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Graph Alignment: Basic Definitions

Basic definition: Determining a pairwise vertex-to-vertex
mapping between two graphs (H → G) that minimizes some
cost function. This is similar to subgraph isomorphism, but we
allow some “error” or inexactness in the isomorphic relation.
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Graph Alignment: Why

Such an alignment can reveal functional similarities between
biological interaction networks. Using graph alignment as a
tool for biological network analytics has:

Found consistent protein interaction network topologies
across species as distinct as yeast and human [Kuchaiev
et al., 2010].

Predicted protein interactions not previously measured
using this topological similarity [Malod-Dognin and
Pržulj, 2015].

Been a means to study the phylogenetics of various
herpes viruses [Kuchaiev and Pržulj, 2011].
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Graph Alignment: How

One approach is define a per-vertex feature vector consisting
of counts of various subgraphs and minimizes the differences in
these feature vectors when mapping vertices1.

Consider aligning network H to network G.

We count how often some number of distinct subgraphs
are rooted at all u ∈ V (H) and v ∈ V (G).

We define a cost of aligning each u to each v.

We attempt to minimize this cost over an entire
alignment.

1[Kuchaiev et al., 2010]
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Subgraph Counts as a Feature Vector

Consider the embedding frequency of various subgraphs to
define a feature vector defining the local topology of some
vertex v. Intuitively, vertices in separate networks that have a
similar local topology would make good candidates for some
alignment mapping.
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Graph Alignment using Subgraph Counts
to make things a bit more explicit

Define a per-subgraph distance between some vertex u ∈ V (H) and
v ∈ V (G) based on the counts of subgraph i rooted on u and v.

Di(u, v) = 1− wi ×
| log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2)

The total distance between u to v is the sum of each subgraph distance
along with a per-subgraph weighting term wi.

D(u, v) =

∑
iDi(u, v)∑

i wi

Then the total cost of mapping u to v is a function of this distance, their
degrees d(u) and d(v), the maximum degrees in the networks of ∆(G)
and ∆(H), and tuning parameter α.

C(u, v) = 2−
(

(1− α)× d(v) + d(u)

∆(G) + ∆(H)
+ α× (1−D(u, v))

)
A greedy approach minimizes these cost over some pairwise mapping.
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The Greedy Approach
and accounting for “errors”

An overview iterative and greedy approach is as follows:

Select the minimum u, v over all C(u, v) and align u→ v.

Greedily align the k-hop neighborhoods of u and v.

Once the neighborhoods are full aligned, raise the graph
to the next power – add edges between all vertices within
2-hops of each other.

Repeat the above process until all u ∈ V (H) is aligned.

By raising the graph to some pth power, we allow for inexact
alignments, such as with gaps in Smith-Waterman sequence
alignment. Our insertions and deletions, however, are in terms
of missing and extra edges between the two networks.
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Also Possible: The Use of Edge-based Counts

Subgraphs can also be considered rooted on a given edge e
instead of a vertex. A similar greedy algorithm can be
constructed using this notion2.

2[Crawford and Milenković, 2015]
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Graph Alignment: What We Did

The prior approach has been demonstrated in multiple works3

using graphlets. Our contributions are three-fold:

1 We developed a parallel and optimized alignment
algorithm based on this prior work.

2 We investigated its usage with both graphlets and treelets
(to be discussed).

3 We further extended our implementation to also utilize
per-edge subgraphs counts based on the recent work
of [Crawford and Milenković, 2015].

3[Kuchaiev et al., 2010, Milenkovič et al., 2010, Memisević and Pržulj,
2012, Kuchaiev and Pržulj, 2011, Malod-Dognin and Pržulj, 2015]
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Graphlets and Treelets: Definitions

Graphlets: All 2-5 undirected induced subgraphs of some
larger network. (pictured below)
Treelets: All 3-7 undirected non-induced subgraphs of some
larger network.

Figure from [Malod-Dognin and Pržulj, 2015].
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Why do we want to use treelets?

There are many benefits to using treelets in lieu of graphlets
for this problem;

Complexity: Enumerating graphlets scales with the current fastest
algorithm as O(n ·∆(G)4), where n is the number of vertices of
some graph G and ∆(G) is the maximum degree. Using efficient
algorithms, treelets can be enumerated with low error in about
O(m) time, where m is the number of edges of G.

