PO alignment
kernel

PO generation
kernel

PO fusion
kernel

OVERLAPPING
READS

WINDOWS

HOST

MSA result
generation

ALIGNED
WINDOWS

GPU

Each CUDA block operates on an independent window of reads. The whole MSA task
is performed in parallel on up to 150,000 blocks

12

Kernel selection

K1<SLEN,WLEN>

K2<SLEN,WLEN>

K3<SLEN,WLEN>

CHALLENGE:
Reduce excess static memory
allocation for the alignment

scoring matrix and MSA result

SOLUTION:
Choose between multiple kernels
at runtime depending on the size

and number of sequences

Depending on the kernel selected
and the device global memory

capacity we can compute a different
number of blocks

SLEN: maximum initial length of the sequences for each MSA task
WLEN: maximum number of sequences in the window for each MSA task

13

Roofline model analysis

• Given the specific nature of the parallelism in the alignment
algorithm, we propose a theoretical ceiling in terms of
GWarpIntInsructions/s:

𝐼𝑛𝑡𝐹𝑚𝑎𝑥 =
1

𝐷
෍

𝑘=1

𝐷
𝐹𝐼𝑁𝑇 ∙ 𝑁𝑘 ∙ B

⌈T ∙ B/min(INTC, T ∙ SM ∙ 𝑀𝐵)⌉

T =
𝑁𝑘

𝑇 𝑠
∙ Ts

INTC= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐹𝑈s

𝐹𝐼𝑁𝑇 = frequency of an integer FU

Ts = number of threads scheduled

B = number of blocks scheduled

SM = streaming multiprocessors

MB = max blocks per SM

Nk = elements to compute at iteration k

𝐷 = total iterations of the algorithm

14

Roofline model analysis

10−3 10−2 10−1 100 101 102 103

100

101

102

103
W

ar
p

G
IP

S

Warp Instructions per transaction

73.527
GWIntIPS

220GWIntIPS

Theoretical Peak: 489.6 warpGIPS

L1 Integer Instr.

L2 Integer Instr.

HBM Integer Instr.

Proposed ceiling

Theoretical Integer Instr. peak

Roofline analysis for one GPU kernel for windows of between 1 and 32 sequences and sequences of
1-31 bp

15

Roofline model analysis

100

101

102

103

10−3 10−2 10−1 100 101 102 103

W
ar

p
G

IP
S

Warp Instructions per transaction

104.268
GWIntIPS

220GWIntIPS

Theoretical Peak: 489.6 warpGIPS

L1 Integer Instr.

L2 Integer Instr.

HBM Integer Instr.

Proposed ceiling

Theoretical Integer Instr. peak

Roofline analysis for one GPU kernel for windows of between 1 and 32 sequences and sequences of
1-63 bp

16

Roofline model analysis

100

101

102

103

10−3 10−2 10−1 100 101 102 103

W
ar

p
G

IP
S

Warp Instructions per transaction

101.96
GWIntIPS

220GWIntIPS

Theoretical Peak: 489.6 warpGIPS

L1 Integer Instr.

L2 Integer Instr.

HBM Integer Instr.

Proposed ceiling

Theoretical Integer Instr. peak

Roofline analysis for one GPU kernel for windows of between 1 and 32 sequences and sequences of
1-127 bp

17

Roofline model analysis

100

101

102

103

10−3 10−2 10−1 100 101 102 103

L1 Integer Instr.

L2 Integer Instr.

HBM Integer Instr.

W
ar

p
G

IP
S

Warp Instructions per transaction

98.511
GWIntIPS

220GWIntIPS

Theoretical Peak: 489.6 warpGIPS

Proposed ceiling

Theoretical Integer Instr. peak

Roofline analysis for one GPU kernel for windows of between 1 and 32 sequences and sequences of
1-255 bp

18

CONSENT integration
Thread

scheduler

Preprocessing
(T1)

Task Enqueue

Queue manager

Preprocessing
(T2)

Preprocessing
(Tn)

Task Enqueue Task Enqueue

k1 k2 k3

. .
.

. .
.

LONG READ
OVERLAPS

Postprocessing
(T1)

Postprocessing
(T2)

Postprocessing
(Tn)

CONSENSUS
SEQUENCES

Executor thread

GPU

Thread
scheduler

. .
.