Scale: Because of this lower work complexity, tree-structured
subgraphs of a larger order relative to graphlets can be enumerated
with the same or lower in-practice computational costs. This
captures a richer per-vertex feature set for use in alignment.

Induced vs. non-induced: Non-induced subgraph enumeration, as
is done with treelets, is much more resilient to the network noise
commonly found in real-world biological interaction datasets4.

4[Slota and Madduri, 2014]
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Parallelization of Alignment

Numerous parts of the baseline graph alignment algorithms are
amenable to parallelization:

Calculation of pairwise mapping costs
∀u, v ∈ V (H), V (G).

Finding minimum cost vertices u, v to serve as new seeds
for a regional alignment.

Determining k-hop neighborhoods of u and v for
potential alignment pairs.

Calculating the pth power of both H and G.

We perform shared-memory parallelization for all of the above
subroutines with OpenMP.
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Experimental Setup

System: We run on dual socket Xeon(R) Platinum 8160
CPU node with 196 GB DDR4 and 96 threads

Evaluation: We evaluate quality and enumeration time
for Graphlets, Treelets, and edge-based Treelets.
– For quality, we use the symmetric substructure score
– Basically, the ratio of edges aligned over total edges in
both networks minus edges aligned

Networks: We use protein interaction networks for
Yeast, Human, and C.elegans (shown on next slide). For
evaluating alignment quality, we noise the Yeast network
with 5-20% edge re-wired and align to the original
network.
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Speedup Using Treelets

The most promising benefit for future large-scale efforts is the
scalability benefit of treelets. We compare against the current
state-of-the-art code for counting graphlets (Orca5) and the
state-of-the-art for treelets (Fascia6). We observe a
considerable scalability difference when counting all subgraphs
necessary for alignment computation.

Network n m Orca Fascia network Source

Yeast 5.1 K 22 K 4.1s 11s [Xenarios et al., 2002]
Human 9.1 K 41 K 9.1s 18s [Radivojac et al., 2008]
C.elegans 15 K 246 K 777s 51s [Cho et al., 2014]

5Hočevar and Demšar [2014]
6Slota and Madduri [2013]
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Alignment Quality

We compare alignment quality using Graphlets, Treelets, and
Edge-based Treelet counts (TreeletsEdges) on the noised Yeast
networks across various α values. We observe a 3.1%
improvement on average using Treelets instead of Graphlets,
and a 9.2% improvement when also using edge-based counts.
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Conclusions and thanks!

Major takeaways:

We implement and parallelize prior graph alignment
algorithms using treelet counts instead of graphlet counts.

We observe a small but measurable increase in alignment
quality.

The more notable benefit is much better scalability to the
alignment of larger networks.

Future work: analysis of large-scale biological interaction
networks, brain connectome scans, etc. using this code.

Thank you! Contact below with any questions.

slotag@rpi.edu www.gmslota.com
16 / 16



Bibliography I

Ara Cho, Junha Shin, Sohyun Hwang, Chanyoung Kim, Hongseok Shim, Hyojin Kim, Hanhae Kim, and Insuk Lee.
Wormnet v3: a network-assisted hypothesis-generating server for caenorhabditis elegans. Nucleic acids
research, 42(W1):W76–W82, 2014.

Joseph Crawford and Tijana Milenković. Great: graphlet edge-based network alignment. In 2015 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 220–227. IEEE, 2015.
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T. Milenkovič, W. L. Ng, W. Hayes, and N. Pržulj. Optimal network alignment with graphlet degree vectors.
Cancer Informatics, 2010.

P. Radivojac, K. Page, W. T. Clark, B. J. Peters, A. Mohan, S. M. Boyle, and S. D. Mooney. An integrated
approach to inferring gene-disaese assicoations in humans. Proteins, 2008.

George M. Slota and Kamesh Madduri. Fast approximate subgraph counting and enumeration. In 2013
International Conference on Parallel Processing (ICPP13), 2013.

George M. Slota and Kamesh Madduri. Complex network analysis using parallel approximate motif counting. In
28th IEEE International Parallel and Distributed Processing Symposium (IPDPS14), 2014.

I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg. DIP, the database of interacting
proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30(1):
303–305, 2002.

17 / 16


	References