• The segmentation and correction
strategy of CONSENT is split into
three phases to create batches of
MSA tasks

• Each thread is assigned to a
preprocessing and enqueue task
according to a round-robin policy

• The MSA tasks are enqueued in a
thread-safe queue. Once the
queue is full, the executor thread
performs the accelerated MSA

• After the current batch of
alignments has been performed,
each thread is assigned to a
postprocessing task to compute
the final consensus sequence for
the reads

19

Xeon E5 CPU performance comparison

Sequence
size

Window
size

CPU Single thread
speedup

64 threads
speedup

1-32 bp 2-8 1 min 34s 35.31x 2.6x

32-63 bp 2-8 7 min 52s 82.15x 3.5x

64-127 bp 2-8 26 min 45s 121.28x 4.3x

128-255 bp 2-8 1h 42 min 192.13x 6.49x

Performance comparison of the PO alignment kernel executed on a NVIDIA Tesla
V100 against the CPU implementation of the BOA library [2] executed on a single
thread and with 64 parallel threads on two 2.3 GHz 16-core Intel Xeon Processors
E5-2698 v3 with a total of 64 hardware threads. Each experiment was executed on
1.2 million windows of sequences.

Sequence size: number of base pairs for each individual sequence in the MSA

Window size: number of sequences in the MSA procedure

[2] https://github.com/Malfoy/BOA

20

Skylake CPU performance comparison

Sequence
Size

Window
size

CPU GPU Speedup

1-32 bp 17-32 2 min 25s 1 min 7s 2.16x

32-63 bp 17-32 4 min 45s 1 min 57s 2.43x

64-127 bp 17-32 11 min 29s 4 min 19s 2.65x

128-255 bp 17-32 36 min 44s 12 min 55s 2.84x

Performance comparison of the PO alignment kernel against the CPU
implementation of the BOA library executed with 80 parallel threads on two Intel
Xeon Gold 6148 ('Skylake') running at 2.40 GHz. Both were executed on 3.2
million windows of sequences.

Sequence size: number of base pairs for each individual sequence in the MSA

Window size: number of sequences in the MSA procedure

*A more complete version of this table is available in the paper

21

GPU state of the art comparison

Sequence
size

Window
size

Our
kernel

Clara
Genomics[2]

Speedup

1-255 bp 1-32 2 min 40s 10 min 28s 3.92x

Sequence
size

Window
size

Our
kernel

Clara
Genomics[1]

Speedup

1-255 bp 1-32 2 min 40s 15 min 42s 5.89x

[1] Clara Genomics run on single CUDA stream in MSA generation mode
(same type of output as our implementation)

[2] Clara Genomics multi-batch benchmark in consensus generation mode
(different type of output, but the most efficient way to run Clara
Genomics, included for completeness)

All experiments are performed on a NVIDIA Tesla V100 on 2 million
windows of sequences

22

CONSENT acceleration results

Dataset Organism Dataset
size

CONSENT-
GPU

CONSENT Speedup

SRR10326407 E. Coli(30x) 151 Mbp 6 min 29s 34 min 36s 5.3x

SRR10326407 E. Coli(60x) 290 Mbp 16 min 44s 2h 26 min 8.5x

SRR7743079 D. Melanogaster
(20x)

2.9 Gbp 2h 53 min 6h 17 min 2.18x

ERR3454401 S. Cerevisiae

(30x)

386 Mbp 1h 6 min 23 min 2.86x

ERR3454401 S. Cerevisiae

(60x)

756 Mbp 3h 0 min 1h 32 min 1.95x

Performance comparison of CONSENT and our GPU accelerated version. Both software
were run on two Intel Xeon Gold 6148 ('Skylake') running at 2.40 GHz with 80 parallel
threads.

23

Conclusions

• We presented a GPU accelerated algorithm for multiple sequence
alignment based on partial order graphs that outperforms the state-
of-the-art CPU-based POA v2 alignment library for the targeted range
of sequence and window lengths, achieving a speedup that ranges
from 2.16x to 6.49x

• To evaluate the quality of the proposed GPU implementation, we have
devised an extension of the Roofline model for GPU and we show that
our kernel achieves near-optimal performance

• We have also shown that for the target range of sequences and
window lengths we outperform the Clara Genomics PO alignment
module by 5.89x and 3.92x for different execution modes on the
NVIDIA Tesla V100 GPU

24

DIPARTIMENTO DI ELETTRONICA,
INFORMAZIONE E BIOINGEGNERIA

Contacts

For questions regarding this work, email
Francesco Peverelli: francesco1.peverelli@mail.polimi.it

Github repository:
https://github.com/francesco-peverelli/CONSENT-GPU

mailto:francesco1.peverelli@mail.polimi.it

